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1 Introduction

Let a be a positive real number. For every non-negative integer n, Dana-Picard considered
in [2] the definite integral

In(a) =
∫ a

0
xn

√
a2 − x2 d x (1.1)

and inductively obtained that

I0(a) = a2π

4
, I1(a) = a3

3
, and In(a) = a2(n − 1)

n + 2
In−2(a)

.

In der mathematischen Physik spielen Spezielle Funktionen eine tragende Rolle. Zu
den am besten untersuchten Exemplaren dieser Funktionen gehören die Gammafunk-
tion und die Eulersche Betafunktion, die sich durch die Eulerschen Integrale zweiter
respektive erster Gattung ausdrücken lassen. Der Autor der vorliegenden Arbeit un-
tersucht Familien von parametrischen Integralen und den Wallis-Quotienten Wn =
(2n−1)!!
(2n)!! und drückt deren Werte mit Hilfe der Gamma- und der Betafunktion aus.

Dabei ergibt sich eine überraschende Verbindung zu den Catalan-Zahlen: Diese tre-
ten in der Kombinatorik in zahlreichen und auf den ersten Blick ganz verschiedenen
Abzählproblemen auf. Die gefundenen Formeln erlauben dem Autor inbesondere den
Nachweis, dass die Folge der Catalan-Zahlen absolut konvex ist.
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for n ≥ 2. Furthermore, by telescopic methods in [1, 3], Dana-Picard derived in [2] that

I2p(a) =
(

a

2

)2p+2 (2p)!
p!(p + 1)!π, p ∈ N (1.2)

and

I2p+1(a) = a2p+322p+1

(2p + 1)(2p + 2)(2p + 3)

p!(p + 1)!
(2p)! , p ≥ 0. (1.3)

Dana-Picard also observed in [2] that the quantities

Cp = (2p)!
p!(p + 1)! , p ≥ 0

are just the Catalan numbers in combinatorics and that

Cp = 1

π

∫ 2

0
x2p

√
4 − x2 d x, p ∈ N. (1.4)

Dana-Picard further pointed out that the integral representation (1.4) is equivalent to

Cn = 1

2π

∫ 4

0
xn

√
4 − x

x
d x, n ≥ 0, (1.5)

which was obtained in [11] by the Mellin transform. For more information on the Catalan
numbers Cn , please refer to the monographs [6, 25] and the paper [18] and plenty of
literature cited therein.

In this paper, we will present a unified expression of the formulas (1.2) and (1.3) in terms
of the gamma function

�(z) =
∫ ∞

0
t z−1e−t d t, �(z) > 0,

compute a new sequence of parametric integrals
∫ a
0

xn√
a2−x2

d x for a > 0 and n ≥ 0 in

terms of the gamma function �, discover the absolute convexity of the Catalan numbers
Cn , compute a general sequence of parametric integrals

I (a; α, β) =
∫ a

0
xα

(
a2 − x2)β

d x (1.6)

for a > 0 and α, β > −1 in terms of the classical beta function

B(x, y) = �(x)�(y)

�(x + y)
, �(x),�(y) > 0,

and represent the above sequences of parametric integrals
∫ a
0 xn

(
a2 − x2

)±1/2 d x , the

Catalan numbers Cn , and the Wallis ratio Wn = (2n−1)!!
(2n)!! in terms of the classical beta

function B(x, y).
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2 A unified expression of (1.2) and (1.3)

In this section, we present a unified expression of the formulas (1.2) and (1.3) in terms of
the gamma function � as follows.

Theorem 2.1. For a > 0 and n ≥ 0, we have

In(a) = an+2

√
π �

( n
2 + 1

2

)
4�

( n
2 + 2

) . (2.1)

Proof. By changing variables x = a sin s for s ∈ [
0, π

2

]
, we have

In(a) = an+2
∫ π/2

0
sinn s

√
1 − sin2 s cos s d s

= an+2
∫ π/2

0
sinn s cos2 s d s

= an+2
[∫ π/2

0
sinn s d s −

∫ π/2

0
sinn+2 s d s

]
.

Since ∫ π/2

0
sinn s d s =

√
π

2

�
( n

2 + 1
2

)
�

( n
2 + 1

) , n ∈ N,

see [12, Section 1.1.3], it follows that

In(a) = an+2
[√

π

2

�
( n

2 + 1
2

)
�

( n
2 + 1

) −
√

π

2

�
( n+2

2 + 1
2

)
�

( n+2
2 + 1

)
]

= an+2
√

π

4

�
( n

2 + 1
2

)
�

( n
2 + 2

) .

