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1 Introduction

Lagrange’s 1770 theorem that every positive integer is a sum of four squares seems des-
tined to stand the test of time as one of the most beautiful results in number theory. In
2010, Jameson [4] gave a simple, short proof of this theorem based on the following Gaus-
sian integer analogue of a 1902 lemma of Thue [6]. (A modern reference for the lemma,
over Z, is [1, Chapter 4], where it is used to give a “book proof” of Fermat’s two-square
theorem.) Recall that the norm Nα of a Gaussian integer α is defined as αᾱ; equivalently,
if α = a + bi , then Nα = a2 + b2. Put ‖a + bi‖ = max{|a|, |b|}.
Thue’s lemma in Z[i]. Let μ be a nonzero Gaussian integer. For every α ∈ Z[i ], there
are β, γ ∈ Z[i ] with

αβ ≡ γ (mod μ)

.

Zwei der prominentesten Resultate der klassischen Zahlentheorie sind Fermats Satz
von Weihnachten 1640, dass jede Primzahl p ≡ 1 (mod 4) Summe zweier Quadrat-
zahlen ist, und der Satz von Lagrange aus dem Jahr 1770, dass jede natürliche Zahl
Summe von vier Quadratzahlen ist. Für beide Resultate ist eine ganze Reihe von Be-
weisen bekannt. Der vielleicht einfachste Beweis des Satzes von Fermat verwendet
ein wunderschönes kombinatorisches Lemma von Axel Thue: Für beliebige a und m
besitzt die Kongruenz ax ≡ y (mod m) eine “kleine” nichttriviale Lösung x, y. Da-
bei heisst “klein” hier, dass |x |, |y| ≤ √

m. Im Jahr 2010 gab Jameson einen kurzen
und einfachen Beweis des Satzes von Lagrange mit Hilfe einer Erweiterung von Thues
Lemma auf Gaußsche Zahlen. Der Autor der vorliegenden Arbeit präsentiert einen
konzeptuell noch einfacheren Beweis, indem er die Arithmetik von Z[i ] geschickt aus-
nutzt.
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and
‖β‖, ‖γ ‖ ≤ 4

√
Nμ. (1)

Proof. We let β̃ and γ̃ range independently over all Gaussian integers A + Bi and C + Di
with 0 ≤ A, B,C, D ≤ 4

√
Nμ. There are (1 + � 4

√
Nμ	)4 > Nμ such pairs (β̃, γ̃ ). But,

as is well known, #Z[i ]/(μ) = Nμ (see [5, Proposition 1, p. 52] for a more general
statement). Hence, there are two distinct pairs (β̃, γ̃ ) for which the residue classes of
αβ̃ − γ̃ modulo μ coincide. If these are (β̃1, γ̃1) and (β̃2, γ̃2), then the conclusion of the
lemma holds with β = β̃1 − β̃2 and γ = γ̃1 − γ̃2. �

The aim of this note is to describe a way of deducing Lagrange’s theorem from Thue’s
lemma that seems slightly more natural than Jameson’s.

2 Jameson’s proof

In this section we give our rendition of Jameson’s original argument. First, note that to
prove the four-square theorem, it is enough to show all squarefree m are representable as
a sum of four squares.1 Indeed, if n is any positive integer, we can write n = r2m with m
squarefree; representing m as a sum of four squares and absorbing the factors of r2 into
the summands gives a corresponding representation of n. In what follows, we focus on
representing squarefree m.

To prepare for the application of Thue’s lemma, we need the following auxiliary result
which features in essentially all of the elementary proofs of Lagrange’s theorem.

Lemma 1. Let m be a squarefree integer. There is an α ∈ Z[i ] for which

Nα ≡ −1 (mod m).

Proof. Recalling that N(a + bi) = a2 + b2, our task is that of proving −1 is a sum of two
squares in the ring Z/mZ. By the Chinese remainder theorem, it is enough to show this
when m = p is prime. The case p = 2 is clear, so we suppose p is odd. Over any field
of odd characteristic, x 
→ x2 is a 2-to-1 map on nonzero elements. Hence, the number of
nonzero squares in Z/pZ is p−1

2 , and the total number of squares in Z/pZ is p+1
2 . So if

we put
S = {a2 : a ∈ Z/pZ} and T = {−1 − b2 : b ∈ Z/pZ},

then #S = #T = p+1
2 . Since #S + #T > #Z/pZ, the sets S and T are not disjoint. Thus,

there are a, b ∈ Z/pZ with a2 = −1 − b2, i.e., a2 + b2 = −1. �

We are now able to deduce the following.

