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1 Introduction

Having a permutation σ ∈ Sn , σ : [n] → [n] where [n] := {1, 2, . . . , n}, it is said that
k ∈ [n] is a fixed point if it is mapped to itself, σ(k) = k. Permutations without fixed
points are of particular interest and are usually called derangements. We let Dn denote the
number of derangements of the set [n], Dn = |S(0)

n |,
S(0)
n := {σ ∈ Sn : σ(k) �= k, k = 1, . . . , n}.

Derangements are usually introduced in the context of the inclusion-exclusion principle

.

Die Subfakultät !n = n! ∑n
k=0

(−1)k

k! =
⌊

n!+1
e

⌋
gibt die Anzahl der Derangements,

d.h. der fixpunktfreien Permutationen von n unterscheidbaren Objekten an. Die An-
zahl der Permutationen dieser Objekte mit genau r Fixpunkten wird als Rencontres-
Zahl bezeichnet. Es gibt eine Vielzahl interessanter kombinatorischer Identitäten, bei
denen die Subfakultät und Rencontres-Zahlen eine Rolle spielen. Am bekanntesten
ist vermutlich das Inklusions-Exklusionsprinzip. In der vorliegenden Arbeit betrachten
die Autoren gewichtete Summen von Subfakultäten. Diese lassen sich zwar auch alge-
braisch beweisen, hier werden jedoch elegante kombinatorische Abzählargumente für
die Herleitung benützt.
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[3, 5, 10], since this principle is used to provide an interpretation of Dn as a subfactorial,

Dn = n!
n∑

k=0

(−1)k

k! . (1)

The numbers D0, D1, D2, . . . , Dn , . . . form the recursive sequence (Dn)n≥0 defined by
the recurrence formula

Dn = (n − 1)(Dn−1 + Dn−2) (2)

and initial terms D0 = 1, D1 = 0 [7]. There is a counting argument to prove this. Let the
number k be mapped by σ to the number j , j = 1, . . . , k − 1, k + 1, . . . , n. Note that
there are (n − 1) such permutations σ . Now, we separate the set of permutations σ into
two disjoint sets A and B, such that

A := {σ ∈ S(0)
n : σ( j) �= k, σ (k) = j}

B := {σ ∈ S(0)
n : σ( j) = k, σ (k) = j}.

This means that
Dn = (n − 1)(|A| + |B|).

The set A counts Dn−1 elements while the set B counts Dn−2 elements. The fact that the
number k in this reasoning is chosen without loss of generality, completes the proof of (2).

There is another recurrence for the sequence (Dn)n≥0,

Dn = nDn−1 + (−1)n. (3)

Namely, set δn = Dn − nDn−1 for every n ≥ 1. Then δ1 = −1, and formula (2) implies
that one has for every n ≥ 2

δn = Dn − nDn−1 = (n − 1)Dn−2 − Dn−1 = −δn−1,

hence one gets immediately δn = (−1)n , which proves (3).

When we iteratively apply recurrence (3) to the derangement number on the r.h.s. of this
relation we get

nDn−1 + (−1)n = n
[
(n − 1)Dn−2 + (−1)n−1] + (−1)n

which finally results with

n(n − 1)(n − 2) · · · 3(−1)2 + n(n − 1)(n − 2) · · · 4(−1)3 + · · · + (−1)n. (4)

on the r.h.s. of (3), which completes the proof of (1).

A few identities for the sequence (Dn)n≥0 are known [4, 6, 8]. In [4] Deutsche and Elizalde
give a nice identity

Dn =
n∑

k=2

(k − 1)

(
n

k

)
Dn−k . (5)

Recently, Bhatnagar presents families of identities for some sequences including the
shifted derangement numbers [1], deriving it using an Euler identity [2]. In what follows
we demonstrate a combinatorial proof for that derangement identity, with weighted sum.
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2 A pair of weighted sums for derangements
We define the rencontres number Dn(r) as the number of permutations σ ∈ Sn having
exactly r fixed points. Thus, Dn(0) = Dn . For a given r ∈ N, we define the sequence
D0(r), D1(r), . . . , Dn(r), . . ., denoted by (Dn(r))n≥r .

