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1 Introduction
In 1813 Jean-Victor Poncelet (1788–1867) discovered the following celebrated theorem
which belongs to classical geometry.

Theorem 1 (Poncelet’s closure theorem). Let Eo and Ei be two ellipses with Ei inside
Eo. Suppose that there exists an n-sided polygon circumscribed between Eo and Ei that is
inscribed in Eo and circumscribed about Ei. Then for any other point of Eo there exists an n-
sided polygon circumscribed between Eo and Ei, which has this point for one of its vertices.

We say that a point of Eo has the n-Poncelet property if it is one of the vertices of a
circumscribed n-sided polygon between Eo and Ei. Poncelet’s closure theorem does not

.

Der Schliessungssatz von Poncelet gilt als eines der schönsten und tiefsten Resultate
der klassischen projektiven Geometrie. Die zahlreichen heute bekannten Beweise sind
deutlich schwieriger als etwa der elementare Inversionsbeweis des Schliessungssatzes
von Steiner. Poncelet fand seinen Satz während er von Frühling 1813 bis Sommer 1814
in Saratow an der Wolga in russischer Kriegsgefangenschaft sass. Neben seinen fun-
damentalen Beiträgen zur projektiven Geometrie war Poncelet zu Lebzeiten auch für
seine Leistungen als Ingenieur bekannt. So prangt sein Name neben denen von 71 wei-
teren eminenten Wissenschaftlern am Eiffelturm. Bereits vor Poncelet hatten Chapple,
Euler und Fuss Spezialfälle des Schliessungssatzes gefunden. Die Beweismethoden
reichen heute von Abelschen Integralen über elliptische Kurven bis zur Masstheorie.
Der Autor der vorliegenden Arbeit betrachtet den Spezialfall von zwei Ellipsen, wo-
von die eine im Inneren der andern liegt. Er verwendet Ideen von Jacobi und Bertrand
und konstruiert zum Beweis eine reelle periodische Funktion, bei der schliesslich eine
Substitution für ein bestimmtes Integral zum Zuge kommt.
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guarantee that such point exists; Cayley’s theorem provides a criterion for this in terms
of the equations of Eo and Ei, see [Fla09, Chapter 10]. But if it exists, then Theorem 1 is
equivalent to the statement that every point of Eo has the n-Poncelet property, see Figure 1.
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Figure 1 Illustration of Poncelet’s theorem. Because the point A has the 5-Poncelet property every point of Eo
(for instance, B) has the 5-Poncelet property.

Poncelet’s theorem also holds for two nondegenerate conics in general position in the
projective plane. The reader may consult [Fla09] for a general overview on the subject and
its rich history, and [HH15] for the most recent proof.

Theorem 1 is known as the real case of Poncelet’s theorem since it considers two ellipses
in the real affine plane. Jacobi and, later, Bertrand are credited to have given the first
correct proof with the help of elliptic functions. Schoenberg [Sch83] reduced Poncelet’s
theorem in a non-elementary fashion to the case where Ei is a circle having its center in the
center of Eo, and then continued with the Jacobi–Bertrand idea. King in [Kin94] followed
Schoenberg’s approach, but avoided elliptic integrals and Schoenberg’s non-elementary
reduction to construct a measure on Eo which is invariant with respect to the map R : Eo →
Eo; see the beginning of Section 2 for the definition. His proof is reproduced in [Fla09,
Chapter 12] together with a section on topological conjugacy between R and a rotation of
a circle.

It is fair to say that we make a change of viewpoint, not a change in King’s proof, to give
a “higher mathematics” or “calculus” style proof of Theorem 1. By this we mean that we
construct a periodic continuously differentiable real function R̃ whose derivative is given
in terms of tangential distances between the outer and inner ellipse (see Theorem 2). To
say that a point with the n-Poncelet property exists is equivalent to R̃n(t) = t +2kπ being
true for some t ∈ R and k ∈ Z, where the superscript means the nth iterated function. In
Section 3 we apply this function to a special invariant definite integral through a theorem
on a change of variable. This allows us to say that the area under the graph of some positive
continuous function between R̃m (t1) and R̃m (t2) is always the same for every m ∈ N. This
is our substitute for the invariant measure.

