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1 Introduction and main theorem
What sets S ⊆ R2 can be represented as a union of non-overlapping equilateral triangles of
mutually different size? The answer will heavily depend on whether the family of triangles
is required to be locally finite.

Our question belongs to the large theory of geometric tilings in the Euclidean plane (see
[5] for an overview). A cover of a set S ⊆ R2 is a family T = {Ti : i ∈ I } of sets
Ti ⊆ R2 such that S ⊆ ⋃

i∈I Ti . The cover T is called a tiling of S if the sets Ti , now
called tiles, are non-overlapping and subsets of S; hence S = ⋃

i∈I Ti . Non-overlapping
means that the tiles Ti have mutually disjoint interiors: int(Ti ) ∩ int(Tj ) = ∅ for i, j ∈ I ,
i �= j . We are interested in the situation where all tiles are equilateral triangles. A tiling by
equilateral triangles is called perfect if the tiles are of pairwise different size. The notion
of perfectness goes back to [1] in the context of tilings by squares.

A tiling or, more generally, a family of subsets ofR2 is called locally finite if every bounded
subset ofR2 has a nonempty intersection with at most finitely many members of the family.

.

Kann die euklidische Ebene in paarweise inkongruente gleichseitige Dreiecke zerlegt
werden? In der Tat kennt man keine konvexe Menge, die lokal endlich mit verschieden
großen gleichseitigen Dreiecken gepflastert werden kann. Die Situation ändert sich,
wenn auf die lokale Endlichkeit verzichtet wird: Ist eine Punktmenge in gleichseitige
Dreiecke zerlegbar, so kann die Zerlegung zu einer Pflasterung mit paarweise inkon-
gruenten gleichseitigen Dreiecken verfeinert werden. Dies erlaubt unter anderem die
Charakterisierung aller Polygone und aller abgeschlossenen konvexen Mengen, die so
eine Zerlegung zulassen.
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Most research on tilings concerns the locally finite case. The following is known on perfect
tilings by equilateral triangles. No convex set in R2 has a perfect tiling by finitely many
(and at least two) equilateral triangles (see [11, p. 468] for tilings of equilateral triangles
and [2, 12] for the general case). It is an open problem if the whole plane R2 admits a
locally finite perfect tiling by equilateral triangles [5, Exercise 2.4.10], [3, Section C11].
Scherer [9] shows that such a tiling cannot contain a smallest triangle.

Klaaßen [6] drops the condition of local finiteness and presents a perfect tiling by equilat-
eral triangles of the plane R2 except for one point, which is the only accumulation point of
the tiles. Similarly, he finds a tiling of an equilateral triangle except for three points. In [7]
we give a general construction of perfect tilings by equilateral triangles, this way obtain-
ing tilings of a complete equilateral triangle, of the whole plane and, more generally, of
arbitrary open subsets of R2. These tilings have uncountably many accumulation points.

The main result of the present paper reads as follows.

Theorem 1. The following are equivalent for every subset S ⊆ R2.

(i) S admits a perfect tiling by equilateral triangles.

(ii) S admits a tiling by equilateral triangles.

(iii) There exists a family of non-overlapping equilateral triangles Ei ⊆ S, i ∈ I , that
covers S \ int(S).

The proof will be given in the following section. Theorem 1 has two important aspects.
The equivalence of (i) and (ii) shows that the existence of a tiling by equilateral triangles
implies always the existence of a perfect tiling if we do not require local finiteness. The
negative results mentioned above illustrate that the situation is different for locally finite
tilings. The equivalent condition (iii) serves as a main tool for finding sets that admit
perfect tilings by equilateral triangles. Applications will be given in Section 3, where we
characterize in particular all polygons and all closed convex sets having such tilings.

2 Proof of Theorem 1

We use the following notation: bd(S), cl(S) and int(S) denote boundary, closure and inte-
rior of a set S ⊆ R2. ‖ · ‖ stands for the Euclidean norm. The sets

D(x0, �) = {
x ∈ R2 : ‖x − x0‖ ≤ �

}
, D◦(x0, �) = {

x ∈ R2 : ‖x − x0‖ < �
}

and
C(x0, �) = {

x ∈ R2 : ‖x − x0‖ = �
}

are the closed disc, the open disc and the circle centered at x0 ∈ R2 of radius � > 0,
respectively.

