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1 Introduction

Regular spatial n-gons are understood to be nonplanar n-gons in E3 that are equilateral

and equiangular, i.e., they have sides of equal length and equal angles between consecu-

tive sides. Evidently, the second property implies equal length of the diagonals between a

vertex and the next but one. As n increases, it rapidly becomes more difficult to maintain

an overview of these n-gons.

The simplest case is that of nD4. In Figure 1, it is easy to see that for each angle ˛ < 90ı

there exists a regular spatial quadrangle: by rotating one subtriangle of the rhombus (left)

around the diagonal of length q, we can obtain q for the length of the other diagonal and

thus the four equal angles ˛ (right).

.

Ein n-Eck heisst hier regulär, wenn es lauter gleich lange Seiten und gleiche Winkel

zwischen allen Nachbarseiten hat. Während sich die Klassifikation von regulären n-

Ecken in der Ebene noch sehr einfach darstellt, ist die Situation in drei Dimensionen

ungleich komplexer. Die vorliegende Arbeit gibt einen Überblick über alle regulären

räumlichen Hexagone, d.h. die nicht-planaren regulären Sechsecke im dreidimensiona-

len euklidischen Raum. Basierend auf Symmetrien ergeben sich sechs Klassen solcher

Hexagone, welche elementargeometrisch auf viele Eigenschaften hin untersucht wer-

den. Eine Koordinatendarstellung ermöglicht die Berechnung der Diagonalen, die dann

ihrerseits erlauben, die Mannigfaltigkeit in spezieller Form darzustellen. Zum Schluss

werden ohne Beweis noch weitere Eigenschaften von Hexagonen genannt. Ergänzend

finden sich unter [8] Animationen und zusätzliche Figuren zu verschiedenen Aspekten

dieser Arbeit.
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Figure 1: Generation of a regular spatial quadrangle (˛ <90ı).

The next case, n D 5, yields the astonishing result that no regular spatial pentagon exists.

This has been reported or proved by various authors, independent of each other [1, 2, 10,

12]. For a short and elegant proof, see [11], and for more historical details, the reader is

referred to the introduction in [9].

With n D 6, we arrive at the subject of this article: What do regular spatial hexagons

look like? The six-membered ring of cyclohexane, which has an angle ˛ D arccos.� 1
3
/

approximately equal to 109:5ı, has been examined for a long time in stereochemistry.

Detailed mathematical studies of cyclohexane, based on distance geometry, can be found

in [3, 13].

Concerning regular spatial hexagons of any possible angle ˛, coordinates are given in

[6]; they have been generated from the hexagon’s net (see Figure 3 below) and consist of

trigonometric terms. Moreover, aspects of symmetry are addressed in [14] and in some

chemically motivated approaches (see [4]).

In this article, we show that the set of all regular spatial hexagons can be subdivided into six

classes, the characteristic of each class being a common symmetry group of the hexagons

contained therein. Regarding this classification, and by using elementary geometry, we

examine various structural properties and calculate different determining parameters. The

hexagons are also described by coordinates, which enables the computation of the diag-

onals. Finally, we summarize by means of a specific representation and mention some

further properties, but without underlying proofs.

It should be added that, based on different definitions of regularity, also n-gons in higher-

dimensional Euclidean spaces have been the subject of investigations, with particular re-

gard to their existence; see [5, 7, 9] and the references therein. The general results of these

studies, however, have no impact on this article.

The reader is also referred to a series of animations and figures that, in addition, graphically

illustrate results of this paper [8].

2 Preliminaries

In the following, regular spatial hexagons are called hexagons for short. Since the prob-

lems we discuss are independent of similarity, we restrict ourselves to hexagons with side

length 1. Intersecting sides are permitted; however, unless stated otherwise, coinciding

vertices are not.
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In a hexagon with angle ˛, we use concepts and notations, which are shown in Figure 2.

The consecutive vertices are denoted by v1, v2, . . . , v6. The common length q of the six

diagonals connecting a vertex with the next but one is given by ˛ as follows:

q D 2 sin
˛

2
: (1)

Apart from the (secondary) diagonals q, there are the three (main) diagonals x, y, and

z between opposite vertices. In general, they differ in length and we write x D v1v4,

y D v2v5, and z D v3v6. In the following, when referring to q, x, y, or z, we always

mean either the corresponding line segment or its length depending on the context.

Of course, the diagonals x, y, and z are interchangeable. For a given q, one, three, or

even six different triples (x; y; z) determine congruent hexagons depending on whether

all three, exactly two, or none of its elements are equal, respectively. Thus, a result about

diagonals x, y, and z remains true when these are accordingly permuted.

Further concepts are useful: The triangle v1v3v5 of a hexagon is equilateral with side q

and we call it a q-triangle. Each of the attached isosceles triangles v1v2v3, v3v4v5, and

v5v6v1 is rotated outwards around its base q into the plane of the q-triangle. The resulting

planar figure with the new vertices bv2, bv4, and bv6 and angles ˛ and b̨, as shown in Figure

3 (in the plane of the paper), is said to be the net of the hexagon. Clearly, there is a second

q-triangle v2v4v6 with a congruent net.
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Figure 2: Notations for a hexagon.
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Figure 3: Net of a hexagon.

