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1 Introduction

Having a permutation ¢ € S,, ¢ : [n] — [n] where [n] := {1,2,...,n}, it is said that
k € [n] is a fixed point if it is mapped to itself, o (k) = k. Permutations without fixed
points are of particular interest and are usually called derangements. We let D,, denote the
number of derangements of the set [n], D, = |S,SO) [,

SO =g eS8, :o(k) £k k=1,...,n}

Derangements are usually introduced in the context of the inclusion-exclusion principle

Die Subfakultit In = n! 37_ G — L"’“J gibt die Anzahl der Derangements,

k! e

d.h. der fixpunktfreien Permutationen von n unterscheidbaren Objekten an. Die An-
zahl der Permutationen dieser Objekte mit genau r Fixpunkten wird als Rencontres-
Zahl bezeichnet. Es gibt eine Vielzahl interessanter kombinatorischer Identititen, bei
denen die Subfakultit und Rencontres-Zahlen eine Rolle spielen. Am bekanntesten
ist vermutlich das Inklusions-Exklusionsprinzip. In der vorliegenden Arbeit betrachten
die Autoren gewichtete Summen von Subfakultiten. Diese lassen sich zwar auch alge-
braisch beweisen, hier werden jedoch elegante kombinatorische Abzihlargumente fiir
die Herleitung bentitzt.
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[3, 5, 10], since this principle is used to provide an interpretation of D,, as a subfactorial,

- (=DF
Dy=n!> o (1)
k=0
The numbers Dy, D1, Da, ..., Dy, ... form the recursive sequence (Djy),>0 defined by
the recurrence formula
D, = —1)(Dy—1 + Dy—2) 2)

and initial terms Do = 1, D1 = 0 [7]. There is a counting argument to prove this. Let the
number k be mapped by ¢ to the number j, j = 1,...,k — 1,k + 1,...,n. Note that
there are (n — 1) such permutations o. Now, we separate the set of permutations ¢ into
two disjoint sets A and /5, such that

A={o eS8V 0(j) #k ok = j)
B:={c eSSV :6(j)=k ok =}
This means that
Dy = (n — 1)(JAl + |B]).

The set A counts D,,_; elements while the set 3 counts D,,_» elements. The fact that the
number £ in this reasoning is chosen without loss of generality, completes the proof of (2).

There is another recurrence for the sequence (Dy)n>0,

D, =nD, 1 + (_l)n 3)
Namely, set 6, = D, — nDy_1 for every n > 1. Then J; = —1, and formula (2) implies
that one has for every n > 2
on =Dy —nDy_1 = (}’l - l)Dn—Z —Dp_1=—0n—1,

hence one gets immediately d, = (—1)", which proves (3).

When we iteratively apply recurrence (3) to the derangement number on the r.h.s. of this
relation we get

nDyp 1+ (=1)" =n[(n = DD,y + (="' + (=1)"
which finally results with
nn—1Dm—=2)3=1)>+n(—Dn—2)-4=1> 4+ +(=D". @)

on the r.h.s. of (3), which completes the proof of (1).
A few identities for the sequence (D,),>0 are known [4, 6, 8]. In [4] Deutsche and Elizalde

give a nice identity
n
n
D, = Zz(k - 1)(k) Dyx. (5)

Recently, Bhatnagar presents families of identities for some sequences including the
shifted derangement numbers [1], deriving it using an Euler identity [2]. In what follows
we demonstrate a combinatorial proof for that derangement identity, with weighted sum.
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2 A pair of weighted sums for derangements

We define the rencontres number D, (r) as the number of permutations ¢ € S, having
exactly r fixed points. Thus, D,(0) = D,. For a given r € N, we define the sequence
Do(r), D1(r), ..., Dy(r), ..., denoted by (D, (r))n>r.

Applying an analogue counting argument that we used when proving relation (2), one can
represent rencontres numbers by the derangement numbers,

D,(r) = (’: ) Dy 6)

On the other hand, relation (6) follows immediately from the fact that fixed points here are
r-combinations over the set of n elements.

A few other notable properties of the rencontres numbers are also known. It follows from
(3) that D, — D,,(1) = (—1)" for every n > 1. According to the definition of rencontres
numbers, the sum of the nth row in the array of numbers (D,,(r)),>, is equal to n!,

n! =ZD,,(/<). (7
k=0

Moreover, identity (6) shows that D, can be interpreted as a weighted sum of rencontres
numbers in the nth row of the array, by means of relation (5),

D, = Z(k — 1)D, (k). (8)
k=2

The number D, /(n — 1) is also a weighted sum of previous consecutive derangement
numbers. For example, 24 + 12Dy +4D3 + D4 = %. In general we have

' " n'D _Dn+2 9
”'*ZH o= )
k=2

as follows from Theorem 1.

Theorem 1. Forn € N and the sequence of derangement numbers (Dy,)n>0 we have

n
Dy Dy12
1 — = . 10
+ ; k! (n+1)! (19)
Proof. Within a derangement o, the number k, kK = 1,...,n can be mapped to any j,

j=1,...,k—1,k+1,...,n Welet A, denote the set of derangements with ¢ (k) = j,
where j # k,
Ay =1{c €SV :6k) = j}.

Obviously, cardinality of the set A, is independent of j, j # k. More precisely,

D,
n—1

|-An| =
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Furthermore, we separate the set .4,, into two disjoint sets of derangements, sets 3, and C,,,

B, :={0 e A,:0(j)=k)}
={o € Ay :0(j) #k}.

Obviously, the set 3, counts D,,_; elements. For derangements in C,, there are now (n —2)
equivalent ways to map j (excluding j and k), as Figure 1 illustrates. Thus, we have

Cal = (n = 2)|Ay-1l,
which gives the recurrence relation
|~An| =Dy + (}’l - 2)|An—l|- (11)

After repeating usage of (11) we get identity (9) which completes the proof. (]

L,2,...,kyeccyjy..un

L,2,...,kyeccyjy..yn

Figure 1 In case of derangements in the set C;, there are (n—2)
equivalent ways to map j.

In order to prove Theorem 1 algebraically, we apply recurrence (2) to get

Dn+2 _ (}’l + 1)(Dn+1 + Dn) _ Dn+l &

(n+1) (n+ 1) T oal n!
:M_}_&: Dy + Dn—1 +D_
n! n! mn-=-10D! m=-1! n!
D D, ~. Dy
=1+T+ +— :H;F‘

Theorem 2. Forn € N and the sequence of derangement numbers (Dy)n>0 we have

1)*D,
1+Z( k)+2’“+3 = (—1)"Dusa. (12)

Proof. By applying recurrence (2) we have

i (=¥ Dyy3 _ 2(D2+D1)  3(D3 + Do) e () (n +2)(Dn+2 + Dn+1)
k+2 2 3 n+2
=(Dy+D1)— (D3 + D2)+ -+ (=1)"(Dy+2 + Dpy1)

= (- 1)nDn+2

which completes the proof. U

k=0
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Once having Theorem 1, substitution of (6) in identity (10) gives the generalization (13).

Ditr(r)  Dugry2(r)
1+ z k' k+r (n + 1)!(n+:+2) : (13)

The identity (14) follows by substitution of (6) in (12),

— (=D Dyyr43(r)  (=1)"Dpgria(r)
2 (k+2)(:+j+3) - (n+r—-:-_2;_ : (14)

r

Note that the terms in identity (14) are always integers, which can be seen as a consequence
of recurrence relation (2).
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