The proof of Theorem 1 is prepared by four lemmas, two of them from [7]. The first one
represents a particular case of the crucial theorem from [7]. It gives a sufficient condition
for the existence of perfect tilings, which is based on decompositions into so-called auxil-
iary pieces. An auxiliary piece of size α > 0 is obtained from a right triangle with edges of
lengths α,

√
3α and 2α by completely removing its edge of length

√
3α (see Figure 1(a)).



Tiling by incongruent equilateral triangles 17

α

2α

√
3α

(a)

(b)

432

288
√

3

576

384
√

3

768

672

448
√

3

448

747

249
√

3
498

332
√

3
664

D◦(x,με)

C
(
x, ε

2

)D◦(x, ε)

(c)

Figure 1 Auxiliary piece of size α (a); proofs of Lemma 4 (b) and Lemma 5 (c)

Lemma 2 (see [7, pp. 158–159]). Suppose a set S ⊆ R2 has a representation

S =
⋃
A∈A

A =
⋃
A∈A

cl(A)

where A is a family of auxiliary pieces with pairwise disjoint interiors. Then S admits a
perfect tiling by equilateral triangles.

Lemma 3 ([7, Corollary 2]). Every open set G ⊆ R2 admits a perfect tiling by equilateral
triangles.

Lemma 4. Every equilateral triangle can be decomposed into 13 non-overlapping auxil-
iary pieces.

Proof. Figure 1(b) illustrates a decomposition of an equilateral triangle of edge length
3104 and displays the sizes of the auxiliary pieces. The removed edge of every auxiliary
piece is dotted, the remaining vertex is emphasized, as in Figure 1(a). �

Lemma 5. There exists a constant μ > 0 with the following property: if no member of a
family E of non-overlapping equilateral triangles is completely contained in the open disc
D◦(x, ε), then there are at most six triangles from E that have a nonempty intersection
with D◦(x, με).

Proof. If μ > 0 is chosen sufficiently small, then every equilateral triangle that has a
point (and in turn a vertex) outside D◦(x, ε) and meets D◦(x, με) covers at least almost
one sixth of C

(
x, ε

2

)
(see Figure 1(c); for a quantification of μ, see [4, Section 3.1]). Hence

not more than six non-overlapping triangles can have that property simultaneously. �
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Proof of Theorem 1. The implication (i)⇒(ii) is trivial. For the converse (ii)⇒(i), we use
Lemma 4 to decompose every equilateral triangle into auxiliary pieces. Application of
Lemma 2 to the resulting family A of auxiliary pieces proves (i).

The claim (ii)⇒(iii) is obvious. For (iii)⇒(ii), we can suppose that every Ei , i ∈ I ,
contains a point from bd(S). It is enough to show that the set G = S \ ⋃

i∈I Ei is open,
because then Lemma 3 gives a tiling TG of G by equilateral triangles and the tiling TG ∪
{Ei : i ∈ I } of S confirms (ii). To see that G is open, we consider an arbitrary point
x0 ∈ G.

Case 1. For every ε > 0, there exists i ∈ I such that Ei ⊆ D◦(x0, ε). Since every Ei

meets bd(S), x0 is an accumulation point of bd(S) and in turn x0 ∈ bd(S). This gives
G ∩ (bd(S) ∩ S) �= ∅ and contradicts bd(S) ∩ S = S \ int(S) ⊆ ⋃

i∈I Ei .

Case 2. There exists ε0 > 0 such that D◦(x0, ε0) does not cover any of the triangles Ei ,
i ∈ I . Now Lemma 5 shows that D◦(x0, με0) meets at most six triangles Ei , i ∈ I , and
D◦(x0, με0) \ ⋃

i∈I Ei is open. We see that
(
D◦(x0, με0) \ ⋃

i∈I Ei
) ∩ int(S) is an open

neighborhood of x0 in G, because(
D◦(x0, με0) \

⋃
i∈I

Ei

)
∩ int(S) = D◦(x0, με0) ∩

(
int(S) \

⋃
i∈I

Ei

)

= D◦(x0, με0) ∩ G.