The proof of Theorem 2.1 is complete.

3 A new sequence of parametric integrals

Differentiating on both sides of the equation (2.1) produces a new sequence of parametric
integrals

∫ a
0

xn√
a2−x2

d x and a new integral representation for the Catalan numbers Cn .

Theorem 3.1. For a > 0 and n ≥ 0, we have

∫ a

0

xn

√
a2 − x2

d x = √
π an �

( n
2 + 1

2

)
n�

( n
2

) (3.1)

and, consequently,

Cn = 2

π(n + 1)

∫ 2

0

x2n

√
4 − x2

d x . (3.2)
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Proof. It is well known [16, Lemma 2.1] that

d

d t

∫ t

x0

f (x, t) d x = f (t, t) +
∫ t

x0

∂ f (x, t)

∂ t
d x,

where f (x, t) is differentiable in t and continuous in (x, t) in some region of the (x, t)-
plane. Hence, differentiating with respect to a on both sides of (1.1) gives

I ′
n(a) = a

∫ a

0

xn

√
a2 − x2

d x . (3.3)

On the other hand, differentiating with respect to a on both sides of (2.1) results in

I ′
n(a) =

√
π

4
(n + 2)an+1 �

( n
2 + 1

2

)
�

( n
2 + 2

) . (3.4)

Combining (3.3) with (3.4) and simplifying lead to the formula (3.1).

The formula (3.2) follows readily from combination of

Cn = 4n�
(
n + 1

2

)
√

π �(n + 2)
, n ≥ 0 (3.5)

in [6, p. 112, Eq. (5.5)] and (3.1). The proof of Theorem 3.1 is complete.

4 Convexity of the Catalan numbers

It is common knowledge that a sequence {μn}∞0 is said to be convex if the inequality

μn+1 ≤ μn + μn+2

2

is valid for every n ≥ 0. An infinitely differentiable function f on an interval I is called
absolutely convex on I if f (2k)(x) ≥ 0 on I . See [9, p. 375, Definition 3], [13, p. 2731,
Definition 4.5], [22, p. 617, Definiton 3], or [23, p. 3356, Definition 3]. A sequence {μn}∞0
is said to be absolutely convex if its elements are non-negative and its successive differ-
ences satisfy �2kμn ≥ 0 for n, k ≥ 0, where

�kμn =
k∑

m=0

(−1)m
(

k

m

)
μn+k−m .

It is clear that an absolutely convex function (sequence) must be convex.

Utilizing the integral representations (1.4), (1.5), and (3.2), we can derive the absolute
convexity of the sequences Cn and (n + 1)Cn .

Theorem 4.1. The sequences Cn and (n + 1)Cn for n ≥ 0 are both (absolutely) convex.
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Proof. The absolute convexity of the sequence Cn follows from the integral represen-
tations (1.4) or (1.5) and the absolute convexity of the functions

∫ 2
0 xt

√
4 − x2 d x and∫ 4

0 xt
√

4−x
x d x with respect to t .

The absolute convexity of the sequence (n + 1)Cn follows from rewriting the formula
(3.2) as

(n + 1)Cn = 2

π

∫ 2

0

x2n

√
4 − x2

d x

and the absolute convexity of the function
∫ 2
0

xt√
4−x2

d x with respect to t . The proof of

Theorem 4.1 is complete.

5 A general sequence of parametric integrals

Motivated by the proof of Theorem 2.1, we now compute a general sequence of parametric
integrals (1.6) in terms of the beta function B(x, y).

Theorem 5.1. For a > 0 and α, β > −1, we have

I (a; α, β) =
∫ a

0
xα

(
a2 − x2)β

d x = 1

2
aα+2β+1B

(
α + 1

2
, β + 1

)
. (5.1)

Proof. By changing variables x = a sin t for t ∈ [
0, π

2

]
as in the proof of Theorem 2.1,

we have

I (a; α, β) =
∫ π/2

0
(a sin t)α

[
a2 − (a sin t)2

]β
a cos t d t

= aα+2
∫ π/2

0
sinα t

(
1 − sin2 t

)β cos t d t

= aα+2
∫ π/2

0
sinα t cos2β+1 t d t = 1

2
aα+2β+1B

(
α + 1

2
, β + 1

)
,

where we used in the last step the formula

∫ π/2

0
sin2a−1 θ cos2b−1 θ d θ = 1

2
B(a, b), �(a),�(b) > 0 (5.2)

in [10, p. 142, Eq. 5.12.2]. The proof of Theorem 5.1 is complete.

