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1 Introduction

A lattice � in R
2 is a free Z-module of rank 2, so � = XZ

2 for some matrix X =
(x1, x2) ∈ GL2(R). Here, the column vectors x1, x2 form a basis for � and X is referred
to as the corresponding matrix. The determinant of �, denoted by det(�), is defined to be
|det(X)| and does not depend on the particular choice of a basis for �. We define V (�) to
be the closure of the set of all vectors in R

2 which are closer to 0 than to any other vector of
�; i.e., the Voronoi cell of 0 (see Figure 1). The area of the Voronoi cell is equal to det(�)
and the real plane is tiled with translates V (�)+y for y ∈ �. We inscribe a circle centered
at a point of the lattice into each such translate and denote its largest possible radius with
r(�). Since all these circles are disjoint, we obtain a circle packing in R

2, which is called

.

Im Jahre 1910 bewies Axel Thue, dass die dichteste Kreispackung in der Ebene durch
die dichteste Kreisgitterpackung realisiert wird. Die dichteste Kreisgitterpackung wie-
derum liefert das hexagonale Bienenwabengitter, wie Lagrange schon 1773 nachwies.
In der vorliegenden Arbeit geht es nun darum, eine Folge von ebenen Gittern zu kon-
struieren, deren Basisvektoren ganzzahlige Koordinaten haben und welche das hexa-
gonale Gitter approximieren. Dabei kommen Methoden der elementaren Zahlentheorie
zum Einsatz. Diese Gitter beantworten dann die folgende Frage: Für teilerfremde Zah-
len N, a, b mit 0 < a, b < N definiere man die Menge

{(na (mod N), nb (mod N)) : 0 ≤ n < N}.
Wie gross ist die kürzeste Entfernung zwischen Punkten einer solchen Menge in Ab-
hängigkeit von N? Welche Parameter N, a, b liefern die grösstmögliche kürzeste Di-
stanz?
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the lattice packing corresponding to �. The density of this packing is given by

�(�) = area of one circle

area of the Voronoi cell
= πr(�)2

det(�)

The classical lattice packing problem in R
2 is to maximize this function on the space of

all lattices and its answer goes back to works of Lagrange (1773), Gauss (1831) and Thue
(1910, [11]): The density function � on lattices in R

2 is maximized by the hexagonal
lattice

�h :=
(

1 1
2

0
√

3
2

)
Z

2.

The hexagonal lattice is also the solution to the general circle packing problem inR2 which
was first proven by L. Fejes-Tóth in 1940; see [1, 2, 9].
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Figure 1 Left: The Voronoi cell V (�h ) (thick) with 9 points of the lattice �h and the corresponding circles and
triangles. Right: A lattice and its successive minima.

In particular, it can be shown (see, e.g., [2] for a recent variant of the proof or [8] for a
classical and elementary treatment) that if � is a lattice of rank 2 in R

2, then

�(�) ≤ �(�h) = π

2
√

3

with equality if and only if � can be obtained from �h by rotation and dilation; i.e., the
two lattices are similar.

Finally, let B be the unit circle centered at the origin in R
2. Given a lattice �, we define

the Minkowski successive minima λ1 ≤ λ2 of � to be

λi = inf{λ ∈ R
+ : � ∩ λB contains i linearly independent nonzero vectors},

in which i = 1, 2. We say that the vectors x1, x2 ∈ � correspond to successive minima if
they are linearly independent and

‖x1‖ = λ1, ‖x2‖ = λ2.

In other words, λ1 = λ1(�) is the length of the shortest vector of the lattice � and as such
it is equal to twice the in-radius of the largest circle inscribed in V (�). Hence,

�(�) = πλ2
1

4 det(�)
.

In this note we are interested in approximations of �h with good packing properties.
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We ask:

How to approximate �h with lattices � = XZ
2 where X is an integer matrix

such that �(�h) − �(�) < ε for a given ε > 0?

We define a family of lattices �s , s ∈ N, as follows. Set n = 2s + 1 and let b, N ∈ N be
such that their ratio has the particular continued fraction expansion

b

N
= bs

Ns
= [0, b1, b2, . . . , bn] = [0, 2, 1, 2, 1, . . . , 1, 2]; (1.1)

see Section 3 for an explanation of this notation. With this we define

Xs =
(

0 1
Ns bs

)
, �s = XsZ

2, and prove:

Theorem 1.1. Let �s and �h be as defined above. If s = 2m + 1 is an odd integer, then

lim
m→∞ �(�2m+1) = �(�h).

