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1 Preamble
“Vous sçavez que l’envie est la Suivante de la Gloire1. [You know that Envy is the follower of Glory.]”

(Johann Bernoulli to Johannes Scheuchzer (1684–1738), April 1, 1721)

Johann Bernoulli (1667–1748) became, after Newton’s scientific retirement, Leibniz’
death and the premature decease of his brother Jakob (1654–1705), the world’s leading
mathematician in the first decades of the 18th century, a period of dramatic advances in
science due to the newly discovered calculus of Newton and Leibniz. He was the “master”
of the young Leonhard Euler (1707–1783) who, in turn, became “the master of us all”
(in Laplace’s words2). Fully aware of his value, Gabriel Cramer (1704–1752) edited his

1http://www.ub.unibas.ch/bernoulli/index.php/Hauptseite
2According to Libri (Journal des Savants, 1846, p. 51).

.

Johann Bernoulli (1667–1748), dessen Geburtstag sich heuer zum 350ten mal jährt,
war mit seinem Bruder Jakob der dritte Entdecker der Differential- und Integralrech-
nung und hatte mit seiner Forschungs- und Lehrtätigkeit dieser erst den endgültigen
Durchbruch verschafft. Darüber hinaus wurde er, besonders über seinen Schüler Leon-
hard Euler, zu einer der einflussreichsten Persönlichkeiten der Mathematikgeschichte.
Alle vier Bände seiner 1742 zu Lebzeiten erschienenen Opera omnia sind mit einem
Bildchen geschmückt, wo ein “neidischer” Hund gegen ein an einem Baum hängendes
Zykloidenbildchen anbellt. Auch auf Johanns Konterfei, in noblen Gewändern sitzend,
hält er stolz das Bild einer Zykloide “in die Kamera”. Dieser Artikel will über sein
Werk dieser Vorliebe für die Zykloide nachgehen.
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collected works [2], whose printing ended in 1743 under the supervision of Marc-Michel
Bousquet (1696–1762) in Lausanne3.

The title page of Bernoulli’s Opera Omnia bears a surprising vignette (see Fig. 1, right),
where Johann’s rivals are depicted as a dog barking at a mathematical picture, nailed to
a tree out of its reach. This picture represents a cycloid with the words Supra invidiam,
which can be translated by “beyond envy4”. Also in his engraved portrait on the left page,
where his self-confidence leaves no doubt, we see him holding a piece of paper again
containing a drawing of a cycloid.

Figure 1 Frontispiece and title page of the first volume of Johann Bernoulli’s Opera Omnia [2]
(Bousquet, 1742, private collection).

Curiously, the same vignette reappears on the title page of Euler’s masterpiece Methodus
inveniendi lineas curvas, published in 1744 again by Bousquet (see Fig. 2, left). Bousquet
had visited Berlin in March 1743 and brought the four volumes of Johann’s Opera Omnia
as a gift for the King of Prussia Frédéric II. On this occasion, Euler presented him with the
recently completed manuscript of his Methodus5. Finally, as if this were not enough, Bous-
quet again used the same vignette, this time reversed, in his edition of the correspondence
between Leibniz and Johann Bernoulli published in 1745 (see Fig. 2, right).

3About the history of the publication of this book, see [12] and [11].
4In a letter from June 22, 1718 to Johannes Scheuchzer, Johann Bernoulli declares explicitly that this was his

motto. One can think that it corresponds to his position in all the disputes he had during his life, in particular with
his oldest brother Jakob. These letters can be consulted on the web site of the University of Basel mentioned in
note 1.
5According to Carathéodory in his introduction to volume XXIV of Euler’s Opera Omnia.
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Figure 2 Title page of Euler’s Methodus and title page of the Leibniz–Bernoulli Correspondence [9]
(Bousquet, 1744 and 1745 respectively, private collection).

In this year 2017 marking the 350th anniversary of Johann Bernoulli’s birth, we review
some of his results on the cycloid and discuss the mathematical origin of the cycloid on
the vignette.

2 New proofs of earlier results on the cycloid
“Le P. Mersenne apprit à Descartes (. . . ) la découverte de Roberval. (. . . ) et c’est ici le commence-
ment des querelles nombreuses que cette Hélène des géomètres causa parmi eux. [Father Mersenne
taught Roberval’s discovery to Descartes. (. . . ) and this was the beginning of the many quarrels
that this Helen of geometers caused among them.]”

(Jean Étienne Montucla (1725–1799), [19, II, p. 55])

According to Evangelista Torricelli6 (1608–1647) the cycloid was invented in 1599 by
Galileo Galilei (1564–1642) as the curve generated by a point P of a generating circle
GA which rolls on a straight line DE (see Fig. 3). For several decades, its geometric
properties (areas, tangents, arc length, etc.) remained a challenge to the mathematicians
of the 17th century (Roberval, Descartes, Fermat, Pascal, etc.). One of the first published
great studies of this curve7 is due to Christiaan Huygens (1629–1695) and is contained in

6Torricelli writes in his Opera geometrica (1644) that “this line was named cycloid by our predecessors, prin-
cipally by Galileo 45 years ago” [Vocata est à prædecessoribus nostris. Præcipue à Galileo iam supra 45. annum,
huiusmodi linea adb. Cyclois (. . . ).], De dimensione parabolæ, Appendix de dimensione cycloidis, [24, p. 85].
7In 1659, John Wallis (1616–1703) publishes his Tractatus Duo, the first of which is devoted to the cycloid.

Huygens writes that Wallis “tasche a toute force de maintenir l’honneur de sa nation” [“Strives with all his might
to maintain the honor of his nation”] [17, III. p. 57].
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his book Horologium oscillatorium [18], printed in 1673. The principal properties of this
curve known to Huygens at that time were these:

Theorem 1. Let DGE be the cycloid generated by the circle GA of radius a (see Fig. 3).
Then, we have

(a) arc(GO) = OP;

(b) The area DGE AD is three times the area of the generating circle GA;

(c) The tangent to the cycloid H P at P is parallel to GO;

(d) The perpendicular to the tangent at P is tangent to the cycloid DFE;

(e) The cycloid FQE is the evolute of the cycloid GPE, the cycloid GPE is the involute
of the cycloid FQE;

(f) The arc length GPE is is equal to 4a;

(g) The pair of cycloids in Figure 3, when reversed, constitutes an isochronous pendu-
lum, namely a pendulum whose period is independent of the amplitude.
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Figure 3 Principal properties of the cycloid (a = 1).

