
Elem. Math. 73 (2018) 109 – 121
0013-6018/18/030109-13
DOI 10.4171/EM/360

c© Swiss Mathematical Society, 2018

Elemente der Mathematik

A few simple Levi-Civita functional equations on groups

Heather Hunt Elfen, Allison Perkins, and Prasanna K. Sahoo1

Heather Hunt Elfen is currently an Assistant Professor in the Department of Math-
ematics at Robert Morris University. She received a Ph.D. in Applied and Industrial
Mathematics from the University of Louisville in 2014 under Dr. Prasanna Sahoo. She
completed a Bachelor in Mathematics at the University of Kentucky in 2009.

Allison Perkins is currently an Assistant Professor in the Department of Mathemat-
ics at Mount St. Joseph University. She received a Ph.D. in Applied and Industrial
Mathematics from the University of Louisville in 2014 under Dr. Prasanna Sahoo.
She completed a Bachelor in Mathematics at Centre College in 2009.

Prasanna Sahoo was a Professor of Mathematics at the University of Louisville. He
received his Ph.D. from the University of Waterloo and his M.Sc. from the University
of Regina. Over the years he published many papers in different fields along with
several books. He unfortunately passed away in June of 2017.

1 Introduction
Let G be a group, S be a semi-group, and K be a field. Specifically, the field of complex
numbers will be denoted by C. The identity element of a group and semi-group will be

1The authors would like to dedicate this paper to the memory of Prasanna K. Sahoo, who passed away June 18,
2017. He played an integral part in the research and formation of this paper.

.

Funktionalgleichungen tauchen in der Mathematik und der mathematischen Physik re-
gelmässig auf: Schon Cauchy zeigte, dass die stetigen Lösungen f : R → R der
Gleichung f (x + y) = f (x) + f (y) die linearen Funktionen f (x) = ax sind. Mul-
tiplikativ geschrieben, f (xy) = f (x) f (y) entsteht die Funktionalgleichung der Po-
tenzfunktionen f (x) = xa , f (x + y) = f (x) f (y) liefert die Exponentialfunktionen
f (x) = ax und f (xy) = f (x) + f (y) die Logarithmusfunktionen. Die Additions-
theoreme von trigonometrischen und hyperbolischen Funktionen (insbesondere die re-
lativistische Addition der Geschwindigkeit), die Funktionalgleichungen der Gamma-
Funktion oder der Bernoulli-Polynome sind weitere Beispiele. In der vorliegenden Ar-
beit wird die Levi-Civita-Gleichung und deren symmetrisierte Variante, insbesondere
f (xy)+ g(yx) = 2 h(x) k(y), in ganz allgemeinem Rahmen studiert.
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denoted by e. A function f : G → K is said to be an additive function if it satisfies the
functional equation

f (xy) = f (x)+ f (y)

for all x, y ∈ G. If G is an arbitrary group, then the group operation will be denoted by
multiplication. Thus, a function f : G → K that satisfies the functional equation

f (xy) = f (x) f (y)

for all x, y ∈ G is said to be a multiplicative function or a multiplicative homomorphism.
A function f : G → K is called a central function if and only if f (xy) = f (yx) for all
x, y ∈ G.

In 1913 Levi-Civita in [4] began studying the functional equation

f (xy) =
n∑

i=1

gi (x)hi (y),

where f, gi , hi : G → C for all 1 ≤ i ≤ n, known as the Levi-Civita functional equation.
One can easily see that in the case that n = 2 and g1 = g2 = f and h2 = h1 = 1 it is a
generalization of the previouslymentioned additive and multiplicative functions dependent
upon the operation. Also when written additively, it becomes the addition formula for the
sine and cosine functions when n = 2. Along with these, it encompasses several other
interesting functional equations such as the following:

f (xy) = f (x) f (y)+ f (y)

f (xy) = 2 f (x)+ 2 f (y)

f (xy) = 2 f (x)+ 2 f (y)+ λ f (x) f (y)

where f : G → C. These functional equations have been widely studied along with sev-
eral generalizations. The most popular generalizations are forms of the functional equation

f (xy)+ f (yx) =
n∑

i=1

gi (x)hi (y)

where f, gi , hi : G → C for all 1 ≤ i ≤ n. It is known as the symmetrized Levi-Civita
functional equation. In the case that n = 2, h1 = g2, and g1 = h2 = f one gets what is
known as the symmetrized sine functional equation, a generalization of the original sine
functional equation.

