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1 Introduction

In [1], the authors define a (complex) root of a polynomial to be unimodular if it lies on

the unit circle in the complex plane or is, equivalently, a complex number of the form

ei� for � 2 R. They then give a complete classification of the pairs .n; k/ for which

the polynomial zn C zk � 1 has a unimodular root. Moreover, they determine the exact

locations of the unimodular roots for each such pair .n; k/. We refer to their paper for an

explanation of the historical significance of the problem of finding roots of trinomials. To

describe their main theorem, we use the following notation. First, for two integers n and

.

Das Studium der Wurzeln von Polynomen reicht zurück bis in die Anfänge der Mathe-

matik. Im 19. Jahrhundert begann man speziell Trinome von hohem Grad zu betrach-

ten. 2014 untersuchten Brilleslyper und Schaubroeck komplexe Polynome der Form

zn C zk � 1 und formulierten Bedingungen an die ganzen Zahlen n und k, sodass das

Polynom unimodulare Wurzeln hat, d. h. Wurzeln auf dem komplexen Einheitskreis.

In der vorliegenden Arbeit verallgemeinern die Autoren die Theorie auf Polynome der

Form zn C zk � c, für c 2 Q. Sie finden notwendige und hinreichende Bedingungen

an n und k, sodass unimodulare Wurzeln existieren und beschrieben, wo diese dann

genau liegen. Die Analyse kommt dabei ohne den Schur–Cohn Algorithmus aus, der

normalerweise verwendet wird, um Wurzeln im respektive auf dem Einheitskreis zu

finden.
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k, we let gcd.n; k/ denote the greatest common divisor of n and k. Next, for a complex

number, z D rei� D r
�

cos.�/ C i sin.�/
�

, we denote the complex conjugate of z by

Nz D re�i� D r
�

cos.�/ � i sin.�/
�

. Finally, for a positive integer m, the set of mth roots

of unity, i.e., the set of complex numbers whose mth power is 1, is denoted by �m. Thus,

we have

�m D
°

e2�is=m j 0 � s � m � 1
±

:

Theorem 1.1 ([1], Theorem 2). Let n and k be integers such that 1 � k < n. Let g D

gcd.n; k/. The polynomial p.z/ D znCzk�1 has unimodular roots if and only if .nCk/=g

is divisible by 6. If the polynomial p does have unimodular roots, then p has exactly 2g

unimodular roots. The roots of p come in pairs .zm; zm/ where

zm D e�i=.3g/�g :

In this paper, we generalize Theorem 1.1 by considering any trinomial of the form p.z/ D

zn C zk � c where c 2 Q.

2 Statement of Main Theorem

We quickly see that the possible values for c are bounded quite tightly. In fact, if p has a

unimodular root, then jcj � 2. We prove this by first examining a general nth degree poly-

nomial. This would be useful if one wanted to extend this work in the direction indicated

in ([1], Problems for Investigation 2).

Lemma 2.1. If p.z/ D anzn C � � � C a1z � a0 2 CŒz� has a unimodular root, then

ja0j � janj C � � � C ja1j:

In particular, if n and k are integers such that 1 � k < n and such that zn C zk � c has a

unimodular root, then jcj � 2.

Proof. If ! is a unimodular root (so that j!j D 1), then the triangle inequality implies that

ja0j D jan!n C � � � C a1!j � janjj!jn C � � � C ja1jj!j � janj C � � � C ja1j: �

Within this reduced search radius there are only five values for c that allow for the existence

of unimodular roots for some pair .n; k/. Each of these values for c places a different

restriction on the quotient .n C k/= gcd.n; k/.

Theorem 2.2. Let n and k be integers such that 1 � k < n, let g D gcd.n; k/, and

let c 2 Q. If zn C zk � c has a unimodular root, then c 2 ¹0; ˙1; ˙2º. The necessary

and sufficient conditions on n and k for the existence of unimodular roots, as well as the

locations of the unimodular roots are given in the following table.
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c condition # unimodular roots

�2 .n C k/=g � 0 .mod 2/ g �2g n �g

�1 .n C k/=g � 0 .mod 3/ 2g e˙2�i=.3g/�g

0 n � k �2.n�k/ n �n�k

1 .n C k/=g � 0 .mod 6/ 2g e˙�i=.3g/�g

2 g �g

The proof of our main theorem closely follows that in the original paper, but with the extra

help of Niven’s theorem which classifies all rational angles whose cosine is also rational.