Theorem 1.1 can be interpreted as follows: If we scale each lattice �s so that its shortest
vector has unit length, then this sequence of lattices converges to a limit lattice which is a
rotated version of the hexagonal lattice; see Figure 2 for an illustration. We calculate the
rotation angle 3π/4 in Remark 4.2.
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Figure 2 The rotated hexagonal lattice (left) and the lattice �1 scaled by 1/(2
√

2) which is the length of its
shortest vector (right).

This result is closely related to an interesting question about lattices modulo N which was
the original motivation for this note. For integers 0 < a, b < N , with gcd(N, a, b) = 1
we define the lattice modulo N , �N,a,b , generated by the pair (a, b) as

�N,a,b := {(na (mod N), nb (mod N)) : 0 ≤ n < N}.
Thus, �N,a,b is a subset of the square [0, N−1]2. We are interested in the shortest distance
between points of �N,a,b . This distance is exactly given by the length of the shortest vector
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Figure 3 The left lattice modulo 23 does not contain the shortest vector of the corresponding lattice, whereas
the lattice modulo 23 in the middle contains the shortest vector. On the right is the regular grid G100 with
f (G100) = 1.

of the lattice � that is generated by the vectors (a, b), (0, N), (N, 0). Thus, whenever we
work with lattices modulo N , we abuse notation and write λ1(�N,a,b) for the shortest
distance between points in �N,a,b; see Figure 3.

For every lattice �N,a,b with gcd(N, a, b) = 1 and arbitrary, distinct points X = (na, nb),
Y = (ma,mb), we have that ‖(X − Y ) (mod N)‖ ≥ √

2. Together with a simple area
argument [6, Lemma 3.1], we obtain

√
2 ≤ λ1(�N,a,b) ≤ 3/2

√
N .

Using this observation, we would like to compare the shortest vectors of different lattices.
Thus, we define

f (�N,a,b) := λ1(�N,a,b)/
√

N .

Let N = n2 and GN ⊂ [0, n2 − n]2 be the regular grid generated by (n, 0) and (0, n); see
Figure 3. It is easy to see that

λ1(GN )/
√

N = 1.

Naturally, we would like to know whether there is a systematic way to generate lattices
modulo N with f (�N,a,b) ≈ 1 for all N . This question was answered affirmatively in [6,
Theorem 1.3]. Interestingly, one can show even more: namely that for infinitely many N
there exists a pair of integers (ã, b̃) such that f (�N,ã,b̃) > 1; [6, Theorem 1.4]. This result
motivates to ask:

How large can f (N, a, b) be? How do lattices with long shortest vectors look
like?

Since the densest circle packing in the plane is realized by the hexagonal lattice, we as-
sume to have N points arranged on a scaled regular hexagonal lattice with edge length
z contained in [0, N − 1]2. How long can z be? Ignoring boundary effects, each point is
contained in 6 equilateral triangles and, thus, we have roughly 6N/3 = 2N triangles in our
lattice; see Figure 1. Since the area of an equilateral triangle of edge length z is

√
3/4 · z2,
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we can roughly compute the maximal possible edge length z = z(N) as

max
z∈R

2N ·
√

3

4
z2 ≤ (N − 1)2 ⇒ z ≈ √

N

√
2√
3

≈ 1.07457
√

N .

Setting fmax(N) := max1≤a,b≤N f (�N,a,b), we answer [6, Question 1.10] and prove in
a constructive way that there exist lattices modulo N that come arbitrarily close to this
value:

Theorem 1.2. For every ε > 0, there exist infinitely many N such that

fmax(N) >

√
2√
3

− ε.

Remark 1.3. It is possible to generalize (1.1) and consider integers b, N such that

b

N
= bk,s

Nk,s
= [0, b1, b2, . . . , bn] = [0, k, 1, k, 1, . . . , 1, k],

for arbitrary k ∈ N, denoting the corresponding lattices �k,s . We can calculate the length
of the shortest vectors of all lattices of the family �k,s with our method and note that the
lattices for small values of k have also long shortest vectors. However, it can be shown that

max
k

f (�k,s) = f (�2,s) and f (�k,s) ≥ f (�k+1,s) (1.2)

for all odd s ≥ 3 and k ≥ 2. We omit the proof of the general case in the following, since
it is very technical, without adding any new insights.