Proof. Huygens’ proofs fill a large part of his book. We shall see below how Johann
Bernoulli gained more and more insight and elegant proofs for these results. For the mo-
ment, we just indicate Huygens’ proof of (a) and (b) from a manuscript written in summer
1658. For the proof of (a), observe that after the circle has rolled from A to B , it has ro-
tated by the same amount, hence t = AB = arc(H P) = ang(PCH ). By parallelism,
AB = OP and arc(H P) = arc(GO), hence (a) is true. For the proof of (b), Huygens
decomposes the sickle-shaped region BGMDANK EB (see Fig. 4) with “indivisibles”. If
our corresponding thin slices are chosen symmetrically, i.e., such that FH = H L, then
their common length EG+NM is always equal to arc(BG)+arc(BM) = arc(BD) = aπ .
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Hence all the slices together fill the rectangle ADH Q, whose area is equal to the area of
the circle. �
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Figure 4 Huygens’ proof of the area formula for the cycloid: a modern and an original drawing from 1658 [17,
XIV, p. 348].

Johann’s Lectiones mathematicæ. To investigate the properties of the cycloid, Johann has
a new tool, the differential and integral calculus, and an eager student whom he met dur-
ing his trip to Paris, the very noble Guillaume François Antoine de l’Hospital, marquis de
Sainte-Mesme et du Montellier, comte d’Antremonts, seigneur d’Oucques et autres lieux
(1661–1704). De l’Hospital was a “good geometer for the common geometry” but knew
“nothing in differential calculus which he barely knows by name8”. So Johann introduced
him into this new calculus with much enthusiasm during the years 1691/1692 and contin-
ued their correspondence [6] until de l’Hospital’s death. The second part of these lectures,
on integral calculus, were later published in Johann’s Opera Omnia9.

Computation of slopes. In the Lectio XVII Johann evaluates quickly and in a masterly
manner the differentials for the cycloid: he has already taught the marquis how to use
them to determine the tangent to the cycloid10. From the two shaded similar triangles (see
Fig. 5, left) we have by Thales’ theorem11

a : z : y − a = ds : −dy : dz ⇒ ds

dy
= −a

z
,

dz

dy
= a − y

z
. (1)

Hence, since x = z + s, we have

dx

dy
= dz

dy
+ ds

dy
= − y

z
= − y√

2ay − y2
= −

√
y

2a − y
or

dy

dx
= −

√
2a − y

y
. (2)

The formula dy
dx = − z

y proves Theorem 1 (c). For what is for us today the second deriva-
tive, we obtain from the chain rule

d2y

dx2
= d

dy

(
dy

dx

)
· dy

dx
= −1

2

1√
2a−y

y

· −y − 2a + y

y2
·
(

−
√

2a − y

y

)
= −a

y2
. (3)

8Letter of Johann Bernoulli to Pierre Rémond de Montmort, May 21, 1718.
9[2, III, pp. 385–558]. There is a German translation [4].

10[5, pp. 21–22].
11For a precise meaning of what we call “Thales’ theorem” or “Eucl. VI.2” we refer to, e.g., [21].
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Figure 5 Slopes for the cycloid (left) and radius of curvature (right).

Figure 6 Drawings for the proof of (4) by Johann in [2, III, p. 438] (left) and by Jakob in [1, I, pp. 577–578]
(right).

Radius of curvature. The treatment of curvature was discovered by both Bernoulli broth-
ers around 1692 (see Fig. 6, left and right). Johann explained how to obtain the formula for
the radius of curvature in the Lectio XVI [2, III, p. 437] and its application to the cycloid
in the Lectio XVII [2, III, pp. 438–439]:

Theorem 2.

(a) The radius of curvature for a curve y(x) is given by

ρ = (dx2 + dy2)
√

dx2 + dy2

−dx d2y
=

(
1 + dy2

dx2

) 3
2

− d2y
dx2

. (4)
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(b) For the cycloid in Figure 5 (left) the radius of curvature at B satisfies

ρ = 2 · BM . (5)

Proof. (a) We explain the idea and simplify the proof of the two Bernoulli brothers by
using a picture somewhat similar to that of Jakob rather than that of Johann (see Fig. 5,
right). We represent the curve by the polygon BCF based on a grid of abcissa with equal
distances dx . The idea12 is to construct the center of curvature D as the intersection of two
neighboring perpendiculars to the curve, i.e., to BC and CF . If the upper dy is smaller than
the lower dy, we have a negative second difference d2y, which creates curvature. If CH E
is the straight extension of BC , there appear two pairs of similar triangles CBD ∼ FHC
(light grey) and CGE ∼ FH E (dark grey), hence

ρ

ds
= ds

H F
and

dx

ds
= H F

−d2y
.

Multiplying the two equalities eliminates H F and gives (4) since ds = √
dx2 + dy2.

(b) For the proof of (5) we have from (2) that

1 + dy2

dx2
= 1 + 2a − y

y
= 2a

y
. (6)

By inserting (6) and (3) into (4) we obtain

ρ =
√

8a3

y3
· y2

a
= √

8ay = 2 · √2ay = 2 ·
√

y2 + z2 = 2 · BM . �

Rectification of curves. The next fundamental result about the cycloid uses the idea of the
paragraph De Rectificatione curvarum ope sua Evolutionis13 and is explained in the last
couple of lines of the Lectio XIX [2, III, pp. 445–446]:

Theorem 3.

(a) For the arc length of the cycloid (see Fig. 7) we have

� = arc AC = 2 · AD = 2 · CG = 2u . (7)

(b) For the “dimensione spatii curvilinei AGC” we have

V = spatium AGC = segm. AD = U . (8)

12It appeared later that Newton used the same idea in his manuscript Methodus Fluxionum, written in 1671 but
published tardily in 1736 [20, pp. 65–66].
13“On the rectification of curves by means of their involute”.
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Figure 7 The “Fig. 85.” from Lectio XIX (left) and the proof of Theorem 3 (right).