By means of the net, we prove the following:

Theorem 1. A hexagon with angle ˛ exists if and only if 0ı <˛ <120ı.

Proof. Evidently, we have 0ı < ˛. The angle ˛ of the hexagon at vertices v1, v3, and v5

is compared with the corresponding angle b̨ of the net. By applying twice the inequality

for spherical triangles, it follows that ˛ <b̨ (for b̨ at v1, for instance, consider the central

projections of the triangles v2v3v5 and v2v5v6 from v1 onto the unit sphere with center

v1). The angle sum of the net hexagon is now 3˛ C 3b̨ D 720ı, and therefore that of the

hexagon becomes smaller than 720ı, which implies ˛ < 120ı.

Conversely, if 0ı < ˛ < 120ı, then the side p of the equilateral triangle bv2bv4bv6 of the

net is larger than q. Consider a rotation of each of the outer isosceles triangles v1bv2v3,
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v3bv4v5, and v5bv6v1 around its base q with the same angle into the same half-space. With

an increasing rotation angle, p becomes smaller and at 90ı it is 1
2
q. Hence, in between

there exists a q-triangle v2v4v6 of a hexagon with angle ˛. �

From (1) and Theorem 1 it follows that a hexagon exists if and only if

0 < q <
p

3: (2)

This range of q is in the sequel always tacitly presumed. Hexagons, as generated in the

proof of Theorem 1, have a relatively high symmetry. In general, then, what are the sym-

metry properties of hexagons? We answer this question in the next two sections. (In a

modified version, the method used can be applied to any finite set of points in E3; see [13].)

3 Structure of symmetry groups

Let � be a permutation of the vertices v1, v2, . . . , v6 of a hexagon that is length-preserving,

i.e., vivj D �.vi /�.vj / .1 � i < j � 6/, and ring-preserving, i.e., if vi vj is a side, then

�.vi /�.vj / is a side as well. We refer to such a vertex permutation � as a vertometry of

the hexagon.

A vertometry � is associated with a symmetry: As is well known, an isometry in space

(length-preserving mapping of E3 onto itself) is already uniquely determined by four

points in general position and their images. By definition, a hexagon is nonplanar, so

general position is valid for at least four of its vertices. Since � is length-preserving, it

determines such an isometry, which is the same independently of the four vertices it is

based on. This isometry is denoted by s.�/, and since � is ring-preserving, s.�/ will be a

symmetry of the hexagon. Clearly, s.�/ maps q onto q and permutes x, y, and z.

The vertometries of a hexagon form a group V , called the vertometry group, which is

isomorphic to the symmetry group S ; the isomorphism is given by � 7! s.�/. Note that

the vertometry group V gives the abstract group of a hexagon. However, as will be seen in

the next section, V can be isomorphic to different symmetry groups S (concrete groups).

The following vertex permutations, all being ring-preserving, will be used to generate

vertometry groups (permutations are written in cycle notation):

�1 D .v1v4/.v2v5/.v3v6/; �2 D .v1v4/.v2v3/.v5v6/;

� D .v1v2v3v4v5v6/:
(3)

Since �1 maps each diagonal x, y, and z onto itself, it is length-preserving and represents

a vertometry of any hexagon, and thus s.�1/ is always a symmetry.

In other words, every hexagon is symmetric, or more precisely:

Theorem 2. The symmetry group S of a hexagon is isomorphic to the dihedral group D6

.order 12/, the Klein group K4, or the cyclic group Z2, depending on whether all three,

exactly two, or none of the diagonals x, y, and z are equal, respectively.
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Proof. Due to the isomorphism S Š V , it suffices to examine the vertometry group V .

A maximal number of vertometries is obtained if x, y, and z are arbitrarily permutable,

i.e., if x D y D z. In this case, the vertometry group is generated by � and �2 from (3),

and it follows that V Š D6 (compare with a regular planar hexagon and its symmetries in

E2, whose restrictions to the vertex set also lead to D6).

Next, let x ¤ y D z. Each vertometry must then preserve the diagonal x, i.e., it must

contain subcycles .v1/.v4/ or .v1v4/. The resulting vertometry group is generated by �1

and �2 from (3), and we have V D ¹"; �1; �2; �3º with �3 D �1�2 (" is the identity).

Since all vertometries are involutions, it follows that V Š K4.

The last case, where x; y; z are pairwise distinct, evidently yields V D¹";�1ºŠZ2. �

Remarks.

a. The group structure of V (and thus of S) also results from the group homomorphism

that assigns to each vertometry � the induced permutation of the diagonals x, y, and

z. The resulting group is the symmetric permutation group S3, S2, or S1, depending

again on whether all three, exactly two, or none of the diagonals x, y, and z are equal,

respectively. In each case, the homomorphism has kernel ¹"; �1º, which implies a

direct product: D6 Š Z2�S3, K4 Š Z2�S2, and Z2 Š Z2�S1.

b. We emphasize that Z2 � K4 � D6.