2 Connection to other problems

We briefly describe two situations in which the answer to our problem is of interest. First,
we consider the famous traveling salesman problem which asks for the length L(x1, . . .,
xN ) of the shortest path through the points {x1, . . . , xN } ⊂ R

d . Setting xσ(N+1) := xσ(1),
we write

L(x1, . . . , xN ) = min
σ

N∑
n=1

‖xσ(n) − xσ(n+1)‖,

where the minimum is over all permutations σ of {1, 2, . . . , N}. It can be shown that the
length of the shortest path through all points of the lattice �N,a,b (scaled to [0, 1]2) is
essentially equal to λ1(�N,a,b); see [6]. Thus, our results give an idea how long shortest
paths through the points of a lattice modulo N can possibly be. This is especially in-
teresting with respect to a result of Karloff [4], who obtained a general upper bound of
1.39159

√
N + 11 for the length of the traveling salesman tour through any set of N points

in [0, 1]2.
As a second appearance of our problem, we suppose to find ourselves on the two-dimen-
sional torus T2 equipped with N candles and want to position the candles in such a way
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that they heat up the space as efficiently as possible. In [7] a general construction of point
sets was given that uses elementary number theory as the basic ingredient ensuring a fast
heating of the space. Interestingly, for a given N the quantity

g(N) := max
1≤p≤N−1

min
(k,m)∈Z2

(k,m) �=(0,0)

{
k2 + m2 : m · p + k ≡ 0 mod N

}
,

plays a crucial role. Geometrically, g(N) is determined by the largest shortest vector aris-
ing in the N − 1 lattices spanned by (1,−p) and (0,−N) for 1 ≤ p ≤ N − 1, since
m · p + k ≡ 0 if and only if (m, k) is of the form t1(1,−p) + t2(0,−N) for t1, t2 ∈ Z.

3 Properties of the denominators of the convergents

In this section we study algebraic expressions of the form

b0 + 1

b1 + 1
b2+...+ 1

bn

, (3.1)

for non-negative integers b0, . . . , bn . We refer to the classical book of Khinchin [5] for a
thorough introduction into this topic. Here, we just recall the most important notions and
facts required to prove our results. An expression of the form (3.1) is called finite continued
fraction and can be represented as the ratio of two polynomials, or, in case b0, . . . , bn have
concrete numerical values, as an ordinary fraction pn/qn . Usually, an expression of the
form (3.1) is written in a shorter way as [b0, b1, . . . , bn]. Truncating a given continued
fraction after its first i , 1 ≤ i ≤ n − 1, elements results in a fraction pi/qi which is called
an i th order convergent of pn/qn . It can be shown that the fractions pi/qi become better
and better approximations of pn/qn as i increases.

We are interested in the particular palindromic continued fraction of the form

b

N
= [0, b1, b2, . . . , bn] = [0, 2, 1, 2, 1, . . . , 1, 2]. (3.2)

In the following we write qi for the denominators of the convergents of the particular
fraction b/N . First, we determine the general form of the qi , before we obtain an important
inequality for these numbers.

Lemma 3.1. Let n = 2s + 1. If N, b ∈ N are as in (3.2), then

qi =
⎧⎨
⎩

1
2
√

3

(
(2 − √

3)m(
√

3 − 1) + (2 + √
3)m(

√
3 + 1)

)
if i = 2m is even,

1√
3

(
(2 + √

3)m+1 − (2 − √
3)m+1

)
if i = 2m + 1 is odd.

Proof. According to [5, Theorem 1] we obtain the denominators of the convergents of
b/N via the recurrence

qi = bi · qi−1 + qi−2,
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with q0 = 1 and q1 = b1. Consequently we get two different equations in our case de-
pending on the parity of i :

q2m = q2m−1 + q2m−2 (3.3)

q2m+1 = 2 · q2m + q2m−1. (3.4)

Setting q2m = Am and q2m+1 = Bm we can rewrite (3.3) and (3.4) as

Am = 4Am−1 − Am−2, and Bm = Am+1 − Am .