Proof. (a) We extend the tangent CG until L by an unknown length v such that u + v = �
(Fig. 7, right). We consider the quantities u, v,U,V as functions, for example of the angle
ϕ, which is the same at A and C by Theorem 1 (c). If ϕ decreases by an infinitely small
quantity dϕ (the same quantity at A and C), we obtain a pair of small right-angled triangles
(one of these is GI H on the left picture), which have the same angles and one pair of equal
legs. Hence the second pair of legs is also equal and so du = dv “hujus integrale” is u = v,
i.e., � = 2u. Johann writes this last conclusion, analytically, as follows: if AF = x and a
is the radius of the circle, then

ADF ∼ HGI ⇒ GI =
DF

[
= √

2ax − x2
]

· HG

[
= ds = adx√

2ax−x2

]

AD
[
= √

2ax
] = a dx√

2ax

⇒ GL = √
2ax = AD = CG.

(b) Again, since the angles dϕ in both dark triangles are equal as are also the legs, we have
dU = dV , which proves (b) after integration. �

The dotted curve described by L, when ϕ decreases, has v + u = 2v as radius of curvature
and thus satisfies Theorem 2 (b) everywhere. Therefore it must again be a cycloid. This
proves Theorem 1 (d), (e), (f) all together.

3 The caustic of the cycloid
“Regula quam dedimus ad determinandas curvas Causticas non solum succedit in geometricis, sed
etiam se ad mechanicas extendit. [The rule we have given for the determination of caustic curves
was successful not only for geometric curves, but extends also to mechanical ones.]”

(Johann Bernoulli, [2, III, p. 472])
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A caustic is the envelope of families of light rays which have been reflected in a curve or
surface. Particularly famous is the caustic of a circle (see Fig. 8, left). Publication about
this curve began in 1682 by Ehrenfried Walther von Tschirnhaus (1651–1708) with a cou-
ple of incorrect mathematical statements14. Johann showed in a paper from 1691 “Per
vulgarem Geometriam Cartesianam” that this curve has an equation of degree 6 (and not
of degree 4 as Tschirnhaus had asserted) and gave in Lectio XXVI–XXVIII detailed prop-
erties culminating in the result that it is an epicycloid15.

In case of the cycloid, there is a nice result that Jakob learns from his brother with “aston-
ishment16”:

Theorem 4. The caustic of a cycloid is again a cycloid, composed of two branches half
as large as the reflecting one (see Fig. 8, right).

−1 0 1
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−π πA
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Figure 8 The caustic of a circle (left) and of a cycloid (right).

Proof. Consider a curve ABC determined by the coordinates AG = x and GB = y (see
Fig. 9, left) reflecting a bundle of light rays arriving along GB and focussing in H . Around
March 1692, Johann obtained for the distance BH the formula

BH = −dx2 + dy2

2 d2y
= −1 + dy2

dx2

2 d2y
dx2

(9)

and gives a long proof in Lectio XXVI [2, III, pp. 464–466]. In order to simplify the proof,
we draw, inspired by the pictures in Figure 6, a pair of parallel rays moving up from G
at distance dx and their reflections BH (reflected in BC) and CH (reflected in CE ; see
Fig. 10, left).

The second mirror CE is rotated by a small angle (in grey) due to −d2y. Because reflected
light rays rotate twice as fast as the mirror, this second ray CH has rotated two grey angles.
We therefore use the angle bisector to divide triangle BHC into two parts and obtain the
similar triangles BH N and DCE . Since in the infinitesimal limit N B = C B

2 = ds
2 (a

consequence of Eucl. VI.3), we have by Thales’ Theorem

BH

ds/2
= ds

−d2y

14For details and their corrections by Huygens we refer to M. Mattmüller’s commentaries in vol. 5 of Werke von
Jacob Bernoulli, pp. 348–349.
15[2, I, pp. 52–59], [2, III, Demonstratio and Fig. 106, p. 470].
16“(. . . ) omnia non sine stupore perlegere potui” [1, I, p. 503].
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Figure 9 Johann’s drawing from [2, III, p. 482] (left) and Jakob’s original drawing from 1692 (Meditationes
CXCII, Universitätsbibliothek, Basel, Mscr. L I a 3, f. 238, http://www.e-manuscripta.ch).

which, since ds2 = dx2 + dy2, is formula (9).

For the cycloid, inserting (6) and (3), this formula simplifies to

BH = BG = y. (10)

Johann concludes from this that the caustic is again a cycloid17.
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Figure 10 Geometric proof of Formula (9) (left); Proof for the caustic of a cycloid (right).

We can, however, avoid all these calculations by considering the rolling circle, which cre-
ates the cycloid, together with its diameter BF (see Fig. 10, right). From the equal angles
t
2 left and right of BM , we see that this diameter coincides with the reflected ray BH .
Neighboring rays appear when the circle rolls on, thereby rotating at every instant around
the base point M , and intersect in that point where the velocity is parallel to FB , i.e., in
the perpendicular projection H of M onto FB . The equality of triangles MH B and MGB
then proves (10). Furthermore, H lies on the Thales circle with center L and radius a

2 ,
rolling at the same horizontal speed, because the angle H LM is twice the angle FK M
(by Eucl. III.20). Therefore H describes a small cycloid as stated. �

17[2, III, pp. 478–480]. Johann communicates this property in a (now lost) letter to his brother, dated March 15,
1692 [8, p. 144]. Jakob publishes this result the same year [1, I, pp. 506–507].
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4 The brachystochrone problem
“Tous ceux qui sçavent au moins les Nouvelles des Sciences, ont entendu parler du celebre Pro-
blême de la plus vı̂te Descente. [All those who at least know the news of Science, have heard about
the famous problem of descent in shortest time.]”