4 Symmetry groups

Having established the possible structures of the symmetry groups, we examine the par-

ticular types of contained symmetries. If a symmetry is involutional, it must be one of

three types, which we denote by names that are used in chemistry: inversion (point reflec-

tion), 180ı-rotation (line reflection), or reflection (plane reflection). In the following, by a

rotation (without specified angle) we will always mean a 180ı-rotation.

Consider s.�1/ with �1 from (3), the symmetry of every hexagon, which is involutional

and thus one of the three types. We call s.�1/ the prime symmetry, and it holds the follow-

ing:

Theorem 3. The prime symmetry s.�1/ of a hexagon is an inversion or reflection if all

three diagonals x, y, and z are equal; otherwise it is a rotation.

Proof. First, we show that if x D y D z, then s.�1/ is an inversion or reflection. Assume

that s.�1/ is a rotation. Since the cycle � from (3) of the corresponding vertometry group

V satisfies �1 D �3, the symmetry s.�/ must be a 60ı-rotation. But this would imply a

planar hexagon.

Conversely, we show that if s.�1/ is an inversion or reflection, then x Dy Dz. Consider the

quadrangles R1 D v1v2v4v5, R2 D v2v3v5v6, and R3 D v3v4v6v1. If the prime symmetry

s.�1/ is an inversion, then these quadrangles are parallelograms with sides 1 and q. If

s.�1/ is a reflection, they are isosceles trapezoids with lateral side q < 1 and diagonal 1

(lateral side 1 and diagonal q would lead to contradictions). In both cases, it follows from

a congruence theorem that R1 and R2 with common y, R2 and R3 with common z, and
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R3 and R1 with common x are congruent and thus x D y D z. Furthermore, R1, R2, and

R3 are rectangles.

Hence, if at least two of the diagonals x, y, and z are distinct, s.�1/ must be a rotation. �

To obtain a general view of all symmetry groups S , we distinguish the three cases accord-

ing to Theorem 2. The resulting hexagons are shown in Figures 4–7 below together with

their symmetry elements, i.e., inversion points, rotation axes, and (except in Figure 4) re-

flection planes. The ranges of q for which corresponding hexagons are defined (indicated

in parentheses in the captions of the figures) could be determined geometrically, but they

are also part of computations below.

Case 1. x Dy Dz. By Theorem 3, the prime symmetry s.�1/ is an inversion or reflection

and it immediately follows:

1.1. If s.�1/ is an inversion, we obtain a hexagon, as shown in Figure 4a. Its convex hull

forms a triangular antiprism. The symmetry group S is generated by the roto-reflection

s.�/ with angle 60ı and the rotation s.�2/. We call this hexagon a crown.

A crown already appeared in the proof of Theorem 1. For the appropriate structure of

cyclohexane in chemistry, the concept of a chair is used instead of a crown.

1.2. If s.�1/ is a reflection, we get a hexagon, as shown in Figure 4b. Its convex hull forms

a triangular prism. The symmetry group S is here generated by the roto-reflection s.�/

with angle 120ı and the rotation s.�2/. This hexagon is said to be a star.
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x
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z
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v3

v4

v5

v6

x

y

z

a. crown (any q). b. star (q < 1).

Figure 4: Hexagons with x D y D z.

Case 2. x ¤ y D z. By Theorem 3, the prime symmetry s.�1/ is a rotation. Consider

the corresponding vertometry group V D ¹"; �1; �2; �3º with �1 and �2 from (3), and

�3 D .v1/.v4/.v2v6/.v3v5/. The corresponding symmetries are involutional and we have

s.�3/ D s.�1/s.�2/.

2.1. If s.�2/ is a reflection, then s.�3/ is also a reflection. Indeed, s.�3/ is orientation-

reversing and an inversion can be excluded because it has only one fixed point. The so-

defined symmetry group S leads to a hexagon (with or without intersecting sides), as



Regular spatial hexagons 7

shown in Figure 5. The rotation axis is the intersection line of two perpendicular reflection

planes. Such a hexagon is called a boat.

v1

v2

v3

v4

v5
v6

x

y

z

v1

v2

v3

v4

v5
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z

a. boat (q < 1). b. boat (q > 1).

Figure 5: Hexagons with x ¤ y D z.

2.2. If s.�2/ is an inversion, then s.�3/ is a reflection. Again, s.�3/ is orientation-reversing

and no second inversion exists. The symmetry group S yields a hexagon, as shown in

Figure 6a. The rotation axis perpendicularly pierces the reflection plane in the inversion

point. This hexagon is called a cross.

2.3. If s.�2/ is a rotation, then s.�3/ is also a rotation. This follows because s.�3/ is

orientation-preserving. Here, S determines a hexagon, as shown in Figure 6b. The three

pairwise perpendicular rotation axes intersect each other at a common point. This hexagon

is said to be a twist.