We solve the first recurrence for Am via the characteristic equation

r2 − 4r + 1 = 0,

and obtain
r1 = 2 − √

3 and r2 = 2 + √
3.

Setting

A0 = 1 = α1r
0
1 + α2r

0
2 , and A1 = 1 + b1 = 3 = α1r

1
1 + α2r

1
2 ,

we get

α1 = 1 − 3 − r1

r2 − r1
, and α2 = 3 − r1

r2 − r1
.

The general solution is then given by Am = α1rm
1 +α2rm

2 , from which we obtain the stated
closed form expressions for the qi .

To illustrate this lemma and to motivate the next, let us look at a concrete example. Set
n = 7 = 2 · 3 + 1 to obtain

[0, 2, 1, 2, 1, 2, 1, 2] = 41

112
= b3

N3
.

It is an easy exercise to calculate the 6 convergents,

1

2
,

1

3
,

3

8
,

4

11
,

11

30
,

15

41
,

by hand and to verify the values of the denominators with our formula. Interestingly, we
can observe even more from these values:

q2
1 + q2

5 = 4 + 900 > q2
2 + q2

4 = 9 + 121 > q2
3 + q2

3 = 64 + 64.

This is not a coincidence, but holds in general as the following lemma shows.

Lemma 3.2. Let n = 2s + 1 with s ≥ 3. If N, b ∈ N are as in (1.1) then, for i =
1, . . . , s − 1, ∥∥∥∥

(
qi

qn−i−1

)∥∥∥∥ ≥
∥∥∥∥
(

qi+1
qn−i−2

)∥∥∥∥ .
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Proof. We note that 0 < 2 − √
3 <

√
3 − 1 < 1. In the following we first prove the

assertion for i = 1, . . . , s − 2 and distinguish two cases depending on the parity of i . If
i = 2m, then

1

2
√

3

(
1 + (1 + √

3)(2 + √
3)m

)
> q2m >

1

2
√

3

(
(1 + √

3)(2 + √
3)m

)
.

On the other hand, if i = 2m + 1, then

1√
3
(2 + √

3)m+1 > q2m+1 >
1√
3

(
(2 + √

3)m+1 − 1
)

.

To prove the assertion we set X = 2 + √
3 and show that q2

i + q2
n−i−1 − q2

i+1 − q2
n−i−2 is

positive.

Case 1: If i = 2m then

q2
2m − q2

2m+1 ≥ 1

12
(1 + √

3)2X2m − 1

3
X2m+2

= −X2m+2

(
(1 + √

3)2

12X2
− 1

3

)
.

Moreover,

q2
2(s−m) − q2

2(s−m−1)+1 ≥ 1

12
(1 + √

3)2(2 + √
3)2(s−m) − 1

3
X2(s−m)

= X2(s−m)

(
(1 + √

3)2

12
− 1

3

)
.

By assumption 2 ≤ i = 2m ≤ s−2 and s ≥ 3, hence 2(s−m)−2(m+1) = 2s−4m−2 ≥
2. We continue our calculation and multiply the above results by X−2(m+1) before we sum
them to obtain

X2(s−m)−2(m+1)

(
(1 + √

3)2

12
− 1

3

)
− (1 + √

3)2

12X2
+ 1

3

≥ 32

(
(1 + √

3)2

12
− 1

3

)
− (1 + √

3)2

12 · 32
+ 1

3
> 0,

where we used that X > 3.

Case 2: If i = 2m + 1 then

q2
2m+1 − q2

2(m+1) ≥ 1

3

(
Xm+1 − 1

)2 − 1

12

(
1 + (1 + √

3)Xm+1
)2

= X2(m+1)

(
1

3
− (1 + √

3)2

12
+ 1

4X2(m+1)
− 5 + √

3

6Xm+1

)
.
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Since X > 3 we see that the expression in brackets is for every non-negative m bounded
by −1 and 0. Next,

q2
2(s−m−1)+1 − q2

2(s−m−1) ≥ 1

3

(
Xs−m − 1

)2 − 1

12

(
1 + (1 + √

3)Xs−m−1
)2

= X2(s−m)

3
− 2Xs−m

3
+ 1

4
− (1 + √

3)Xs−m−1

6
− (1 + √

3)2X2(s−m−1)

12

≥ X2(s−m)

(
1

3
− (1 + √

3)2

12 · 32
+ 1

4X2(s−m)
− 13 + √

3

18Xs−m

)
,

in which we used again that X > 3. Moreover, we observe that the expression in brackets
is positive:

1

3
− (1 + √

3)2

12 · 32
+ 1

4X2(s−m)
− 13 + √

3

18Xs−m

≥ 1

3
− (1 + √

3)2

12 · 32
− 13 + √

3

18 · 9
> 0.17.