We hope that this approach will captivate the attention of nonmathematicians as well as
advanced high-school students interested in mathematics. Anyway, it is a nice example of
simple calculus techniques used to solve a purely geometrical problem.
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2 Preparation

Let Eo and Ei be two ellipses with Ei inside Eo, see Figure 1. Take an arbitrary point
A ∈ Eo. Then there exist two tangents to Ei from A. Choose the one that is on the right-
hand side relative to A and denote the other intersection point of this tangent with Eo by
R(A). This defines the map R : Eo → Eo. Similarly, we can define the map L : Eo → Eo
by choosing the other tangent. Then a point A has the n-Poncelet property if and only if
Rn(A) = A. Let X A be the intersection point between the line R(A)A and Ei, and let YA

be the intersection point between the line L(A)A and Ei. Define ρR(A) := |AX A| and
ρL(A) := |AYA|, where | · | means length of a segment.

Theorem 2. Let Eo and Ei be two ellipses with Ei inside Eo. There exist a map ϕ : R → Eo
and a function R̃ : R → R such that ϕ : [0, 2π) → Eo is bijective,

R ◦ ϕ ≡ ϕ ◦ R̃, (1)

ϕ(t+2kπ) = ϕ(t) and R̃(t+2kπ) = R̃(t)+2kπ for every k ∈ Z and t ∈ R. Furthermore,
R̃ is continuously differentiable and

R̃′(t) = (ρL ◦ R ◦ ϕ) (t)

(ρR ◦ ϕ) (t)
. (2)

Proof. Take an orthogonal coordinate system (x, y) with axes parallel to the axes of sym-
metry of Eo and with the origin at the center of this ellipse. Let ϕ : R → Eo be the map
ϕ(t) := (a cos t, b sin t) where a and b are the semi major and minor axes of Eo. Then ϕ
restricted to [0, 2π) is bijective and has the required periodicity property.

Define the real function R̃ : R → R by

R̃(t) := min {T : T > t, ϕ(T ) = (R ◦ ϕ) (t)} .

Then (1) follows immediately from this definition and since ϕ has the period 2π , R̃ has
the desired property. Note also that R̃ is a strictly increasing function, due to the assertion
T > t .

Define a bijective map � : R2 → R
2 by �(x, y) := (x/a, y/b). This linear transformation

maps Eo to a circle Ko with radius equal to one while � (Ei) is also an ellipse inside Ko.
The idea is to work with Ko instead of Eo by defining maps similar to ϕ and R, namely
ϕ(t) := (� ◦ ϕ) (t) = (cos t, sin t) and

R(t) :=
Ä
ϕ ◦ R̃

ä
(t) =

Ä
cos R̃(t), sin R̃(t)

ä
. (3)

It is clear that in the fraction (2) both functions are continuous. Therefore, (2) remains to
be proven.

We advise the reader to consult Figure 2. Choose t ∈ R. Take an arbitrary small ε > 0 and

let |h| < ε. With this we assure that
∣∣∣R̃(t + h) − R̃(t)

∣∣∣ is small enough. By (3) we have

∣∣R(t + h), R(t)
∣∣ = 2 sin

∣∣∣∣∣
R̃(t + h) − R̃(t)

2

∣∣∣∣∣, |ϕ(t), ϕ(t + h)| = 2 sin

∣∣∣∣h2
∣∣∣∣.
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Figure 2 Elements in the proof of Theorem 2.

Let Xt1,t2 be the intersection point between the lines ϕ (t1) R (t1) and ϕ (t2) R (t2).

Assume also h �= 0. Since a triangle 	(
R(t + h), Xt,t+h, R(t)

)
is similar to a triangle

	(
ϕ(t), Xt,t+h, ϕ(t + h)

)
by the inscribed angle theorem, it follows

∣∣R(t + h), R(t)
∣∣

|ϕ(t), ϕ(t + h)| =
∣∣R(t), Xt,t+h

∣∣∣∣Xt,t+h, ϕ(t + h)
∣∣ .

Using the inequalities sin x ≤ x and sin x ≥ x(1 − x2/6) for x ≥ 0 we get
∣∣∣∣∣
R̃(t + h) − R̃(t)

h

∣∣∣∣∣ ≥
Ç

1 − h2

24

å ∣∣R(t), Xt,t+h
∣∣∣∣Xt,t+h, ϕ(t + h)
∣∣ ,

∣∣∣∣∣
R̃(t + h) − R̃(t)

h

∣∣∣∣∣ ≤
Ñ

1 −
Ä
R̃(t + h) − R̃(t)

ä2
24

é−1 ∣∣R(t), Xt,t+h
∣∣∣∣Xt,t+h, ϕ(t + h)
∣∣ .