3 Proof of the Main Theorem

We begin by handling the simplest case, namely when c D 0.

Lemma 3.1. Let n and k be integers such that 1 � k < n. The polynomial p.z/ D znCzk

has n � k unimodular roots, namely the elements of �2.n�k/ that are not in �n�k .

Proof. Let p.z/ D zn C zk D 0 where 1 � k < n. If ! is a root of p, then factoring gives

!k.!n�k C 1/ D 0:

It follows that 0 is a root of p of multiplicity k, and that the other roots of k are the n � k

roots of zn�k C 1 D 0. For ! ¤ 0, we have !n�k D �1, and squaring gives !2.n�k/ D 1.

Thus, ! 2 �2.n�k/. However, the .n � k/th power of each of the elements in �n�k equals

1, not �1, and so the n�k distinct elements of �2.n�k/ n�n�k are the n�k nonzero roots

of p. �

Now, for c ¤ 0, we reduce to the situation where n and k are relatively prime. The

following lemma generalizes ([1], Lemma 2).

Lemma 3.2. Let n; k1; : : : ; ks be integers such that 1 � k1 < k2 < � � � < ks < n and let

g D gcd.n; k1; : : : ; ks/. The function � 7�! �g is a g-to-one and onto map from the set

of unimodular roots of p.z/ D zn C zk1 C � � � C zks � c 2 CŒz� to the set of unimodular

roots of q.z/ D zn=g C zk1=g C � � � C zks=g � c.

Proof. Assume that � is a unimodular root and that p.�/ D 0. We have

0 D p.�/ D q.�g/;

and therefore, �g is a unimodular root of q.

Conversely, assume that  is unimodular and that q./ D 0. Let ! be a gth root of any of

the g unimodular roots of  (guaranteed to exist by the fundamental theorem of algebra),

so that  D !g . We have,

0 D q./ D q.!g/ D p.!/:

Therefore, ! is a unimodular root of p. �
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Fig. 1. Points on the unit circle whose imaginary parts are the

negative of the imaginary part of ein� .

Let p.z/ D zn C zk � c with c 2 Q, and assume p.z/ has a unimodular root, ei� .

Substituting ei� into p.z/ gives ein� C eik� � c D 0. Rewriting ein� C eik� D c and

rearranging terms, we have

c D Œcos.n�/ C cos.k�/� C i Œsin.n�/ C sin.k�/�:

Equating the imaginary part with 0, we have sin.n�/ C sin.k�/ D 0.

This implies (see Figure 1) that either k� D �n� C 2m� for some m 2 Z, or that k� and

n� differ by an odd multiple of � . In the latter case, we would have 0 D cos.n�/Ccos.k�/.

In light of Lemma 3.1, we may assume that c ¤ 0. Thus, k� D �n� .mod 2�/.

It follows that

c D cos.n�/ C cos.k�/

D cos.n�/ C cos.�n�/

D 2 cos.n�/;

and so

n� � ˙ cos�1.c=2/ .mod 2�/:

Thus, there exist integers ˛ and ˇ such that

n� D ˙ cos�1.c=2/ C 2�˛

and

k� D � cos�1.c=2/ C 2�ˇ:

Solving both of these equations for � and equating gives

Œ˙ cos�1.c=2/ C 2�˛�=n D Œ� cos�1.c=2/ C 2�ˇ�=k:

Multiplying by nk gives ˙k cos�1.c=2/C2k�˛ D �n cos�1.c=2/C2n�ˇ. Rearranging,

we obtain

˙ cos�1.c=2/.n C k/ D 2�.nˇ � k˛/:
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Solving for n C k, we have (for c ¤ 2)

n C k D
2�

˙ cos�1.c=2/
.nˇ � k˛/; (1)

with nCk; nˇ � k˛ 2 Z. It follows that cos�1.c=2/ is a rational multiple of � . As c 2 Q,

this gives us the opportunity to employ Niven’s theorem.