Note that the names boat and twist are used for the appropriate structures of cyclohexane

in chemistry.
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v4
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v6

x
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y

v1

v2

v3

v4

v5

v6

x

y

z

a. cross (q < 1). b. twist (q > 1).

Figure 6: Other hexagons with x ¤ y D z.

Case 3. x, y, and z are pairwise distinct. Again by Theorem 3, the prime symmetry s.�1/

is a rotation. Evidently, S defines a hexagon with one rotation axis, as shown in Figure 7.

Because of the lowest symmetry, we call this hexagon a low.

Summarizing, we have six symmetry classes:



F. Siegerist and K. Wirth 8

v1

v2

v3

v4

v5
v6

x

y

z

v1

v2

v3

v4

v5

v6

x

y

z

a. low (q < 1). b. low (q > 1).

Figure 7: Hexagons with pairwise distinct x, y, and z.

Theorem 4. A hexagon where all three diagonals x, y, and z are equal is a crown or

star; if exactly two of them are equal, the hexagon is a boat, cross, or twist; and if they are

pairwise distinct, it is a low.

Remarks.

a. The characterizing symmetry group S of each class can be indicated by using

Schoenflies symbols, which are common in chemistry: crown D3d, star D3h, boat

C2v, cross C2h, twist D2, and low C2.

b. The lows and twists are chiral, i.e., each of them cannot be brought to coincide

with its mirror image by a motion (no corresponding orientation-preserving isometry

exists). All the other hexagons are achiral.

The crowns and stars are uniquely determined (up to congruence) by the parameter q.

Indeed, for a fixed q (fixed angle ˛), the convex hull of a crown or star is a convex poly-

hedron with rigid boundary polygons, and Cauchy’s rigidity theorem implies that it is not

continuously deformable. For that reason, crowns and stars are said to be rigid hexagons.

The set of the boats, crosses, twists, and lows is determined by two parameters, as for

instance q and x. This follows because the prime symmetry is a rotation with an axis

being perpendicular to the diagonals x, y, and z: Initially, we have 7 degrees of freedom,

namely 1 for x D v1v4, 3 for the vertex v2, and 3 for v3. Again taking into account the

prime symmetry, there are the 5 constraints v1v2 D v2v3 D v3v4 D 1 and v1v3 D
v2v4 D v3v5. This leaves the parameters q and x, and for a fixed q, as can be seen below,

x is continuously variable. Therefore, boats, crosses, twists, and lows are called flexible

hexagons.

At this point, we make a short excursion to hexagons with coinciding vertices: Since q > 0,

coinciding vertices can only occur if at least one of the diagonals x, y, or z equals 0.

This requires that every triangle of consecutive vertices be equilateral or, equivalently, that

q D 1. Furthermore, it follows that coinciding vertices are always double vertices.

Consider the Figures 4–7: The symmetry class of crowns obviously contains a hexagon

with q D 1. As regards the other classes, q D 1 stands for limiting cases with at least

one double vertex. For q ! 1 one obtains two planar figures, from the stars an equilateral
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triangle with side 1 (three double vertices) and from the crosses and twists a rhombus with

side 1 and a diagonal 1 (two double vertices). The boats result in what we call the penta-

boat (Figure 8a). From the lows we generally get penta-lows (Figure 8b) and by special

limiting processes again the penta-boat or rhombus. Note that all these limiting cases also

follow from the formulas for the diagonals x, y, and z in Theorems 8, 12, and 14 below.

Additionally, there exist tetras (Figure 8c); however, these are not limiting cases of other

hexagons.

It is easily seen that, apart from the hexagons in Figure 8, further (regular spatial) hexagons

with double vertices do not exist. Of course, the penta-boat and the boats have the same

symmetry group, as well as the penta-lows and lows. The symmetry group of tetras is the

same as that of boats, but s.�1/ is a reflection whereas in boats it is a rotation.

v3
v2

v1=v4

v6

v5

z

y
v3

v2

v1=v4

v6

v5

z

y

v3

v2=v5

v1=v4

v6
z

a. the penta-boat (y Dz). b. penta-low. c. tetra.

Figure 8: Hexagons with double vertices (q D 1).

5 Some properties

We return to hexagons without double vertices. In the following, contained tetrahedra of

a hexagon are understood to be those with hexagon vertices. The first theorem expresses

that the lows are in some way general hexagons:

Theorem 5. A hexagon is a low if and only if none of the contained tetrahedra are degen-

erate.

Proof. We show that a contained degenerate tetrahedron would lead to symmetries in ad-

dition to those of a low. Without loss of generality, it suffices to examine a tetrahedron

with four, with three, and with two consecutive vertices: T1 D v1v2v3v4, T2 D v1v3v4v5,

and T3 D v2v3v5v6.