Proposition 2. Let m be a squarefree integer. At least one of m, 2m, and 3m is a sum of
four squares.

1Recall that m is said to be squarefree when it is a product of distinct prime numbers.



62 P. Pollack

Proof. We can assume that m > 1. Using Lemma 1, choose α ∈ Z[i ] with Nα ≡ −1
(mod m). By Thue’s lemma, there are β, γ ∈ Z[i ], not both 0, with

αβ ≡ γ (mod m) (2)

and
‖β‖, ‖γ ‖ ≤ m1/2. (3)

Applying complex conjugation to (2) shows that

ᾱβ̄ ≡ γ̄ (mod m). (4)

Multiplying (2) and (4) and rearranging yields

Nβ + Nγ ≡ 0 (mod m).

We claim that Nβ + Nγ = m, 2m, or 3m. From the above, it is clear that the integer
Nβ + Nγ is positive (since β and γ do not both vanish) and a multiple of m. Moreover,
since m is not a square, the inequalities in (3) are necessarily strict, so that

Nβ + Nγ < 4(m1/2)2 = 4m.

Thus, Nβ + Nγ = m, 2m, or 3m, as claimed. �

Disappointingly, the conclusion of Proposition 2 is not the representability of m, but the
representability of at least one of m, 2m, and 3m. When m is represented, we are home
free. The case when 2m is represented is also OK, in view of the following easy lemma.

Lemma 3 (2-removal and insertion). For every positive integer n, we have that n is a sum
of four squares ⇐⇒ 2n is a sum of four squares.

Proof. Applying the observation that (a + b)2 + (a − b)2 = 2a2 + 2b2 twice, one arrives
at the duplication identity

2(x2 + y2 + z2 + w2) = (x + y)2 + (x − y)2 + (z + w)2 + (z − w)2. (5)

This makes the forward implication of the lemma obvious. For the backward direction,
suppose that 2n = X2 + Y 2 + Z2 + W 2 with X,Y, Z , W integers. If x, y, z, w solve the
system

X = x + y, Y = x − y, Z = z + w, W = z − w,

then (5) implies that x2 + y2 + z2 + w2 = n. So n will be a sum of four squares as
long as x, y, z, w ∈ Z. Solving for x, y, z, w explicitly, we see that this last condition is
satisifed precisely when X ≡ Y (mod 2) and Z ≡ W (mod 2). Since we may permute
X,Y, Z , W , the lemma will be proved if we show that X,Y, Z , W can be put in pairs of the
same parity. Now all of X2,Y 2, Z2, W 2 are 0 or 1 modulo 4, and their sum is 2n, which is
≡ 0 or 2 modulo 4. If 2n ≡ 0 (mod 4), then all of X2,Y 2, Z2, W 2 must coincide modulo
4, and so all of X,Y, Z , W are even or all are odd. If 2n ≡ 2 (mod 4), then exactly two of
X,Y, Z , W are odd. In either case, we can pair X,Y, Z , W as desired. �
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Jameson completes his proof by also showing the “3-removal lemma”, viz.

3n is a sum of four squares =⇒ n is a sum of four squares.

This result has been known for more than 250 years; the simple and short proof Jameson
gives appears already in a July 26, 1749 letter from Euler to Goldbach [3, pp. 1000–
1006]. In fact, the corresponding p-removal lemma is proved in Euler’s letter for each of
p = 2, 3, 5, and 7.

Unfortunately (in the opinion of the author) the proof of the 3-removal lemma rests on the
triplication identity

3(x2 + y2 + z2 + w2) = (y + z + w)2 + (z − w + x)2 + (w − y + x)2 + (y − z + x)2,

which cannot be considered obvious to mathematical mortals.2 This is our primary moti-
vation for staking out a different path.

3 A way around 3-removal

We now restrict attention to odd squarefree m. Rather than show m is representable di-
rectly, we will aim at proving the representability of 2m; we know from Lemma 3 that the
two are in fact equivalent.

The essential new idea is to use a wee bit more about the arithmetic of Z[i ]. This facilitates
application of Thue’s lemma with μ = (1 + i)m rather than the more obvious choice
μ = 2m. We need the following two facts:

(i) The integer multiples of 1 + i are exactly the even integers.

(ii) 1 + i is a unit multiple of its complex conjugate.