2 Preliminary results
Several preliminary results relating to the symmetrized Levi-Civita functional equation
will be useful for us throughout this paper. Many simple forms of the symmetrized Levi-
Civita functional equation have been widely studied, most notably the functional equations

f (xy)+ f (yx) = 2 f (x)+ 2 f (y)

f (xy)+ f (yx) = 2 f (x) f (y) (2.1)
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for all x, y ∈ G. They are often referred to as the additive and multiplicative Cauchy
equations. The solution to the multiplicative Cauchy functional equation was first posed
as an open problem by Corovei: if f is a solution to (2.2), must f be a multiplicative
function? Radó was one of the many to attempt Corovei’s question. He was in fact the
first to conclude in [6] that yes, f must be a multiplicative function. His proof was later
shortened by Pl. Kannappan in [2]. Stetkær later studied the equation defined on a semi-
group in [5] giving us the theorem below.

Theorem 1. Let f : S → C be a complex function on a semi-group S satisfying the
symmetrized multiplicative Cauchy equation

f (xy)+ f (yx)

2
= f (x) f (y) (2.2)

for all x, y ∈ S. Then f (xy) = f (yx) for all x, y ∈ S, and so f : S → C is a multiplica-
tive function.

In this paper we consider a few generalizations of the symmetrized Levi-Civita functional
equation based upon the results of Corovei, Radó, Kannappan, and Stetkær. We work to-
wards generalizing some of the previously mentioned addition formulas on an arbitrary
group. If one were to consider looking at a sine function or a generalization of one on a
non-abelian group, it is the hope that these equations would provide some insight into a
different way to go about that. Most notably we consider the following functional equation
defined on a semi-group S:

f (xy)+ g(yx) = 2 h(x) k(x). (2.3)

It leads us to another generalization that has evolved over time; that being the equation

f (xy)+ f (yx) = 2 f (x)+ 2 f (y)+ 2 λ f (x) f (y).

This equation has roots dating back to an equation studied before the now known Levi-
Civita equation, an equation studied by Jansen in 1878 ([5], see exercise 3.7); that is

f (x + y) = f (x)+ f (y)+ f (x) f (y)

where the unknown function f is a continuous, complex-valued function defined on an
interval on the real line.

3 Several generalizations along with a combination equation
We first consider several generalizations of the symmetrized multiplicative Cauchy func-
tional equation (2.2). We start with a generalization in terms of two functions f and g.

Theorem 2. Let S be a semi-group and C be the field of complex numbers. If the non-zero
functions f, g : S → C satisfy the functional equation

f (xy)+ f (yx) = g(x) f (y), (3.1)

then
f (x) = α θ(x) g(x) = 2 θ(x),

where θ is a multiplicative function and α ∈ C is an arbitrary non-zero complex constant.
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Proof. Let y = e in (3.1), then

2 f (x) = g(x) f (e)

for all x ∈ S. Since f, g are both non-zero, we have that f (e) �= 0. Therefore, letting
f (e) = α ∈ C we get that

f (x) = α

2
g(x)

for all x ∈ S. Substituting this back into (3.1) and dividing by α
2 we get the following:

g(xy)+ g(yx) = g(x) g(y).

Multiplying through by 1
2 gives us

g(xy)

2
+ g(yx)

2
= 2

(
g(x)

2

) (
g(y)

2

)

for all x, y ∈ S. Therefore, from Theorem 1 we have that

g(x) = 2 θ(x) f (x) = α θ(x)

where θ is a multiplicative function and α ∈ C is an arbitrary non-zero complex constant.
This completes the proof. �

One can see switching x and y in the previous theorem takes care of the case f (xy) +
f (yx) = f (x)g(y). Hence we move on to another generalization in terms of two func-
tions.

Theorem 3. Let S be a semi-group and C be the field of complex numbers. If the non-zero
functions f, g : S → C satisfy the functional equation

f (xy)+ f (yx) = g(x)g(y), (3.2)

then

f (x) = α2

2
θ(x) g(x) = α θ(x)

where θ is a multiplicative function and α ∈ C is an arbitrary non-zero complex constant.

Proof. Let y = e in (3.2), then

2 f (x) = g(x)g(e)

for all x ∈ S. Since f, g are non-zero, we get that g(e) �= 0. Therefore, letting g(e) = α ∈
C, we get that

f (x) = α

2
g(x)
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for all x ∈ S. Substituting this into (3.2) and multiplying through by 2
α2 we get the follow-

ing:

1

α
g(xy)+ 1

α
g(yx) = 2

(
1

α
g(x)

) (
1

α
g(y)

)

for all x, y ∈ S. Therefore, from Theorem 1 we have

g(x) = α θ(x) f (x) = α2

2
θ(x)

where θ is a multiplicative function and α ∈ C is an arbitrary non-zero complex constant.
This completes the proof. �

Next, we expand our generalizations to three functions, f, g, and h.