Applying an analogue counting argument that we used when proving relation (2), one can
represent rencontres numbers by the derangement numbers,

Dn(r) =
(

n

r

)
Dn−r . (6)

On the other hand, relation (6) follows immediately from the fact that fixed points here are
r -combinations over the set of n elements.

A few other notable properties of the rencontres numbers are also known. It follows from
(3) that Dn − Dn(1) = (−1)n for every n ≥ 1. According to the definition of rencontres
numbers, the sum of the nth row in the array of numbers (Dn(r))n≥r is equal to n!,

n! =
n∑

k=0

Dn(k). (7)

Moreover, identity (6) shows that Dn can be interpreted as a weighted sum of rencontres
numbers in the nth row of the array, by means of relation (5),

Dn =
n∑

k=2

(k − 1)Dn(k). (8)

The number Dn/(n − 1) is also a weighted sum of previous consecutive derangement
numbers. For example, 24 + 12D2 + 4D3 + D4 = D6

5 . In general we have

n! +
n∑

k=2

n!
k! Dk = Dn+2

n + 1
, (9)

as follows from Theorem 1.

Theorem 1. For n ∈ N and the sequence of derangement numbers (Dn)n≥0 we have

1 +
n∑

k=1

Dk

k! = Dn+2

(n + 1)! . (10)

Proof. Within a derangement σ , the number k, k = 1, . . . , n can be mapped to any j ,
j = 1, . . . , k − 1, k + 1, . . . , n. We let An denote the set of derangements with σ(k) = j ,
where j �= k,

An := {σ ∈ S(0)
n : σ(k) = j}.

Obviously, cardinality of the set An is independent of j , j �= k. More precisely,

|An | = Dn

n − 1
.
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Furthermore, we separate the setAn into two disjoint sets of derangements, sets Bn and Cn ,

Bn := {σ ∈ An : σ( j) = k}
Cn := {σ ∈ An : σ( j) �= k}.

Obviously, the set Bn counts Dn−2 elements. For derangements in Cn there are now (n−2)
equivalent ways to map j (excluding j and k), as Figure 1 illustrates. Thus, we have

|Cn| = (n − 2)|An−1|,
which gives the recurrence relation

|An| = Dn−2 + (n − 2)|An−1|. (11)

After repeating usage of (11) we get identity (9) which completes the proof. �

Cn:

1, 2, . . . , k, . . . , j, . . . , n

1, 2, . . . , k, . . . , j, . . . , n
� �

Figure 1 In case of derangements in the set Cn there are (n−2)
equivalent ways to map j .

In order to prove Theorem 1 algebraically, we apply recurrence (2) to get

Dn+2

(n + 1)! = (n + 1)(Dn+1 + Dn)

(n + 1)! = Dn+1

n! + Dn

n!
= n(Dn + Dn−1)

n! + Dn

n! = Dn

(n − 1)! + Dn−1

(n − 1)! + Dn

n!
= 1 + D1

1! + · · · + Dn

n! = 1 +
n∑

k=1

Dk

k! .

Theorem 2. For n ∈ N and the sequence of derangement numbers (Dn)n≥0 we have

1 +
n∑

k=1

(−1)k Dk+3

k + 2
= (−1)n Dn+2. (12)

Proof. By applying recurrence (2) we have

n∑
k=0

(−1)k Dk+3

k + 2
= 2(D2 + D1)

2
− 3(D3 + D2)

3
+ · · · + (−1)n

(n + 2)(Dn+2 + Dn+1)

n + 2
= (D2 + D1) − (D3 + D2) + · · · + (−1)n(Dn+2 + Dn+1)

= (−1)nDn+2

which completes the proof. �
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Once having Theorem 1, substitution of (6) in identity (10) gives the generalization (13).

1 +
n∑

k=1

Dk+r (r)

k!(k+r
r

) = Dn+r+2(r)

(n + 1)!(n+r+2
r

) . (13)

The identity (14) follows by substitution of (6) in (12),

1 +
n∑

k=1

(−1)k Dk+r+3(r)

(k + 2)
(k+r+3

r

) = (−1)n Dn+r+2(r)(n+r+2
r

) . (14)

Note that the terms in identity (14) are always integers, which can be seen as a consequence
of recurrence relation (2).
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