(Bernard Le Bouyer de Fontenelle (1657–1757), [16, I, p. 51])

At the end of an article published in the Acta Eruditorum of June 1696, Johann Bernoulli
suggests the following problem:

“Datis in plano verticali duobus punctis A & B , assignare Mobili M viam AMB , per quam gravitate
sua descendens, & moveri incipiens a puncto A, brevissimo tempore perveniat ad alterum punctum
B . [Given two points A and B in a vertical plane, find the path AMB along which a moving point
M, descending under gravitation and starting to move at A, arrives at the other point B in shortest
time.]” [2, I, p. 161]

He adds that the curve is well known to geometers and fixes a time limit of six months for
submitting a solution. Leibniz decided18 that the limit should be extended until Easter of
the following year, so that others, perhaps not yet experts in the new calculus, might try to
find a solution. In the same spirit, Johann wrote to de l’Hospital on June 30:

“Je voudrois que quelques uns de vos Geometres qui se vantent de posseder de si excellentes meth-
ode de maximis et minimis, s’y attachassent, car voylà un exemple, qui leur donnera de la besoigne
et peutetre plus que leur methode ne pourra faire. [I would like that some of your Geometers,
who are so proud of their excellent methods de maximis et minimis, should also attack this prob-
lem, because this example will give them a lot of work, and perhaps more than their methods can
achieve.]” [6, p. 321]

At the end of the deadline, the texts of Johann, Jakob, Leibniz, de l’Hospital, Tschirnhaus
and Newton are published in the Acta Eruditorum of May 1697:

Theorem 5. The brachystochrone curve is a cycloid.

Johann’s indirect solution. This solution ([2, I, pp. 187–193], see Fig. 11) was another of
Johann’s strokes of genius: he applies “une merveilleuse identité de nôtre courbe avec la
courbure du rayon de lumière19”. Namely, recalling the research of Fermat, Leibniz and
Huygens, he uses the fact that a light ray, passing through two different media and obeying
the Snellius–Descartes law of refraction

v1

sin α1
= v2

sinα2
(v1, v2 speeds of light) (11)

connects two given points A and B in the shortest possible time.

If now the light ray crosses several layers of material at varying speed (see Fig. 12 (a)), it
would satisfy equation (11) all along the curve, hence

v

sinα
= a (constant) or v2(dx2 + dy2) = a2 dy2 or dy = v√

a2 − v2
dx (12)

18Journal des Sçavans, 19 November 1696, pp. 451–455.
19Letter of Johann Bernoulli to the Marquis de l’Hospital, March 30, 1697, [3, p. 347].
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Figure 11 Johann’s figure for the brachystochrone problem [2, I, p. 202].
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Figure 12 (a) The brachystochrone problem; (b) Integration of the differential equation (13).

(because sin α = dy
dz = dy√

dx2+dy2
). The same should be true for our moving body, for

which we know, since Galileo, that the velocity (represented by the curve AH E to the left
of Fig. 11) forms a parabola as function of the altitude x , hence is proportional to

√
x . We

normalize the constant of gravity to have v = √
ax , so that (12) becomes

dy =
√

x

a − x
dx .

This is precisely the differential equation (2) for a cycloid generated by a circle of radius
a/2. However, Johann establishes the link with the cycloid as follows:

dy =
√

x

a − x
dx = x dx√

ax − x2
= a dx

2
√

ax − x2
− (a − 2x)dx

2
√

ax − x2
. (13)

Here, the last operation cleverly produced the factor a − 2x , which for us is the inner
derivative of the denominator. So the second term can easily be integrated (from A to C ,
hence from 0 to x) and gives

√
ax − x2, which is the distance LO in Figures 11 and 12

(b) for the circle of radius a
2 . The first term, from Figure 12 (b) and Thales’ theorem, is

the arc length ds of this circle, so that its integral becomes the arc GL. Hence integrating
equation (13) between A and M of gives

CM = ∫
dy = arc(GL) − LO . (14)
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This relation holds for any circle of radius a
2 tangent to AG. If we place it so that AG =

CM + ML + LO = arc(GL) + arc(LK ), then equation (14) leads to

ML = arc(LK ) . (15)

This is the characterization of Theorem 1 (a) for a cycloid.

Johann’s solution “d’une maniere directe & extraordinaire”. Johann had this “extraor-
dinary” idea for his second proof already in 1697 but, following the advice of Leibniz,
did not publish it for more than 20 years20. Two centuries later, Constantin Carathéodory
(1873–1950), in an appendix to his thesis (Göttingen 1904 with H. Minkowski) wrote
“diese höchst eleganten Betrachtungen [sind] die erste vollkommen befriedigende, strenge
Lösung eines Variationsproblems21”.

Proof. Imagine a horizontal line ALL ′ and a fixed narrow sector LDL ′ with fixed distance
LD = a and fixed inclination α (see Fig. 13, left). We ask: for which point C at unknown
distance CL = x , does a body starting at A, and arriving at C with speed v = √

2gx sin α
(g gravitational acceleration), cross this sector on an orbit CC ′ in shortest possible time?
We imagine the angle dα to be infinitely small (“infiniment aigu”), so that we can take the
orbit to be a small straight line making an angle β + π

2 with the line DL. The crossing
time is thus

dt = ds · 1

v
= (a + x) dα

cosβ
· 1√

2gx sinα
. (16)

We see that β must be zero, i.e., the crossing is perpendicular to DL and that, neglecting
constants, we have to minimize

a + x√
x

= a√
x

+ √
x which leads to x = a.

Our intuition tells us that for dα tending to zero, the intersection D of two neighboring
perpendiculars is the center of curvature. The condition x = a means that the base line AL
divides the radius of curvature in the middle, hence the solution curve should be a cycloid
by (5).

Synthetic solution. We draw the entire fan of perpendiculars of a cycloid (Fig. 13, right),
indicating the crossing time (16) for each sector by shades of grey (white = fast, dark =
slow). We clearly see that any curve other than the cycloid enters somewhere into slower
regions and has somewhere angles β different from zero, hence needs more time for the
entire trajectory. �

Final solution. In order to complete his solution for fixed given points A and B , Johann
draws an arbitrary cycloid AS (see Fig. 14, left) and uses the fact that all cycloids starting
at A are similar. Hence, the intersection point R of the line AB with this cycloid determines

20[2, I, pp. 197–198], [2, II, pp. 266–269 (1718)]. Johann writes in 1718: “L’incomparable MR. LEIBNIZ (. . . )
trouva cette méthode directe d’une beauté si singulière, qu’il me conseilla de ne la pas publier (. . . ).”
21[10, pp. 69–70].