Theorem 4. Let S be a semi-group and C be the field of complex numbers. If the non-zero
functions f, g, h : S → C satisfy the functional equation

f (xy)+ g(yx) = h(x)h(y), (3.3)

then

f (x) = α2

2
θ(x)+ 1

2
γ (x)

g(x) = α2

2
θ(x)− 1

2
γ (x)

h(x) = α θ(x)

where θ is a multiplicative function, α ∈ C is an arbitrary non-zero complex constant, and
γ is a central function.

Proof. Switching x and y in (3.3) yields

f (yx)+ g(xy) = h(x)h(y)

for all x, y ∈ S. Subtracting this from (3.3) and rearranging gives us the following:

f (xy)− g(xy) = f (yx)− g(yx)

for all x, y ∈ S. Defining γ : S → C such that

γ (x) = f (x)− g(x),

we get that
γ (xy) = γ (yx).

Therefore, γ is a central function.
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Setting y = e in the original equation we get

f (x)+ g(x) = h(x)h(e)

for all x in S. Let h(e) = α, a complex constant in C. We consider two cases, α = 0 and
α �= 0. If α = 0 we have that

f (x) = −g(x)

for all x ∈ S. Substituting this into (3.3) we have that

−g(yx)+ g(xy) = h(x)h(y)

for all x, y ∈ S. Switching x and y and adding to the previous equation we get the follow-
ing:

0 = 2 h(x)h(y)

for all x, y ∈ S. Since f, g, h are non-zero functions, this is not possible. Therefore,α �= 0.

Now, switching x and y in (3.3) and adding yields:

f (xy)+ g(xy)+ f (yx)+ g(yx) = 2 h(x) h(y) (3.4)

for all x, y ∈ S. Using the fact that

f (x)+ g(x) = α h(x)

and multiplying through by 1
α2 , (3.4) becomes

1

α
h(xy)+ 1

α
h(yx) = 2

(
1

α
h(x)

) (
1

α
h(y)

)

for all x, y ∈ S. Therefore, from Theorem 1 we get

h(x) = α θ(x)

where θ is a multiplicative function and α ∈ C is an arbitrary non-zero complex constant.
Hence

f (x)+ g(x) = α h(x) = α2 θ(x)

for all x ∈ S. Given that

f (x)− g(x) = γ (x),

adding and subtracting the previous two functional equations yields

f (x) = α2

2
θ(x)+ 1

2
γ (x)

g(x) = α2

2
θ(x)− 1

2
γ (x)

h(x) = α θ(x)

where θ is a multiplicative function, α ∈ C is an arbitrary non-zero complex constant, and
γ is a central function. This completes the proof. �
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Lastly, we generalize (2.2) to four non-zero functions.

Theorem 5. Let G be a group and K a field. If the non-zero functions f, g, h, k : G → K
satisfy the functional equation

f (xy)+ g(yx) = h(x)k(y), (3.5)

then

f (x) = α β
μ2

2
θ(x)+ 1

2
γ (x)

g(x) = α β
μ2

2
θ(x)− 1

2
γ (x)

h(x) = α μ θ(x)

k(x) = β μ θ(x)

where θ is a multiplicative function, α, β,μ ∈ K are arbitrary non-zero constants, and γ
is a central function.

Proof. Let y = e in (3.5), then

f (x)+ g(x) = h(x)k(e)

for all x ∈ G. We consider two cases, k(e) = 0 and k(e) �= 0. If k(e) = 0, then we have
that

f (x)+ g(x) = 0, g(x) = − f (x)

for all x ∈ G. Therefore,

f (xy)− f (yx) = h(x)k(y)

for all x, y ∈ G. Setting y = x−1 gives us

f (x x−1)− f (x−1x) = h(x)k(x−1)

0 = h(x)k(x−1)

which implies either h = 0 or k = 0. This is not possible since f, g, h, k are non-zero
functions. Therefore, k(e) �= 0. One can easily show that h(e) �= 0.