Assume that T1 is degenerate. Then, from the prime symmetry (a rotation) it follows that

T1 and T1
0 D v4v5v6v1 are congruent quadrangles, either isosceles trapezoids with the

common base x or parallelograms with the common diagonal x. Both imply a symmetry

plane containing x.

Assume that T2 is degenerate. Again, as a consequence of the prime symmetry, we have

congruent quadrangles T2 and T2
0 D v4v6v1v2, which here are kites with the common

diagonal x. This implies a further symmetry axis containing x.
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A degenerate T3 is a parallelogram with diagonals y and z or an isosceles trapezoid with

bases y and z. Consider the mid-perpendicular planes of v2v6 and v3v5. The vertices v1

and v4 must lie on both planes. In the case of the parallelogram, the planes are parallel and

must therefore coincide and we would have a symmetry plane. In the case of the isosceles

trapezoid, the planes must coincide again; otherwise it is v1v2 D v1v5 and thus q D 1.

Once more, we would have a symmetry plane, provided that the lateral sides are q (in a

trapezoid with diagonals q coinciding planes are impossible).

Conversely, it is seen from Figures 4–6 that the symmetry properties of hexagons different

from lows lead to contained degenerate tetrahedra. �

The next theorem confirms what is to be expected:

Theorem 6. A hexagon has intersecting sides if and only if it is a star, a boat with q < 1,

or a cross.

Proof. Intersecting sides result in a degenerate contained tetrahedron. Hence, by Theorem

5, lows with intersecting sides can be excluded. This also applies to twists, which can

be seen as follows: For intersecting sides it is necessary that three consecutive sides or

two opposite sides lie in a plane. It is easy to check that both are impossible; just take into

account that the triangles v1v2v6 and v4v5v3 in Figure 6b lie in two different planes, which

intersect in the symmetry axis containing x. The rest of the proof follows by inspecting

the remaining hexagons in Figures 4, 5, and 6a. �

The hexagons different from lows and twists contain rectangles, which are involved in the

following:

Theorem 7. In a crown .with q ¤ 1/ and boat or in a star and cross, consider one of

the two vertices that do not belong to a contained rectangle. If this vertex and its adjacent

sides are reflected across the rectangle plane, the crown becomes a boat and the star a

cross, and conversely.

v1

v2

v3

v4

v5

v6

v
′

1

v1

v2

v3

v4

v5

v6

v
′

1

a. crown and boat. b. star and cross.

Figure 9: Related hexagons.
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Proof. We consider the tinted rectangles in Figure 9. Let v0
1 be the point obtained by

reflecting v1 at the rectangle plane. Since a reflection is length-preserving, it is clear by

inspection that the vertices v1, v2, . . . , v6 form a crown exactly if v0
1, v2, . . . , v6 form a

boat, and analogously for a star and a cross. �

Remark. For q D 1, we have a corresponding relation between the crown and the penta-

boat. The sides of both hexagons are edges of the same octahedron.

Next, we look at the diagonals of the hexagons just discussed:

Theorem 8. The diagonals of hexagons different from twists and lows with y D z are

given by

crowns: any q ; x D y D z D
p

1 C q2I (4)

stars: q < 1; x D y D z D
p

1 � q2I (5)

boats: q ¤ 1; x D j1 � q2j; y D z D
p

1 C q2I (6)

crosses: q < 1; x D
p

1 C 2q2; y D z D
p

1 � q2: (7)

Proof. The ranges of q are evident for crowns (already used in the proof of Theorem 1)

and for stars. Theorem 7 implies that these ranges accordingly apply to boats (for q ¤ 1)

and to crosses. The diagonals x, y, and z are directly given by the Pythagorean theorem

with the exception of x for boats and crosses. For these, we must examine the quadrangle

v1v2v3v4, which is a trapezoid in boats (Figure 5) and a parallelogram in crosses (Figure

6a), so that x can be calculated by using Ptolemy’s theorem and the parallelogram law,

respectively. �

From now on, we primarily focus on flexible hexagons. Further, in the following the con-

cept of tetrahedron will also include degenerate cases.

Theorem 9. In a flexible hexagon, let T and T 0 be the two contained congruent tetrahedra

determined by consecutive hexagon’s vertices and a common edge d , which is a diagonal

x, y, or z. Then T is mapped onto T 0 by a rotation with axis containing d and angle '

where

cos ' D .d 2 � 1/2 C .q2 � 1/2 � 1�
.d C q/2 � 1

��
.d � q/2 � 1

� : (8)

Proof. Without loss of generality, we can consider d D x and thus T D v1v2v3v4 and

T 0 D v1v6v5v4, as shown in Figure 10. The composition of the rotational symmetry of

T (axis through the midpoints of x and v2v3) and the prime symmetry (also a rotation)

leaves v1 and v4 fixed and maps v2 7! v6 and v3 7! v5. Thus, this composition must be

the stated rotation. Formula (8) is obtained by calculating the dihedral angle ' at edge x

of the tetrahedron T � D v1v2v4v6. �

Remark. The rotation angle ' can be limited to 60ı � ' � 180ı. The lower bound

follows because v2v4v6 is a q-triangle with angle 60ı at v4, whereas 180ı for the upper

bound is evident. With 60ı we obtain the crosses and with 180ı the twists.
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ϕ
v1

v2

v3

v4

v5

v6

x

Figure 10: Congruent tetrahedra in a flexible hexagon related by a rotation.