Thus, G is open, and the proof is complete. �

3 Applications

3.1 Polygons

By a proper convex polygon we mean the convex hull of finitely many points of R2 that
are not collinear. A proper polygon is a union of finitely many proper convex polygons.
Proper polygons need not be connected and may have holes. More generally, we call a
union of a locally finite family of proper convex polygons a generalized proper polygon.
These objects may be unbounded, but still are closed.

Given a generalized proper polygon P ⊆ R2 and a point x ∈ R2, the tangent cone of P at
x is defined as

Tan(P; x) =
{
u ∈ R2 \ {(0, 0)} : there is a sequence (pi )

∞
i=1 ⊆ P \ {x} such

that lim
i→∞ pi = x and lim

i→∞
pi − x

‖pi − x‖ = u

‖u‖
}

∪ {(0, 0)}

[8, p. 145]. Tan(P; x) is a cone with apex (0, 0), see Figure 2(a) for an illustration with
x = (0, 0). The point x is called a vertex of P if Tan(P; x) is neither {(0, 0)} (then x /∈ P)
nor R2 (then x ∈ int(P)) nor a half-plane (then x belongs to the relative interior of an edge
of P).

The tangent cone Tan(P; v) at a vertex v represents in some sense the inner angle of P
at v and may be composed of several (but finitely many) angular regions. If P admits a
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Figure 2 Tangent cone at x = (0, 0) (a); proof of Proposition 6 (b)

tiling by equilateral triangles, then one of these regions must be at least of size π
3 , since v

belongs to a triangle of the tiling. This simple condition turns out to be sufficient for the
existence of tilings.

Proposition 6. A generalized proper polygon P admits a perfect tiling by equilateral
triangles if and only if, for every vertex v of P, there is an equilateral triangle E such that
v ∈ E ⊆ P.

Proof. The necessity is shown above.

For verifying the sufficiency, we show that P satisfies condition (iii) from Theorem 1. Let
V be the set of all vertices of P . The connected components of bd(P) \ V are called the
(relatively open) edges of P . Note that the set V as well as the family of all edges of P are
locally finite. This allows to choose pairwise disjoint equilateral triangles Ev ⊆ P , v ∈ V ,
such that v ∈ Ev and Ev is disjoint from all edges that do not emanate from v (see the
darker triangles in Figure 2(b)). Now bd(P) \ ⋃

v∈V Ev consists of (remainders of) edges
of P . For every such segment we pick (possibly infinitely many) equilateral triangles in P
that cover the whole segment. This is done such that the triangles covering one segment do
not overlap any of the triangles Ev , v ∈ V , nor of the triangles that cover other segments
(see the lighter triangles in Figure 2(b)). We have verified condition (iii) from Theorem 1,
and the proof is complete. �

Proposition 6 gives an affirmative answer to a question posed in [7, p. 161]. For convex
polygons it reads as follows.

Corollary 7. A proper convex polygon admits a perfect tiling by equilateral triangles if
and only if each of its inner angles is not smaller than π

3 .

3.2 Closed convex sets

Recall that e is an exposed point of a closed convex set C ⊆ R2 if and only if the singleton
{e} is the intersection of C with some tangent line of C . exp(C) denotes the set of all
exposed points of C .

Proposition 8. A closed convex set C ⊆ R2 admits a perfect tiling by equilateral triangles
if and only if exp(C) is at most countable and, for every e ∈ exp(C), there is an equilateral
triangle E such that e ∈ E ⊆ C.
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Proof. Necessity. If C has a tiling T by triangles, every exposed point e of C must be a
vertex of a tile E ∈ T . This shows in particular that exp(C) is at most countable, because
T cannot be uncountable. To see this, we pick a point with rational coordinates in the
interior of every triangle of T , this way obtaining an injective map of T into the countable
set Q2.

Sufficiency. Step 1: preparation. By a side of C we mean an intersection of C with a
tangent line that contains more than one point (i.e., an exposed face of dimension one in
the terminology of [10, p. 63]).

C has at most countably many sides. Indeed, each bounded convex set C ∩ D((0, 0), n),
n ∈ N, has at most countably many sides, because bd(C ∩ D((0, 0), n)) has finite length.
Since every side of C is (at least part of) a side of some C ∩ D((0, 0), n), there are at most
countably many sides of C .

If e is an endpoint of a side S of C , e can be an exposed point of C or the straight line
spanned by S is the only tangent of C through e. In either case we know that there exists
an equilateral triangle E such that e ∈ E ⊆ C .