Since 2s − 4m − 2 ≥ 2, and X2 > 32 it follows that

q2
2m+1 − q2

2(m+1) + q2
2(s−m−1)+1 − q2

2(s−m−1) > 0.

Finally, a direct calculation verifies the assertion for i = s − 1 as well.

4 Shortest vectors

In this section we determine the shortest vectors of the lattices �s . Already Gauss [3]
invented an algorithm that finds a reduced basis of a 2-dimensional integral lattice. There-
fore, arrange the given basis such that b1 is shorter than b2 and find k ∈ Z such that b2−kb1
is of minimal Euclidean length. Then replace the vector b2 by the vector (b2 − kb1) and
repeat this procedure until k = 0. If k = 0, return the pair (b1, b2). The shorter of the two
basis vectors is then the desired shortest vector of the lattice.

Lemma 4.1. Let n = 2s +1 and s ≥ 3. If N, b ∈ N are as in (1.1) then the shortest vector
of �N,1,b = �s is

(
(−1)sqs, qs

)
.

Proof. We start with the vectors (1, b), (N, 0), (0, N) and use the method outlined in [10,
Section 3] to compute a basis of this lattice. In particular, we obtain

(1, (1 − N)b) and (0, N),

which we immediately reduce to (1, b), (0, N).

We can rewrite these two vectors as (q0, qn−1), (q−1, qn). In the next reduction step we
replace the longer vector (0, N) as follows:(

0
N

)
− bn

(
1
b

)
=

(
0
qn

)
− bn

(
q0

qn−1

)
=

(−q1
qn−2

)
,
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since bn = b1. In the second step we obtain

(
q0

qn−1

)
− bn−1

(−q1
qn−2

)
=

(
q2

qn−3

)
.

Applying Lemma 3.2 we conclude again that (q0, qn−1) is longer than both (−q1, qn−2)
and (q2, qn−3) and is thus replaced. To turn to the general step we assume that

(
(−1)i qi

qn−i−1

)
and

(
(−1)i+1qi+1

qn−i−2

)

is the reduced basis after the i th reduction step for i = 1, . . . , s − 2. Then, we can reduce
this basis: (

(−1)iqi

qn−i−1

)
− bn−i−1

(
(−1)i+1qi+1

qn−i−2

)
=

(
(−1)i+2qi+2

qn−i−3

)
.

By Lemma 3.2 we can repeat this procedure until we reach ((−1)sqs, qs). Consequently
this vector is the shortest vector of the lattice.

Hence, we get if s is odd

lim
s→∞

λ1(�s)√
Ns

= lim
s→∞

√
2q2

s

q2s+1
=

√
2√
3

= 1.0745 . . . ,

which finishes the proof of Theorem 1.2. For completeness, if s is even, then

lim
s→∞

λ1(�s)√
Ns

= lim
s→∞

√
2q2

s

q2s+1
=

√
1√
3

= 0.7598 . . . .

Lemma 4.1 also implies a proof of Theorem 1.1. Since the shortest vector of �s is given
by ((−1)sqs, qs) we obtain for odd s,

�(�s) = π 2q2
s

4 det(�s)
= π

4

2q2
s

q2s+1

s→∞−→ π

4

2√
3

= �(�h).

Remark 4.2. Finally, we calculate the rotation angle for the hexagonal grid that we an-
nounced in the introduction. We know from Lemma 4.1 that (−qs, qs) is the shortest vec-
tor of �s for odd s. Dividing this vector by its length gives a vector of unit length that
points in the same direction. We observe that

lim
m→∞

(−q2m+1, q2m+1)

‖(−q2m+1, q2m+1)‖ =
(

− 1√
2
,

1√
2

)
,

and the angle between (1, 0) and (−1/
√

2, 1/
√

2) is just arccos(−1/
√

2) = 3π/4.
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