Theorem 3.3 (Niven’s Theorem, [3]). The only pairs of the form .�; cos.�// where 0 �

� � � is a rational multiple of � and cos � is rational are:

.0; 1/;

�

�

3
;

1

2

�

;

�

2�

3
; �

1

2

�

;
��

2
; 0

�

; .�; �1/:

It follows that there are only five possible values for c=2, namely 0; ˙
1

2
; ˙1, and hence

we get the five possible values for c as stated in Theorem 2.2. Theorem 1.1 and Lemma

3.1 handle the cases where c D 1 and c D 0, respectively. We explore each of the three

remaining cases (c D �1; ˙2) separately.

If c D �1, then (1) implies that

n C k D ˙3.nˇ � k˛/; (2)

and hence n C k � 0 .mod 3/.

Lemma 3.4. Let n and k be relatively prime integers such that 1 � k < n. If n C k � 0

.mod 3/, then the unimodular roots of zn C zk C 1 are e˙2�i=3.

Proof. Since n and k are relatively prime and n C k � 0 .mod 3/, both n and k are

congruent to ˙1 .mod 3/. So there exist nonnegative integers s and t such that n D 3s˙1

and k D 3t � 1. We assume that n D 3s C 1 and k D 3t � 1, and the other case is similar.

We have

p.z/ D z3sC1 C z3t�1 C 1 D z3sz C z3t

�

1

z

�

C 1:

By direct calculation, we have p.e˙2�i=3/ D 0:

Now assume p
�

ei�
�

D 0. We will show that � D ˙2�
3

up to a multiple of 2� . Using

(2), where the assumption was that p had a unimodular root, we have two diophantine

equations in the variables ˛ and ˇ:

.�3k/˛ C .3n/ˇ D n C k; (3)

.3k/˛ C .�3n/ˇ D n C k: (4)

These have solutions since gcd.n; k/ D 1 implies that gcd.3n; 3k/ D 3, and we assumed

that nCk is divisible by 3. Since n D 3s C1 and k D 3t �1, we get that ˛ D s and ˇ D t

is a solution to (3) and ˛ D n � s and ˇ D k � t is a solution to (4). So the complete set

of integer solutions to (3) is

˛ D s C m � n; ˇ D t C m � k; (5)
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where m 2 Z. Similiarly, the complete set of integer solutions to (4) is

˛ D n � s � m � n; ˇ D k � t � m � k; (6)

where m 2 Z. Now adding the equations

n� D ˙
2�

3
C 2�˛

k� D �
2�

3
C 2�ˇ

and substituting n D 3s C 1 and k D 3t � 1 and solving for � gives

� D
2�

3
�

˛ C ˇ

s C t
: (7)

Substituting the possible values for ˛ and ˇ from (5) and (6) into (7) gives

� � ˙
2�

3
.mod 2�/: �

Combining Lemma 3.2 with Lemma 3.4, we obtain the result for c D �1 as stated in

Theorem 2.2.

If c D �2, then, by (1), we have

n C k D ˙2.nˇ � k˛/;

and hence n C k � 0 .mod 2/.

Lemma 3.5. Let n and k be relatively prime integers such that 1 � k < n and such that

n C k � 0 .mod 2/. The polynomial p.z/ D zn C zk C 2 has exactly one unimodular

root, namely �1.

Proof. If z is a unimodular root, then 2 D jzn C zk j � jznj C jzk j D jzjn C jzjk D 2.

As the triangle inequality only becomes an equality when the arguments of summands are

equal, it follows that zn D zk . In this case, we have 2zn D �2, and hence zn D �1.

Similarly, zk D �1. As n and k are relatively prime, the only solution to both equations is

z D �1. �

Combining Lemma 3.2 with Lemma 3.5, we get the conclusion of Theorem 2.2 for

c D �2.

Finally, if c D 2, we see immediately that 1 is a unimodular root of zn C zk � 2. Using the

same argument as in the proof of Lemma 3.5, we see that 1 is the only such unimodular

root. Combined with Lemma 3.2, we obtain the conclusion for c D 2 of Theorem 2:2.

This completes the proof of our main theorem.

Work of the first author with Luis Gonzalez in [2] has uncovered that a similar result holds

for the unimodular roots of p.z/ D zn � zk � c, for rational c.
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