Theorem 9 helps prove the following:

Theorem 10. A hexagon has a circumscribed sphere if and only if it is a rigid hexagon or

a boat.

Proof. The rigid hexagons obviously have a circumscribed sphere. It remains to show that

a flexible hexagon with a circumscribed sphere must be a boat: For at least two diagonals

d the tetrahedra T and T 0, as considered in Theorem 9, are nondegenerate; otherwise the

hexagon would be planar. Without loss of generality, we can assume that this is true for

d D y and for d D z. Let T and T 0 be the tetrahedra with common d D y. Since the

circumscribed sphere of the hexagon must coincide with those of T and T 0, it follows

from Theorem 9 that y is a diameter. Analogously, z is a diameter as well. Hence, y and z

are equal and bisect each other, so we have the rectangle of a boat (see Figure 5). �

We complete this section with an application:

Let us consider the special boat determined by the diagonals from (6) with q > 1 and

x D q. It follows that q D ˆ (golden ratio) and thus ˛ D 108ı. Further, consider the

rotation according to Theorem 9 with d D z and angle ' D 144ı (resulting from (8)).

Rotating the tetrahedron T D v6v1v2v3 not only with ', but also with 2', 3', and 4'

leads to 5 bundled boats, as shown in Figure 11a. It turns out that the 12 vertices form an

icosahedron with edge length 1. Simple counting yields 30 such boats with ˛ D 108ı in

total.

Moreover, by inspection, one finds that the icosahedron additionally contains 5 bundled

boats, as shown in Figure 11b, with the (exceptionally) larger side s D ˆ, q D 1 and thus

˛ D 36ı, and ' D 72ı. The total number of these boats is again 30.

By Theorem 7, the icosahedron also contains crowns, 10 with s D 1 and 10 with s D ˆ.

It is easily seen that stars or further boats and crowns do not exist. And from Theorem 10

it follows that any other regular spatial hexagon, where the vertices are the corners of the

icosahedron, can be excluded as well.

Of course, the mere number of overall 80 regular spatial hexagons can also be found with a

computer program that tests all
�

12
6

�
5Š=2 (D 55440) six-rings contained in a icosahedron.
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z

v2

v1

v6

v5

v4

v3

z

v2

v1

v6

v5

v4

v3

a. s D 1 and ˛ D 108ı. b. s D ˆ and ˛ D 36ı.

Figure 11: Five boats in an icosahedron with edge length 1.

6 Vertex coordinates

We now develop a coordinate representation for the vertices of hexagons. This facilitates

determining the diagonals of flexible hexagons and thus, in addition to Theorem 8, those

of twists and lows. From calculations we only give results. (To reproduce the computation,

it is advisable to use a computer algebra system.)

The existence of flexible hexagons is guaranteed as follows:

Theorem 11. A flexible hexagon with diagonals q and x exists if and only if

m1 � x �
²

M1 for q < 1

M2 for q > 1
with (9)

m1 D j1 � q2j; M1 D
p

1 C 2q2; M2 D 1
2

�p
3 q C

p
4 � q2

�
:

Proof. As a first step, we consider separately the contained tetrahedron T D v1v2v3v4.

For a fixed q, the edge x of T monotonically increases from a lower bound m1 to an upper

bound M1 by varying the dihedral angle at the opposite edge v2v3 from 0ı to 180ı. Since

0ı appears in a boat (see Figure 5) and 180ı in a cross (see Figure 6a), we obtain m1 from

(6) and M1 from (7).

As a second step, we include the vertices v5 and v6. Theorem 9 (with d D x) implies

that it suffices to ensure the existence of the vertex v6 or, equivalently, of the tetrahedron

T � D v1v2v4v6. For a fixed q, the possible edges x of the separately considered T � are

the result of varying again the dihedral angle at the opposite edge v2v6 from 0ı to 180ı,

and with the Pythagorean theorem we get the lower bound m2 D 1
2
j
p

3q �
p

4 � q2j and

the upper bound M2.

It is shown that m1 >m2, M1 <M2 for q <1, and M1 >M2 for q >1. Since the existence

of the hexagon is guaranteed exactly if both tetrahedra T and T � exist, we finally obtain

the necessary and sufficient condition from (9). �
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The upper bound M2 is involved in the twists:

Theorem 12. The diagonals of twists with y D z are given by

q > 1; x D 1
2

�p
3 q C

p
4 � q2

�
; y D z D

q
1 C 2q2 � q

p
3.4 � q2/: (10)

Proof. Consider a twist with x ¤ y D z (see Figure 6b). Due to the symmetry, the

tetrahedron T � D v1v2v4v6 is degenerate (it is a kite) with 180ı for the dihedral angle at

v2v6. From the proof of Theorem 11 it follows that the latter is true exactly if q > 1 and

x D M2 from (9). The diagonal y can be determined by a repeated use of the Pythagorean

theorem. Nevertheless, this derivation becomes rather cumbersome, and y is also obtained

by inserting x D M2 in Theorem 14 below. �

In the following two theorems, we refer to flexible hexagons with any diagonals q, x, y,

and z.