C can have up to two unbounded sides. To simplify further discussion, we split every un-
bounded side into segments of length one. We call the relative interiors of these segments
as well as those of all bounded sides of C b-sides of C .

We have reached the following situation: bd(C) is represented as a disjoint union

bd(C) = V ∪
⋃
B∈B

B.

Here B is a family of bounded and relatively open line segments, called b-sides, and V is
an at most countable set, consisting of all exposed points of C and all endpoints of b-sides.
For every v ∈ V , there exists an equilateral triangle E such that v ∈ E ⊆ C.

Step 2: construction. We suppose that V = {v1, v2, . . .} is infinite. (Otherwise C is a
convex polygon, since C is bounded and exp(C) is finite, and Corollary 7 applies.) Next
we construct non-overlapping equilateral triangles Ei ⊆ C, i = 1, 2, . . ., and trapezoids
TB ⊆ C, B ∈ B, such that

(A) for all i = 1, 2, . . ., Ei ∩ V = {vi } and if Ei meets some B ∈ B, then vi is an
endpoint of B,

(B) for all B ∈ B, TB ∩ bd(C) = cl
(
B̃

)
where B̃ = B \ ⋃∞

i=1 Ei is a relatively open

segment such that cl
(
B̃

)
is an edge of TB.

We proceed by induction on i . In the first step we pick a sufficiently small triangle E1 ⊆ C
that satisfies (A). Now suppose that E1, . . . , Ei−1 and at most finitely many trapezoids TB

are constructed in the first i −1 steps of the induction and let the polygon Pi−1 be the union
of these triangles and trapezoids. In the i th step we fix a small triangle Ei ⊆ C \ Pi−1 that
satisfies (A). vi might be an endpoint of a b-side B ∈ B whose other endpoint v j is already
covered by some triangle, i.e., j < i . This happens for at most two b-sides. Figure 3
illustrates the situation with i = 5, j = 3. Then the remainder B̃ = B \ (Ei ∪ E j ) =
B\(Pi−1∪Ei ) of B constitutes a (relatively open) edge of a trapezoid TB ⊆ int(C)∪cl

(
B̃

)
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Figure 3 Proof of Proposition 8

whose edge parallel to B̃ connects Ei with E j such that TB does not overlap Pi−1. This
finishes step 2.

Step 3: conclusion. The proof is complete once we have shown that C satisfies condition
(iii) from Theorem 1. The triangles Ei , i = 1, 2, . . ., cover all points of V . For every
segment B̃ , we define a sequence of non-overlapping equilateral triangles E B

i ⊆ TB , i =
1, 2, . . ., such that B̃ ⊆ ⋃∞

i=1 E B
i . This can be done as in Figure 2(b). Now the triangles

of {Ei : i = 1, 2, . . .} ∪ {
E B

i : B ∈ B, i = 1, 2, . . .
}

are subsets of C , do not overlap and
cover bd(C). This completes the proof. �

3.3 Sets containing few of their boundary points

The following generalizes Lemma 3 (see [7, Corollary 2]).

Proposition 9. If S ⊆ R2 is a set such that S \ int(S) is at most countable and, for every
x ∈ S \ int(S), there is an equilateral triangle E such that x ∈ E ⊆ S, then S admits a
perfect tiling by equilateral triangles.

Proof. Let S \ int(S) = S ∩bd(S) = {bi : i = 1, 2, . . .}. (In fact, S \ int(S) might be finite.
This would simplify the situation.) We prove condition (iii) from Theorem 1 by induction
on i . For i = 1 we pick some equilateral triangle E1 such that b1 ∈ E1 ⊆ S. For the i th
step, suppose that we have already chosen disjoint triangles E j ⊆ S, 1 ≤ j ≤ k, such that
{b1, . . . , bi−1} ⊆ E1 ∪ · · · ∪ Ek . If bi is contained in E1 ∪ · · · ∪ Ek , then we proceed with
step i + 1 immediately. Otherwise we pick a small equilateral triangle Ek+1 disjoint from
E1 ∪ · · · ∪ Ek such that bi ∈ Ek+1 ⊆ S before we continue with step i + 1. This way we
obtain condition (iii) from Theorem 1, which completes the proof. �
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