150 Ph. Henry and G. Wanner

x

a

β

x sin α

dα

α
A

C

C ′

D

L
L ′

a

a

A

Figure 13 Johann’s “extraordinary” solution of the brachystochrone problem.

the similarity factor AB/AR. An anonymous author from England had submitted, without
further explanation, the same drawing (see Fig. 14, right) and had been designated by
“from the lion’s claw22”.

Figure 14 Johann’s final solution of the brachystochrone problem (left) and Newton’s solution (right)
in the Acta Eruditorum (May 1697).

5 The isochronous pendulum
“Quod si vero Hugeniana, licet legitima, sed ob multarum propositionum farraginem & perplexi-
tatem non arrisit; laudo propositum succinctiorem tradendi, modo tradidisset genuinam. [But Huy-
gens’ proof, although correct, did not please him [Philippe de La Hire] because of the jumble of
several propositions; I agree to give it more succinctly, but it should appear accurate.]” (Johann
Bernoulli, [2, I, p. 248])

Before Huygens, time measurements were very rudimentary and the precision of pendu-
lum clocks suffered from the fact that the period of oscillation increased with increasing
amplitudes. A spectacular discovery of Huygens’23, useful for the invention of accurate
pendulum clocks, was item (g) in Theorem 1 above, namely that the period of a pendulum
moving on a reversed cycloid is independent of the amplitude.

22“ex ungue leonem” [2, I, p. 196].
23[18, Prop. XXV, p. 57].
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After reading an erroneous proof of this theorem by Philippe de La Hire (1640–1718),
Johann Bernoulli published a very short proof in the Acta Eruditorum of June 1698 [2, I,
pp. 248–249].

Figure 15 Johann’s drawing for the isochronous oscillations of the cycloidal pendulum [2, I, p. 254].

Proof. Suppose that two bodies start sliding simultaneously, one at G, the other at F (see
Fig. 15). We divide the arcs CD and FD in the same number of equidistant infinitely small
parts, a pair of these being Mm corresponding to Ee. We denote the ratio

arc(GD)

arc(FD)
= q so that also Mm = q · Ee , arc(MD) = q · arc(ED) . (17)

Therefore, “per naturam Cycloidis” (see Theorem 3 (a)), we also have

LD = q · AD , OD = q · BD so that LD2 = q2 · AD2 , OD2 = q2 · BD2 . (18)

If a is the diameter of the circle ABDOL, then

AD = AD2

a
, H D = LD2

a
, T D = BD2

a
, N D = OD2

a
(19)

by Thales’ Theorem. Thus we have by (19) and (18)

H N = H D − N D = LD2 − OD2

a
= q2 · AD2 − BD2

a
= q2 (AD − T D) = q2 · AT .

Finally, “per naturam gravium descendentium” the velocities of the bodies at the positions
M and E are proportional to

√
H N and

√
AT respectively, therefore

velocity for Mm = q · velocity for Ee.

Since Mm = q · Ee (see (17)), this equality shows that the two bodies take precisely the
same time to travel along the two intervals. Since this happens everywhere, the “descensus
per DF & DG sunt isochroni”. �
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Figure 16 Short proofs for the brachystochrone and the isochronous property.

Short proofs. New insight arose from Euler’s work (in particular [15, E112] from 1747
and [13, E62] from 1743). For a mass point (of mass m =1, see Fig. 16) sliding on a curve
with distance �(t) from the base point, accelerated by gravitation g, we obtain a force f in
direction of the curve for which we have, using two similar triangles,

f

g
= u

a
hence f = g

2a
· � (because � = 2u ; Theorem3 (a)).

Therefore the movement is governed by24

�̈ + g

2a
· � = 0 ⇒ � = A · cos

√
g

2a
· t (for �(0) = A, �̇(0) = 0).

Because cos reaches zero for
√

g
2a · t = π

2 , the time of descent to the base point is π
2 ·

√
2a
g ,

independent of the amplitude A.

From another pair of similar triangles (see again Fig. 16), we find that

x = a · sin2 α, i.e.,

√
ax

sin α
= a,

which, together with Galileo’s law for the velocity, is the condition (12) for the brachys-
tochrone.

Thus the three similar triangles of Figure 16 prove both famous properties of the cycloid
simultaneously.

6 Squarable areas bounded by the cycloid
“(. . . ) toutte la facilité qu’il [Jakob] pretend faire voir en cela, ne sert qu’à relever vostre solution,
& à faire admirer davantage que dans une courbe aussi examinée que celle-là, on ne luy en eust

24“While physicists call these “Newton’s equations”, they occur nowhere in the work of Newton or of anyone
else prior to 1747.” (C. Truesdell, Essays in the History of Mechanics, 1968).
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cru que deux quarrables avant vous. [(. . . ) all the ease he claims to display in this, serves only
to enhance your solution and make us admire more the fact that before you we believed that this
curve, the object of so much study, could have only two squarable areas.]”

(Pierre Varignon (1654–1722) to Joh. Bernoulli, April 5, 1700, [7, p. 236])

In the introduction to a memoir published in two versions (Latin and French) in 169925,
Johann begins by writing that this year is, as we have already mentioned, the centenary of
Galileo’s invention of this curve according to Torricelli. We know that Galileo tried without
success to determine the area under the cycloid and that around 1637 several geometers
had found this area to be three times that of the generating circle. Later, a challenge by a
certain Amos Dettonville (who was in fact Blaise Pascal, 1623–1662) published in June
165826 again encouraged research about this curve. A month later, Huygens found a new
proof for the area formula (see Fig. 4) and, by comparing surfaces of spheres and cylinders
in space, found a segment of the cycloid whose area does not involve the quadrature of the
circle ([17, II, pp. 348–351], see Fig. 17, left). This result is the outcome of his attempt to
solve Pascal’s first problem: given any point Z on the cycloid, determine the dimension of
the surface CZY [22, II, p. 319]. Huygens writes about Pascal’s problems:

“Ils me semblent si difficiles pour la pluspart que je doubte fort si celuy mesme qui les a proposez
les pourroit tous resoudre, et voudrois bien qu’il nous en eust assuré dans ce mesme imprimé.
Autrement il est fort aisé d’inventer des problemes impossibles (. . . ). [These problems seem to me
so difficult, that I have strong doubts that the proposer himself was able to solve them all, and I
am sorry that he did not inform us about this. Otherwise it is easy to invent impossible problems
(. . . ).]”