6 Remarks

Making use of the formula (5.1), we now represent the sequences of parametric integrals∫ a
0 xn

(
a2 − x2

)±1/2 d x , the Catalan numbers Cn , and the Wallis ratio in terms of the
classical beta function B(x, y) in the form of remarks.
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Remark 6.1. By the formula (5.1) in Theorem 5.1, the formula (2.1) can be rewritten in
terms of the beta function B(x, y) as

In(a) = 1

2
an+2B

(
n + 1

2
,
3

2

)
.

Remark 6.2. By virtue of (3.5) and Theorem 5.1, we immediately recover the relation

Cn = 1

π
I2n(2) = 1

π
22n+1B

(
2n + 1

2
,
3

2

)
(6.1)

and the integral representation (1.4) for n ≥ 0.

Remark 6.3. By Theorem 5.1, the formula (3.1) can be rewritten in terms of the beta
function B(x, y) as ∫ a

0

xn

√
a2 − x2

d x = 1

2
anB

(
n + 1

2
,
1

2

)
.

Remark 6.4. It was stated in [5] that∫ π/2

0
sint x d x =

√
π

2

�
( t+1

2

)
�

( t+2
2

) , t > −1. (6.2)

See also [12, p. 16, Eq. (2.18)]. By (5.2), we can alternatively express the formula (6.2) in
terms of the beta function B(x, y) as∫ π/2

0
sint x d x = 1

2
B

(
t + 1

2
,
1

2

)
.

Remark 6.5. It is well known that the Wallis ratio is defined by

Wn = (2n − 1)!!
(2n)!! = (2n)!

22n(n!)2 = 1√
π

�
(
n + 1/2

)
�(n + 1)

, n ∈ N.

This quantity has been studied and applied by many mathematicians. See [4, 17, 19], for
example, and plenty of literature therein. The Wallis ratio can be expressed in terms of the
beta function B(x, y) as

Wn = 1

π
B

(
n + 1

2
,
1

2

)
, n ∈ N.

Remark 6.6. Since

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 d t, �(a),�(b) > 0,

see [10, p. 142, Eq. 5.12.1], the relation (6.1) can be rearranged as

Cn

22n
= 2

π

∫ 1

0
tn−1/2(1 − t)1/2 d t .

This implies that the sequence Cn
22n for n ≥ 0 is completely monotonic. For more informa-

tion on the Catalan numbers Cn , their generalizations, and their (completely monotonic)
properties, please refer to the monographs [6, 25], the formerly published papers [7, 8, 14,
15, 18, 20, 21, 24] and plenty of references therein.



Parametric integrals, the Catalan numbers, and the beta function 109

Acknowledgement

The author is grateful to Dr. Thierry Dana-Picard at the Jerusalem College of Technol-
ogy in Israel for his communicating and supplying the formally published versions of the
papers [1, 2] through the ResearchGate.

The author is thankful to the anonymous referees for their careful corrections to and valu-
able comments on the original version of this paper.

References

[1] T. Dana-Picard, Explicit closed forms for parametric integrals, Internat. J. Math. Ed. Sci. Tech. 35 (2004),
no. 3, 456–467; Available online at http://dx.doi.org/10.1080/00207390410001686616.

[2] T. Dana-Picard, Parametric integrals and Catalan numbers, Internat. J. Math. Ed. Sci. Tech. 36 (2014),
no. 4, 410–414; Available online at http://dx.doi.org/10.1080/00207390412331321603.

[3] P. Glaister, Factorial sums, Internat. J. Math. Ed. Sci. Tech. 34 (2003), no. 2, 250–257; Available online
at http://dx.doi.org/10.1080/0020739031000158272.

[4] B.-N. Guo and F. Qi, On the Wallis formula, Internat. J. Anal. Appl. 8 (2015), no. 1, 30–38.

[5] D.K. Kazarinoff, On Wallis’ formula, Edinburgh Math. Notes 1956 (1956), no. 40, 19–21.

[6] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.

[7] F.-F. Liu, X.-T. Shi, and F. Qi, A logarithmically completely monotonic function involving the gamma
function and originating from the Catalan numbers and function, Glob. J. Math. Anal. 3 (2015), no. 4,
140–144; Available online at http://dx.doi.org/10.14419/gjma.v3i4.5187.

[8] M. Mahmoud and F. Qi, Three identities of the Catalan–Qi numbers, Mathematics 4 (2016), no. 2, Arti-
cle 35, 7 pages; Available online at http://dx.doi.org/10.3390/math4020035.
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