Let h(e) = α and k(e) = β where α and β are non-zero constants in K . If y = e in (3.5)
we have

f (x)+ g(x) = β h(x)

1

β
( f (x)+ g(x)) = h(x) (3.6)

for all x ∈ G. Similarly if x = e in (3.5), we have

f (y)+ g(y) = α k(x)

1

α
( f (x)+ g(x)) = k(x) (3.7)
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for all y ∈ G. Therefore, rewriting our original equation we have that

f (xy)+ g(yx) = 1

α β
( f (x)+ g(x)) ( f (x)+ g(x))

1

α β
f (xy)+ 1

α β
g(yx) =

(
1

α β
( f (x)+ g(x))

) (
1

α β
( f (x)+ g(x))

)

for all x, y ∈ G. From Theorem 4 we have that

f (x) = α β
μ2

2
θ(x)+ 1

2
γ (x)

g(x) = α β
μ2

2
θ(x)− 1

2
γ (x)

f (x)+ g(x) = α β μ θ(x)

where θ is a multiplicative function, μ ∈ K is an arbitrary non-zero constant, and γ is a
central function. Therefore, using (3.6) and (3.7) we get the following:

h(x) = 1

β
α β μ θ(x) = α μ θ(x), k(x) = 1

α
α β μ θ(x) = β μ θ(x)

for all x ∈ G. This completes the proof. �

We now give a concrete example to the generalization in terms of four functions, that is
equation (3.5).

Example 6. Consider the non-abelian group of 2 × 2 invertible matrices over R,

GL2(R) =
{[

a b
c d

] ∣∣∣∣ a, b, c, d ∈ R, ad − bc �= 0

}
.

Consider the determinate function det : GL2(R) → R defined such that det(A) = ad −
bc for all A ∈ GL2(R) and the trace function tr : GL2(R) → R defined such that
tr(A) = trace(A) = a + d for all A ∈ GL2(R). It is known that the following hold for all
A, B ∈ GL2(R):

det(A B) = det(A) det(B) = det(B) det(A) = det(B A)

tr(A B) = tr(B A).

Therefore, det is a multiplicative function that is also central and tr is a central function.
One can easily show that

f (x) = α β
μ2

2
det(x)+ 1

2
tr(x)

g(x) = α β
μ2

2
det(x)− 1

2
tr(x)

h(x) = α μ det(x)

k(x) = β μ det(x)

where α, β,μ ∈ R is a solution to the equation (3.5).
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Now, we will consider a bit more complex Levi-Civita functional equation and a few gen-
eralizations of it.

Theorem 7. Let G be a group and K a field with char(K ) �= 2 and λ ∈ K a non-zero a
priori chosen constant. If f, g : G → K satisfy the functional equation

f (xy)+ f (yx) = 2 g(x)+ 2 g(y)+ 2 λ g(x) g(y) (3.8)

for all x, y ∈ G, then

f (x) = α2 φ(x)− 1

λ
, g(x) = α φ(x)− 1

λ

where φ is a multiplicative function and α and β are non-zero constants in K .

Proof. We start by multiplying through by λ to get

λ f (xy)+ λ f (yx) = 2 λ g(x)+ 2 λ g(y)+ 2 λ2 g(x) g(y).

Adding 2 to both sides and rewriting gives us the following:

[1 + λ f (xy)] + [1 + λ f (yx)] = 2 [1 + λ g(x)+ λ g(y)+ λ2 g(x) g(y)]
[1 + λ f (xy)] + [1 + λ f (yx)] = 2 [1 + λ g(x)][1 + λ g(y)]. (3.9)

Define ω : G → K and ψ : G → K such that

ω(x) = 1 + λ f (x) (3.10)

ψ(x) = 1 + λ g(x) (3.11)

for all x ∈ G. Using (3.10) and (3.11) we can rewrite (3.9) giving us

ω(xy)+ ω(yx) = 2ψ(x) ψ(y). (3.12)

With y = e the previous equation becomes

2ω(x) = 2ψ(x) ψ(e).

Since ψ(e) is a constant, we define α such that α = ψ(e). Thus

ω(x) = ψ(x) α. (3.13)

Now, since α is a constant we must consider two cases: α = 0 and α �= 0. In the case that
α = 0, using (3.13) we get ω(x) = 0 for all x ∈ G. By this fact and (3.12)

0 = 2ψ(x) ψ(y),

which implies that ψ(x) = 0 for all x ∈ G. Thus, since ω(x) = 0 and ψ(x) = 0 we can
go back and solve (3.10) and (3.11) for f and g respectively.

f (x) = −1

λ
and g(x) = −1

λ

which are solutions to (3.8) included in the case in which λ �= 0.
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In the case that α �= 0, using (3.13) we can rewrite (3.12)

ψ(xy) α + ψ(yx) α = 2ψ(x) ψ(y)

ψ(xy)+ ψ(yx) = 2

α
ψ(x) ψ(y).