(Huygens to Ismaël Boulliau, July 25, 1658, [17, II, pp. 200–201])

Huygens’ result was then mentioned by Pascal in his Histoire de la roulette27 by saying
that the “Dutchman” Huygens had discovered it, but also the “Englishman” Wren at nearly
the same time. Huygens published it eventually (without proof) in his Horologium oscil-
latorium [18, p. 69] in 1673. The next year, Leibniz presented him with his Quadrature
arithmétique du cercle, where (again without proof) another squarable segment of the cy-
cloid is mentioned (see Fig. 17, right): the area of the segment AG of the cycloid is equal
to the area of the triangle AFB . During the following twenty-five years no other such
quadratures were found and people thought that such discoveries were impossible28.

After having found an infinity of such squarable segments or sectors of the cycloid, Johann
sent his article to the Académie des sciences with the words:
25Cycloidis primariæ Segmenta innumera Quadraturam recipientia; aliorumque ejusdem spatiorum quadrabilium
determinatio: post varias illius fortunas nunc primum detecta a Joh. Bernoullio (Quadrature of innumerable
segments of the ordinary cycloid and determination of other squarable areas now discovered for the first time
after varied attempts by Joh. Bernoulli), Acta Eruditorum (A. E.), July 1699, pp. 316–320, [2, I, pp. 322–327] or
[8, pp. 393–399]. The French version is presented to the Académie des sciences in Paris on July 11, 1699 [3].
Jakob and Johann were elected foreign associates of the Academy of sciences on February 14, 1699.
26It is reported that Pascal was searching a terribly difficult geometric problem in order to divert his spirit from
painful tooth akes [22, II, p. 1254].
27“(. . . ) M. Huygens, Hollandais, qui a le premier produit que la portion de la roulette retranchée par l’ordonnée
à l’axe, menée du premier quart de l’axe du côté du sommet, est égale à un espace rectiligne donné. Et j’ai trouvé
la même chose dans une lettre de M. Wren, Anglais, écrite presque en même temps.” [22, II, p. 353]
28Johann Bernoulli attributes such an opinion to Tschirnhaus [2, I, p. 326] or [3, p. 135]. It seems that it is in
September 1696 that he denies for the first time this assertion [9, I, p. 202].
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Figure 17 Left: if CY = 1
4CF , then the area CZY equals the triangle FOY (Huygens). Right: if F is the centre

of the generating circle, then the segment AG equals the triangle ABF (Leibniz).

“(. . . ) comme selon toutes les apparences, ce sera la derniere observation qu’on aura faite dans ce
siecle au sujet de nôtre cycloı̈de, il est juste qu’après une durée de cent ans, qu’elle a continuelle-
ment exercé les Mathématiciens de toute l’Europe, elle retourne maintenant porter ce dernier éclat
en France où elle a pris son premier lustre. [Because by all appearances, this will be the last ob-
servation made in this century about our cycloid, it is fair that after a period of a hundred years in
which it has continuously exercised Mathematicians from all over Europe, it now returns to France,
where it began to gleam, to shine with this new result.]” [3, p. 135]

We start the presentation of Johann’s results with the following lemma, which he claims
to be “une propriété de la cycloı̈de déjà connuë29”:

S1

S2

Lemma

A

C

O

DK

U
V

�

�

Proof

A

C

O

DK

H

Figure 18 Figures for Lemma 1.

Lemma 1. The surfaces S1 and S2 in Figure 18 (left) have the same area.

Proof. This is in fact Theorem 3 (b), if the identical triangles AK D and COH are attached
to U and V respectively (see Fig. 18, right). �

Here are the three new results contained in Johann’s paper:

Theorem 6. If AK = I H (where H is the center of the generating circle) and points B
and D lie on opposite branches of the cycloid (see Fig. 19 (a)), then

area of segment BCDB = sum of areas of triangles LF I and MFK .

Theorem 7. If AK = I H and points B and D lie on the same branch of the cycloid (see
Fig. 19 (b)), then

area of segment BCDB = difference of areas of triangles LF I and MFK .

29[3, p. 137]. Newton also gave a demonstration of this lemma [20, p. 91].
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(a)

(b)

(c)

Figure 19 Johann’s three theorems about squarable cycloidal areas (the figures are taken from [3]).

Theorem 8. If AK = I H and points B and D lie symmetrically with respect to A (see
Fig. 19 (c)), then

area of sector I B ADI = area of isosceles triangle LFM.

Proof of Theorem 6. Because of the hypothesis AK = I H we have N B+OD
2 = a

2 , where
a is the radius of the circle AF . Thus the area of the trapezium BDON is NO · a

2 . To make
the proof as clear as possible, we surmount Johann’s picture with the triangle NOZ =
T1 + T2 + T ′

2 + T ′
1 with Z A = a (see Fig. 20) so that we have

area trapezium BDON = area triangle NOZ = T1 + T2 + T ′
2 + T ′

1 . (20)

We now insert

T1 = S2 + T3 , T ′
1 = S′

2 + T ′
3 , T2 = T4 , T ′

2 = T ′
4 (21)

(the first two equalities follow from Theorem 1 (a) and the last two from the fact that we
have two pairs of triangles with same base and same altitude) in (20) and we obtain

Trap.BDON = S2 + T3 + T4 + T ′
4 + S′

2 + T ′
3.
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We then replace S2 by S1 and S′
2 by S′

1 by using Lemma 1 and have

Segm.B ADB = Trap.BDON − S1 − S′
1 = T4 + T3 + T ′

4 + T ′
3 . �

S1
S′
1

S2

S′
2

T1 T2

T3

T4

T ′
1T ′

2

T ′
3

T ′
4

a

a

Z

A

B

D

L

N O

Figure 20 Proof of Johann’s first result on squarable segments of the cycloid.