Both (i) and (ii) are straightforward to check. Indeed, let r be an integer. Then r
1+i =

r
2 − r

2 i , and this belongs to Z[i ] precisely when r is even. This proves (i). The proof of (ii)
is easier: 1 + i = i(1 − i), and i is a unit as i4 = 1.

The following result now replaces Proposition 2.

Proposition 4. Let m be an odd, squarefree integer. Then at least one of 2m and 4m is a
sum of four squares.

Proof. By Lemma 1, we may select α ∈ Z[i ] with Nα ≡ −1 (mod 2m). By Thue’s
lemma, there are β, γ ∈ Z[i ], not both 0, with

αβ ≡ γ (mod (1 + i)m) (6)

and
‖β‖, ‖γ ‖ ≤ 21/4m1/2. (7)

2This identity seems most naturally explained in terms of quaternions. (Of course, the same holds for Euler’s
more general identity expressing a product of two sums of four squares as a sum of four squares, which we have
taken pains to avoid here.)
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Applying complex conjugation to (6) shows that ᾱβ̄ ≡ γ̄ (mod (1− i)m). Since 1+ i and
1 − i differ by a unit (fact (ii)), this last congruence is equivalent to the same congruence
modulo (1 + i)m:

ᾱβ̄ ≡ γ̄ (mod (1 + i)m). (8)

Since Nα ≡ −1 (mod 2m), and 2 is a multiple of 1 + i , we have

Nα ≡ −1 (mod (1 + i)m).

Multiplying (6) and (8) and rearranging yields

Nβ + Nγ ≡ 0 (mod (1 + i)m).

The left-hand side is a sum of four squares of integers, not all of which are zero, and so is
a positive integer. It follows (keeping fact (i) in mind) that Nβ + Nγ is a multiple of both
2 and m, and so a multiple of 2m. The inequalities (7) imply that

Nβ + Nγ ≤ 4 · (21/4m1/2)2 = 2m · 2
√

2.

Since 2
√

2 = 2.828 . . . < 3, either Nβ + Nγ = 2m or 4m. �

The advantage of Proposition 4 over Proposition 2 is that 2 and 4 are both powers of 2! So
whichever case of Proposition 4 we find ourselves in, (the backward direction of) Lemma
3 implies the representability of m as a sum of four squares. We assumed m was odd and
squarefree, but another application of Lemma 3 (the forward direction this time) shows that
all squarefree m are representable. As explained above, the four-square theorem follows.

Concluding remarks

(i) The deepest fact used in our argument is that Nμ = #Z[i ]/(μ) for all nonzero
Gaussian integers μ. For our application this is only needed when μ = (1 + i)m,
where m is an odd integer. In fact, all we really use is that Nμ is an upper bound
on #Z[i ]/(μ) for these μ. As we now explain, this much has a simple proof. Since
N((1 + i)m) = 2m2, it suffices to show the following.

Claim: Every Gaussian integer is congruent, modulo (1 + i)m, to a + bi for some
integers a and b with 0 ≤ a < 2m and 0 ≤ b < m.

To see this, note that given any Gaussian integer, subtracting a suitable integer mul-
tiple of (1+ i)m will force the imaginary component into the interval [0,m) without
changing the congruence class modulo (1+ i)m. We may then subtract a multiple of
2m = (1 + i)m · (1 − i) to place the real component in [0, 2m).

(ii) Jameson recognizes the desirability of avoiding the 3-removal lemma and, in the
same paper [4], gives an intriguing alternative argument serving this purpose. Bring-
ing in an asymptotic estimate for the number of lattice points within a 4-dimensional
ball, Jameson shows (essentially) that the conclusion (1) of Thue’s lemma can be
replaced with

Nβ + Nγ ≤
(

4
√

2

π
+ ε

)√
Nμ,
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for any ε > 0 and all μ with Nμ sufficiently large in terms of ε. Since 4
√

2/π < 2,
one deduces from the proof of Proposition 2 that all large squarefree m are sums
of four squares. Explicit estimates imply that m > 764 is large enough; of course,
smaller m can be checked on a pocket computer (read: smartphone).3 This argument
is quite similar in spirit to the well-known proof of Lagrange’s theorem based on
Minkowski’s geometry of numbers (see, e.g., [2]).
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3The details are arranged somewhat differently in [4]. For instance, the version of the argument presented there
still relies on the 2-removal lemma (but requires less mopping up of small cases).