Since R̃ is an increasing function, we can delete absolute values from the latter inequalities
to obtain

R̃′(t) = lim
h→0

R̃(t + h) − R̃(t)

h
= lim

h→0

∣∣R(t), Xt,t+h
∣∣∣∣Xt,t+h, ϕ(t + h)
∣∣ =

∣∣R(t), Xt
∣∣

|Xt , ϕ(t)|

where Xt is the intersection point between ϕ (t) R (t) and the ellipse � (Ei), unique by
construction of the map R. It is easy to deduce that � maps lines to lines and preserves
ratios of distances between collinear points. Because R(t), Xt and ϕ(t) are collinear points,
so are

(
�−1 ◦ R

)
(t) = (R ◦ ϕ)(t), �−1 (Xt ) = Xϕ(t) and

(
�−1 ◦ ϕ

)
(t) = ϕ(t), and

∣∣R(t), Xt
∣∣

|Xt , ϕ(t)| =
∣∣(R ◦ ϕ)(t), Xϕ(t)

∣∣∣∣Xϕ(t), ϕ(t)
∣∣ = ρL (R(ϕ(t)))

ρR (ϕ(t))
.

The proof of Theorem 2 is thus complete. �
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Observe that ϕ (t1) = ϕ (t2) implies t1 = t2 + 2kπ for some k ∈ Z. For n ∈ N0 we have
Rn ◦ ϕ ≡ ϕ ◦ R̃n due to the equation (1). By definition, the point ϕ(t) has the n-Poncelet
property if and only if (Rn ◦ ϕ) (t) = ϕ(t). Then we deduce the following important fact:
The existence of a point on Eo with the n-Poncelet property is equivalent to the existence
of t ∈ R and k ∈ Z with R̃n (t) = t + 2kπ . In this case such a point is ϕ(t).

3 Proof of Poncelet’s closure theorem

Here we invoke a theorem on a change of variable in the definite integral: Assume that
f (t) is a continuous function on [a, b], g(t) is a continuously differentiable function on
[A, B] and g ([A, B]) = [a, b] such that a = g(A) and b = g(B). Then

∫ b

a
f (t)dt =

∫ B

A
( f ◦ g) (t)g′(t)dt . (4)

Take k ∈ N and t1, t2 ∈ R with t1 < t2. Additionally, define R̃0(t) = t . Since R̃ is a
strictly increasing continuously differentiable function, it has the required properties for
being g(t) in (4). Taking f (t) = 1/ρR(ϕ(t)) and A = R̃k−1 (t1), B = R̃k−1 (t2), we
obtain ∫ R̃k(t2)

R̃k(t1)

dt

ρR(ϕ(t))
=

∫ R̃k−1(t2)

R̃k−1(t1)

ρL (R(ϕ(t)))

ρR (R(ϕ(t)))

dt

ρR(ϕ(t))

by using (4) together with (1) and (2). Continuing this process gives

∫ R̃k(t2)

R̃k(t1)

dt

ρR(ϕ(t))
=

∫ t2

t1

ρL (R(ϕ(t)))

ρR (R(ϕ(t)))
· · · ρL

(
Rk(ϕ(t))

)
ρR

(
Rk(ϕ(t))

) dt

ρR(ϕ(t))
. (5)

Take a linear map � which maps Ei into a circle Ki. This map is similar to that in the proof
of Theorem 2 except now taking the coordinate system in accordance with the inner ellipse
Ei. Since � (Eo) is also an ellipse, it is sufficient to prove Poncelet’s closure theorem in
cases where the inner ellipse is a circle. But then ρR ≡ ρL and (5) simplifies to

∫ R̃k(t2)

R̃k(t1)

dt

ρR(ϕ(t))
=

∫ t2

t1

dt

ρR(ϕ(t))
. (6)

This formula justifies the name invariant integral and the integrand function is mentioned
at the end of the introduction.

In order to prove Theorem 1, let ϕ (t1) be a point with the n-Poncelet property and take an
arbitrary t2 > t1. We would like to show that ϕ (t2) has the n-Poncelet property. By (6) we
have

∫ t2

t1

dt

ρR(ϕ(t))
=

∫ R̃n(t2)

t1+2kπ

dt

ρR(ϕ(t))

=
∫ R̃n(t2)−2kπ

t1

dt

ρR(ϕ(t))
=

∫ t2

t1

+
∫ R̃n(t2)−2kπ

t2

dt

ρR(ϕ(t))
.
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The second equality follows due to the fact that 1/ρR (ϕ(t)) is a periodic function with the
period 2π . We obtain ∫ R̃n(t2)−2kπ

t2

dt

ρR(ϕ(t))
= 0.

Since the integrand is positive, the boundary values of integration must be equal by the
mean value theorem for definite integrals. It follows t2 = R̃n(t2)−2kπ and the point ϕ(t2)
also has the n-Poncelet property.
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