Proof of Theorem 7. Here also N B+OD
2 = a

2 but now NO = N A − AO and thus

Trap.BDON = T1 + T2 − T ′
2 − T ′

1.

Therefore, we obtain by using (21) and S2 = S1, S′
2 = S′

1 as above

Segm.BDB = Trap.BDON − S1 + S′
1 = T4 + T3 − T ′

4 − T ′
3 . �

Proof of Theorem 8. We move point I horizontally to a point b on the cycloid, so that the
areas of the triangles I BD and bBD are the same, hence also the areas of the gray sectors
I B AD and bB AD (see Fig. 21). The latter is the difference of the segment of Theorem6
and that of Theorem7 and therefore its area is equal to 2(T ′

4 + T ′
3). �

Theorem6 for K = I is the result of Huygens and for I = A (and therefore K = H ) that
of Leibniz.

A

B

b

D
K

H

I

A

B

b

D
K

H

I

Figure 21 Proof of Johann’s third result.

At the end of the article he sent to Paris, Johann Bernoulli states that, whenever the
“démonstration synthetique” of his general results “aura eu le bonheur de plaire à l’Aca-
démie”, he would also forward his analytic calculations, which were at the origin of his
discovery. But he did not carry out this project.
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7 Epilogue
“J’espere, Monsieur, que (. . . ) vous ne communiquerez rien à mon frere de tout ce que je viens de
vous montrer, car cela luy donneroit une ouverture à la solution du probleme (. . . ). [I hope, sir, that
(. . . ) you will communicate nothing to my brother of all that I have just shown you, for that would
open his way to the solution of the problem (. . . ).]”

(Johann Bernoulli to de l’Hospital, January 22, 1701, [6, p. 373])

Which of the many theorems presented by Johann on the cycloid is the one for which he
seems particularly proud and on which he decided to base his reputation in an allegorical
way? Is this yet another result30? Let us take a closer look at the pictures of Figure 1 (see
Fig. 22, left). This same drawing also appears on another portrait (see Fig. 22, right) and
on an oil painting version of it preserved at the University of Basel.

We recognize clearly the picture for Theorem 6 (see Fig. 19 (a)) in his paper of 1699 but
with a small mistake due to the engraver31. Precisely hundred years after the discovery
of the cycloid by Galileo, after a century of efforts by the most eminent mathematicians,
Johann was able to generalize two results of two of them and to achieve a nice discovery
in a long standing tradition.

At the end of the Latin version of the same paper, Johann states without proof that if

H A = a, H K = x = a
8 + a

√
41

8 , arc(ML) = arc(AM) (notations of Fig. 23), then

zona cycloidalis I K DB = triangles H AL + I AL − H AM − K AM . (22)

Jakob Bernoulli’s reaction. His brother’s discovery was apparently a bitter pill for
Jakob32. Two months later he publishes an article33 in which he does not give a word
of mention to Johann’s result, and starts by writing:

“Omnia, quæ circa Quadraturas spatiorum cycloidalium inveniri possunt, una Cycloidis proprietate
dudum detecta nituntur, & ex ea tam aperte fluunt, ut Viri celeberrimi Hugenius & Leibnitius, qui
duo ejus segmenta quadrarunt, non potuissent non pari facilitate cætera omnia segmenta & sectores
quadrabiles reperire, si animum intendere voluissent. [Everything that can be found concerning the
quadrature of cycloidal areas depends on a newly discovered property of the cycloid from which
this follows so easily that the very famous Huygens and Leibniz, who both obtained a squarable
segment, could not have found with such ease other squarable segments or sectors if they had
wanted to do.]” [1, II, p. 871]

This “newly discovered property” of the cycloid is Lemma 1 above. It allows Jakob to
calculate, with the notations of the Figure 23 and some elementary geometry, the areas

Zona AK D = Zona AK DO − Zona AK M = (1 − x)(p + s) − 1

2
s + 1

2
px

Zona AMD = Zona AK DO − 2 · Zona AK M = (1 − x)(p + s) − s + px .

30On iterated involutes of the circle, see Ph. Henry, G. Wanner, Jost Bürgi, Johann Bernoulli and the Euler
Numbers, in preparation.
31The point M on Figure 19 (a) is not the intersection of the circle with BD!
32Concerning the relationship between the two brothers, see [23].
33A. E., September 1699, pp. 427–428, [1, II, pp. 871–873], also in [2, I, pp. 328–329] or [8, pp. 400–403].
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Figure 22 Left: details of the frontispiece and the vignette. Right: Johann’s portrait in the Matriculation Reg-
ister of the Rectorate of the University of Basel (Universitätsbibliothek, Basel, AN II 4a, f. 187v,
http://www.e-codices.unifr.ch).

In the same way, he finds the areas of the analogous “zona”

Zona AI B = Zona AI BN − Zona AI L = (1 − z)(q + t) − 1

2
t + 1

2
qz

Zona ALB = Zona AI BN − 2 · Zona AI L = (1 − z)(q + t) − t + qz .

By subtracting, we obtain34

Zona I K DB = q − 1
2qz − p + 1

2 px +
[
t
(

1
2 − z

)
− s

(
1
2 − x

)]
Zona LMDB = 2 · Zona ADB = q − p + [sx − tz] .

(23)
The first terms of the expressions in (23) are “purely rectilinear35” because they are sums

34The relation Zona LMDB = 2 ·Zona ADB was stated by Jakob without further comment and allowed him to
declare ADB to be a “sector quadrabilis” of the cycloid. By Lemma 1, we have Zona AB = AN B −[AN BD =
AI L] = q

2 − t z
2 and similarly Zona AD = p

2 − sx
2 . Therefore, we obtain Zona ADB = Zona AB −Zona AD =

1
2 · Zona LMDB . It seems that this was known to Leibniz as a result of his “méthode de la métamorphose”,
communicated in some letters but never published.
35[1, II, p. 872].
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Figure 23 Johann’s figure (Acta Eruditorum, 1699) and Jakob’s notations.

and differences of four (or two) triangles. Therefore the terms in brackets, containing arc
lengths (depending on π), should vanish. If we manage to find H I = z and H K = x such
that

t
(

1
2 − z

)
− s

(
1
2 − x

)
= 0 in the first case and sx − tz = 0 in the second, (24)

we would have found new squarable regions of the cycloid.