Since α �= 0, we can divide through by α to get the following:

ψ(xy)+ ψ(yx)

α
= 2

α2
ψ(x) ψ(y)

ψ(xy)

α
+ ψ(yx)

α
= 2

(
ψ(x)

α

) (
ψ(y)

α

)
. (3.14)

Define φ : G → K such that

φ(x) = ψ(x)

α
(3.15)

for all x ∈ G. Thus, (3.14) becomes

φ(xy)+ φ(yx) = 2 φ(x) φ(y).

By [2] we have that φ is a multiplicative function. Now, (3.15) gives us

α φ(x) = ψ(x). (3.16)

Substituting this into (3.13) yields

ω(x) = α2 φ(x).

Comparing this with (3.10) we get

α2 φ(x) = 1 + λ f (x)

f (x) = α2 φ(x)− 1

λ
.

Similarly, comparing (3.16) with (3.11) gives us

α φ(x) = 1 + λ g(x)

g(x) = α φ(x)− 1

λ
.

Hence, we have the final solutions of (3.8), which completes the proof. �

If we let f = g in the previous theorem, we have the following corollary.

Corollary 8. Let G be a group, K be a field of characteristic different from 2, and λ ∈ K
be a non-zero a priori chosen constant. The non-constant function f : G → K satisfies
the functional equation

f (xy)+ f (yx) = 2 f (x)+ 2 f (y)+ 2 λ f (x) f (y) (3.17)
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for all x, y ∈ G if and only if for all x ∈ G

f (x) = φ(x)− 1

λ

where φ is a multiplicative function.

Proof. Letting f = g in Theorem 7 we have the following:

f (x) = α2 φ(x)− 1

λ
= α φ(x)− 1

λ

α2 φ(x) = α φ(x)

α φ(x)(α − 1) = 0

for all x ∈ K , where θ, φ are multiplicative functions, and α is a non-zero constant in K .
Since f is non-constant we have that φ �= 0 and α �= 0. Therefore, α = 1 and

f (x) = α φ(x)− 1

λ

for all x ∈ G, which completes the proof. �

Theorem 9. Let G be a group, K be a field with char(K ) �= 2, and λ ∈ K be a non-zero
a priori chosen constant. If f, g, h : G → K satisfy the functional equation

f (xy)+ g(yx) = 2 h(x)+ 2 h(y)+ 2 λ h(x) h(y) (3.18)

for all x, y ∈ G, then

f (x) = α2φ(x)− 1

λ
+ γ (x)

2

g(x) = α2φ(x)− 1

λ
− γ (x)

2

h(x) = αφ(x)− 1

λ

for all x ∈ G, where φ is a multiplicative function, γ : G → K is a central function, and
α is a non-zero constant in K .

Proof. Interchanging x and y in (3.18) yields

f (yx)+ g(xy) = 2 h(y)+ 2 h(x)+ 2 λ h(y) h(x). (3.19)

Subtracting the previous equation from (3.18)

f (xy)+ g(yx)− f (yx)− g(xy) = 0

( f − g)(xy)− ( f − g)(yx) = 0. (3.20)
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Defining γ : G → K such that

γ (x) = ( f − g)(x), (3.21)

then (3.20) reduces to
γ (xy) = γ (yx).

Therefore, γ is a central function.

Now, adding (3.18) and (3.19) we find that

f (xy)+ g(yx)+ f (yx)+ g(xy) = 4 h(x)+ 4 h(y)+ 4 λ h(x) h(y)

( f + g)(xy)

2
+ ( f + g)(yx)

2
= 2 h(x)+ 2 h(y)+ 2 λ h(x) h(y). (3.22)

Defining ψ : G → K such that

ψ(x) = ( f + g)(x)

2
,

reduces (3.22) to

ψ(xy)+ ψ(yx) = 2 h(x)+ 2 h(y)+ 2 λ h(x) h(y).

From Theorem 7 we get

ψ(x) = α2φ(x)− 1

λ

h(x) = αφ(x)− 1

λ
,

where φ is a multiplicative function and α is a non-zero constant in K . This gives us the
solution for h(x). By the definition of ψ

( f + g)(x) = 2
α2φ(x)− 1

λ
. (3.23)

Now, adding the previous equation and (3.21) we get f (x),

2 f (x) = 2
α2φ(x)− 1

λ
+ γ (x)

f (x) = α2φ(x)− 1

λ
− γ (x)

2
.

Subtracting (3.21) from (3.23) we get g(x),

2g(x) = 2
α2φ(x)− 1

λ
− γ (x)

g(x) = α2φ(x)− 1

λ
− γ (x)

2
,

which completes the proof. �
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