Theorem 13. Let x be from (9) and ' defined by (8) with d D x, then coordinates of the

vertices v1, v2, . . . , v6 of flexible hexagons are given by

v1;4 D .˙1
2
x; 0; 0/; v2;3 D .˙a; ˙b; c/;

v5;6 D .�a; � b cos ' � c sin '; � b sin ' C c cos '/ with
(11)

a D q2 � 1

2x
; b D 1

2x

p
x2 � .q2 � 1/2; c D 1

2

p
2q2 � x2 C 1:

Proof. The tetrahedron T D v1v2v3v4 with x from (9) is placed in a coordinate system

such that x lies on the first coordinate axis, and the axis of the rotational symmetry of T

on the third coordinate axis. One verifies that v1v2 D v2v3 D v3v4 D 1 and v1v3 D
v2v4 D q. Using Theorem 9 with d D x and an appropriate rotation matrix, we obtain the

remaining vertices v5 and v6. �

Remarks.

a. After substituting cos ' and sin ' by means of (8), the vertex coordinates are ex-

pressed with q and x by rational operations and square roots.

b. It is possible to limit ' to 60ı � j'j � 180ı (cf. Remark to Theorem 9). A positive

' leads then to diagonals with y � z and a negative ' to those with y � z.

c. For ' D 180ı, one obtains v5;6 D .�a; ˙b; �c/, which implies that the three sym-

metry axes of a twist are the axes of the chosen coordinate system.

d. Setting q D 1 gives the vertices of pentas.

e. Substituting b with �b would change the orientation of chiral hexagons (lows and

twists).

Corollary 13.1. The coordinates v1;4 and v2;3 from (11) can also be used in the case of

rigid hexagons. Then, the coordinates of crowns are given with q and x from (4) and the

remaining vertices v5;6 D .�a; �b; �c/, and those of stars with q and x from (5) and

v5;6 D .�a; ˙b; c/.
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Proof. This follows immediately in both cases by applying the prime symmetry. �

The coordinates of flexible hexagons now allow to calculate their diagonals. It should be

added that the diagonals can also be determined without coordinates, by using distance

geometry for instance (a tool that is applied in some stereochemical investigations).

Theorem 14. The diagonals of flexible hexagons are given by

q ¤ 1; x from (9); y D
r

f ˙ g

h
; z D

r
f � g

h
with (12)

f D �.q2 C 1/ x4 C 2.q4 C q2 C 1/ x2 C .q2 � 1/3;

g D 2q

q�
x4 � .q2 C 2/x2 C .q2 � 1/2

��
x2 � 2q2 � 1

��
x2 � .q2 � 1/2

�
;

h D .x C q C 1/.x C q � 1/.x � q C 1/.�x C q C 1/:

Proof. It remains to determine the diagonals y D v2v5 and z D v3v6 using the coordi-

nates from (11). �

Remarks.

a. Of course, pairwise distinct x, y, and z are the diagonals of lows. In the special cases

where exactly two diagonals are equal, (12) gives (up to permutations) the diagonals

from (6) of boats, from (7) of crosses, or from (10) of twists.

b. For q D1, one obtains the pentas.

Corollary 14.1. Among the diagonals x, y, and z of all hexagons with a fixed q .¤ 1/,

m1 from (9) of a boat is smallest, M1 of a cross for q < 1 and M2 of a twist for q > 1 are

largest.

Proof. For a fixed q ¤ 1, the diagonals from (4) and (5) of rigid hexagons are between

the extreme values from (9) of flexible hexagons. �

7 Summary and further properties

The derived results are now summarized by using a specific representation. To every

hexagon (whether it has double vertices or not) with diagonals x, y, and z, we assign

a point .x; y; z/ in E3, called a diagonal point. Figure 12 shows the diagonal points with

x � y � z (left) and with any x, y, and z (right) according to Theorem 14. There is

a one-to-one correspondence between the diagonal points on the left and the classes of

congruent hexagons.

Let us consider in more details the diagonal points on the left of Figure 12: The points

of flexible hexagons and the pentas form an area; its interior points represent lows and

penta-lows, and the points on the contour curves (without B , C , and D) boats, crosses,

twists, and the penta-boat. The rigid hexagons lead to a line segment for both crowns and
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y

Figure 12: Hexagons represented by diagonal points .x; y; z/.

stars. In addition, there are iso-q-curves, i.e., curves representing sets of hexagons with a

fixed q, especially pentas and tetras with q D 1. These curves show that for each given q

the rigid hexagons are isolated from the continuously connected flexible hexagons.