Jakob’s idea is to assume that t = ns for n = 2, 3, 4 . . . and thus (24) becomes

z = n − 1

2n
+ x

n
in the first case and z = x

n
in the second. (25)

Since for n = 2, 3, 4, . . . we have the equations

z = 2x2 − 1, z = 4x3 − 3x, z = 8x4 − 8x2 + 1, . . . , (26)

we find with (25) the following algebraic equations for the unknowns:

n first case second case

2 0 = x2 − x
4 − 5

8 0 = x2 − x
4 − 1

2

3 0 = x3 − 5
6 x − 1

12 0 = x3 − 5
6 x

4 0 = x4 − x2 − x
32 + 5

64 0 = x4 − x2 − x
32 + 1

8

Johann’s result (22) is the same as (23) (first case), since his value for H K = x is the root
of the quadratic equation corresponding to n = 2 of the first case36.

The polynomials (26) are today known as Chebyshev polynomials of the first kind37 and
they allow us to calculate the maximal solutions numerically for any degree (see Fig. 24).
Observe that for n → ∞, the left “spatia” converge to that of Huygens and the right one
to that of Leibniz.

Jakob concludes his article by writing:

36Johann will agree that this constitutes the “foundation” of his method [2, I, p. 331].
37Since x = cos α, z = cos(nα), this is the definition of these polynomials Tn(cos α) = cos(nα).
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Figure 24 Jakob’s “infinita spatia quadrabilia”.

“Methodum vero tam facilem haud alia fini pandere volui, quam ut Frater, exemplo meo, ad paria
præstanda incitatus, mei quoque Problematis Isoperimetrici promissam analysin tandem aliquando
nobis impertiat. [I developed this really easy method for no other reason than that my brother
should follow my example and reveal after all his promises his solution of my problem about
isoperimetric curves.]” [1, II, p. 873]

This last sentence should remind the reader that Jakob, who might be on the way to loosing
a battle against Johann, was victorious in another battle, the one about the calculus of
variations38.

Jakob’s second paper. After being challenged by Johann39, Jakob publishes another pa-
per40 containing the following construction (without proof):

38For more information, see [8].
39A. E., June 1700, pp. 266–271, [2, I, pp. 330–335] or [8, pp. 420–424].
40A. E., December 1700, pp. 551–552, [1, II, pp. 892–994], also in [2, I, pp. 336] or [8, pp. 455–457].



Johann Bernoulli and the cycloid: A theorem for posterity 161

Theorem 9. Let AQH be a quarter of circle. To obtain geometrically a “quadrabilis”
area (22) such that s = αt for a given 0 < α < 1,

i) put AP = AH = 1 and choose G such that AG = α;

ii) let R be the midpoint of GP and draw a parallel to GH through R;

iii) construct the curve PSO as follows: for every horizontal line CEF, set HT =
α CE, draw the circle of center T and radius 1 which intersects the cycloid in V
(the farthest point of A), draw the horizontal line V N and put NO = H F;

iv) the intersection S of the curve PSO with the parallel through R defines K (and thus
M, D) and put H I = K S to define I (and thus L, B).

A

B

C
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E F

G

H
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K

L
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N O

P

Q

R

S

T

V X
W Z

Figure 25 Jakob’s construction: a facsimile [1, II, p. 894] (above) and a modern drawing (below, α = AG =
0.693147, z = I H = 0.767492, x = K H = 0.885909).

Proof. By construction of T and of the parallelogram T H XV , the pair of segments CE
and V X are such that V X = α · CE , so that by Theorem 1 (a) the arcs X A and E A are
also in the same ratio. With the notations FH = z and N H = x (as above), we have by
construction (see Fig. 25)

NO = z and N Z = NW + W Z = αx + 1 − α

2
.

If the line V X moves up and down, the points O and Z respectively describe a curve OSP
and a straight line ZSR. At the point S of their intersection, the relation (25) (first case)
with, for the present situation α instead of 1

n , is satisfied. �

Johann’s reply. Johann, not satisfied with this construction, writes:
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“Dico algebraı̈ce; qui enim ad eas determinandas utitur curva quadam transcendente, sane is non
plus præstitit, quam qui quadraturam circuli, ex supposita peripheriæ rectificatione, se invenisse
gloriaretur. [I say algebraically; indeed, he who uses a certain transcendental curve to determine
them (the squarable areas) does not accomplish any more than he who expects glory for having
found the quadrature of the circle assuming the rectification of its circumference.]” [2, I, p. 389]

Johann is also not satisfied with the equations (26) because, according to him41, in the
three very simple cases given by his brother one does not distinguish the law of formation
of the polynomials. He would have liked to invite his brother to find solutions based on the
formula42

x

a
= bn−1 − n − 2

1
bn−3 + (n − 3)(n − 4)

1 · 2
bn−5 − (n − 4)(n − 5)(n − 6)

1 · 2 · 3
bn−7 &c

“cujus progressionis natura per se manifesta est43”, where a = 2 sinα, b = 2 cosα, x =
2 sin(nα). While Jakob had given in (26) the first three Chebyshev polynomials of the first
kind, Johann’s formula is today written sin(nα) = sin α · Un−1(cosα) with the general
formula of the Chebyshev polynomials of the second kind44.

Acknowledgment. It is a pleasure to thank John Steinig for his many valuable corrections
that helped to greatly improve the text.
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Probabilités et de la Statistique 2 (1), 2006.
[24] E. TORRICELLI, Opera geometrica Evangelistæ Torricellii, Amatoris Masse & Laurentii de Landis, Flo-

rentia, 1644.

Philippe Henry
13 ch. du Grand-Communal
CH-1222 Vésenaz
e-mail: philippe.henry@a3.epfl.ch

philippe henry@bluewin.ch

Gerhard Wanner
37 ch. des Pinsons
CH-1226 Thonex
e-mail: gerhard.wanner@unige.ch