The points A, B , C , and D represent planar figures, which are limiting cases that do not

fall under our definition of hexagons. With q D 1, we have two planar figures, as already

mentioned at the end of Section 4, namely in A D .0; 0; 0/ a triangle with three double

vertices and in B D .
p

3; 0; 0/ a rhombus with two. Furthermore, with q D 0 we have in

C D .1; 1; 1/ a line segment between two triple vertices, and with q D
p

3 in D D .2; 2; 2/

the well-known regular planar hexagon.

Lastly, we consider on the right of Figure 12 a diagonal point P D.x; y; z/ that represents

a chiral hexagon H (low or twist). Of course, P also represents the mirror image H 0 of

H . Thus, a movement of P along the iso-q-line defines a continuous transformation of

H and also one of H 0. Moving P around the whole iso-q-line, the two transformations

map H 7! H and H 0 7! H 0 for q < 1, and H 7! H 0 and H 0 7! H for q > 1. This can be

seen as follows: On the iso-q-line there exist six diagonal points that represent congruent

hexagons if H is a low and three if it is a twist (due to permutations of x, y, and z).

Two such successive hexagons are in both transformations the mirror image of each other

exactly if a boat or cross (both achiral) is passed in between, which occurs six times for

q < 1 and three times for q > 1. Moreover, for a point P representing a chiral hexagon

H with q < 1 (i.e., a low), the mirror image H 0 can never be reached with a continuous

transformation defined by a closed path from P to P on the area limited to q <1.

Different aspects of this summary appear in the already mentioned animations in [8]. To

conclude, we give some further properties of hexagons (without double vertices), whose

proofs are left to the reader.
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Property 1. Assuming that q and x determine a hexagon, consider the four congruent

triangles with common side x, as shown in Figure 13. A hexagon can be generated by

rotations of the triangles around x until v2v3 D v5v6 D 1 and v2v6 D q.

This leads to a rigid hexagon if q and x satisfy (4) or (5) and the resulting congruent tetra-

hedra v1v2v3v4 and v1v6v5v4 are differently oriented, and it leads to a flexible hexagon

if q and x satisfy (9) and the tetrahedra are equally oriented or degenerate.

x

1 q

v1

v2 v3

v4

v5

v6

Figure 13

Property 2. Consider the net of a hexagon. By rotating all three outer triangles into

the same half-space, one can generate the hexagons with q < 1 and the crowns, i.e., the

diagonals x, y, and z are then in one half-space.

For q > 1, the lows and boats are obtained by rotations such that the smallest of the

diagonals x, y, and z comes to lie in one and the other two in the other half-space. In the

case of the twists, the largest diagonal remains in the net plane and the other two come to

lie in different half-spaces.

If d denotes the involved diagonal, then the rotation angle % is given by

cos % D 2d 2 � q2 � 2

q
p

3.4 � q2/
:

Property 3. For any two of the vectors
��!v1v4,

��!v3v6, and
��!v5v2 of a hexagon, the scalar

product is 1�q2.

The intermediate angle between two vectors becomes obtuse for q >1 and acute for q <1.

A right angle occurs only in the crown with q D1 .and in pentas/.

Property 4. The angle # .0ı � # � 90ı/ between the two different planes containing the

q-triangles of a hexagon assumes extreme values as follows:

# D 0ı in rigid hexagons and crosses;

# D 90ı in the boat with q D
q

3
2

, in the twist with q D 2

q
3
7

, and in one low for each

q in between.

Property 5. All six vertices of a hexagon are those of its convex hull.
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Property 6. A hexagon without intersecting sides is unknotted.

In the last two properties, we refer to regular spatial hexagons with any side length s but

diagonals that are still denoted by q, x, y, and z. These hexagons, similar to those with

s D 1, are named s-hexagons.

Property 7. Given any positive lengths x, y, and z. If at least two of these lengths are dis-

tinct, then they are the diagonals of exactly two incongruent s-hexagons similar to flexible

hexagons, one with q < s and another with q > s. If the three lengths are equal, they are

the diagonals of infinitely many incongruent s-hexagons similar to rigid hexagons.

Finally, we need a special type of planar hexagons, called p-hexagons. These are defined as

non-regular point-symmetric planar hexagons whose diagonals between opposite vertices

are perpendicular to two parallel diagonals.

Property 8. Consider an s-hexagon that is similar to a flexible hexagon different from

a cross. Its orthogonal projection in direction of the axis of the prime symmetry is a

p-hexagon .see Figure 14/. Conversely, each p-hexagon is the projection of such an s-

hexagon. The diagonals x, y, and z appear in the p-hexagon in true length.

The projected q-triangles are obtuse for q < s and acute for q > s, or, equivalently, the

prime symmetry axis pierces the q-triangle areas if and only if q > s.

In the case of an s-hexagon similar to a cross, one obtains a projection with two double

vertices.

x

y

z
z

y

x

Figure 14
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