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Polynomial fill-in puzzles or
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1 The problem

Theoretical computer science studies whether a program or more abstractly a Turing ma-

chine can decide whether a string formed from characters of a finite set †, also called a

word, belongs to some language (defined as any subset of †�, the set of all strings built

from characters in †). Complexity theory tries to figure out how the runtime of such a

computation scales with the size of the input word to be tested. It classifies languages as

those that can be decided in polynomial time (complexity class P) and those about which

.

Die Komplexitätstheorie zeigt, dass man Probleme, die man mit einem Computer lösen

will, nach dem Rechenaufwand in verschiedene, von der Computer-Hardware unab-

hängige Klassen einteilen kann. Für den Praktiker sind die Klassen P der effizient

lösbaren Problem und NP, die zusätzlich schwierig lösbare, aber effizient verifizierba-

re Probleme enthält, die Wichtigsten. Der Satz von Cook–Levin hat gezeigt, dass es in

der Klasse NP Probleme gibt, auf die jedes andere NP-Problem reduziert werden kann,

sie sind also die schwierigsten Probleme in dieser Klasse, sie werden NP-vollständig

genannt. Der Beweis verwendet eine Konstruktion, die etwas technisch und sehr spe-

ziell anmutet. In diesem Artikel wird gezeigt, dass sie ein Spezialfall eines allgemeiner

nützlichen Konzeptes ist, nämlich eines polynomiellen Ausfüllrätsels. Polynomielle

Ausfüllrätsel sind fast trivialerweise in der Klasse NP. Viele, wie zum Beispiel Sudo-

ku, sind einem breiten Publikum bekannt. Sie ermöglichen ein intuitiveres Verständnis

für diese grundlegenden Konzepte der Komplexitätstheorie.
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we only know how to verify membership of a word in a language in polynomial time (class

NP). Technically, the class NP consists of the languages decidable in polynomial time on a

nondeterministic Turing machine, we will return to this aspect later. There is an extensive

literature on complexity theory, [7] is a classic textbook on the subject.

Any problem that is to be solved by a computer can be reformulated as the task of accepting

or rejecting some string, usually consisting of a formal problem description and solution.

We are thus justified to use the terms language and problem interchangeably below and will

switch between these terminologies as we see fit. We will thus use phrases like: problems

in P have solution algorithms with runtime polynomial in the problem size n, the execution

time is O.nk/, where n is the input size.

The significance of the classes P and NP for the software engineer is that for problems in

P, efficient algorithms are often readily available in libraries or can easily be built. While

runtimeO.nk/ can still be too long for large n and especially for large k, the problem pales

in comparison to problems outside of P, where only algorithms with exponential runtime

are known at best. Outside of the class NP, not even verification of a solution is possible

in polynomial time, these problems are for all practical purposes so complex that one can

consider them unsolvable by computers.

The class NP contains all problems with solutions verifiable in polynomial time. This in-

cludes of course all problems in P, as their solution can be verified by solving the problem

in polynomial time and comparing to the proposed solution, i.e., P � NP. But NP also

contains many problems for which no polynomial time solution algorithm is known. In-

ternet security is based on the observation that it is hard to factor products of large prime

numbers, but very easy to verify a proposed factorization. This is a property many inter-

esting puzzles published in newspapers share: they are easy to verify, but hard to solve.

This, of course, is part of their appeal. The problems in NP n P are thus the software prac-

titioner’s nemesis: they are efficiently verifiable but one cannot write a scalable program

to solve them. Or in business terms: never promise an efficient and cheap solution of such

a problem to a customer, or he will be disappointed.

Problems in NP can be compared with respect to their difficulty. Returning to the termi-

nology of languages, we say a mapping f W †� ! †� is a polynomial reduction from

language A to language B , if w 2 A , f .w/ 2 B and if f .w/ is computable in time

polynomial in jwj. We denote the polynomial reduction as f W A �P B , it is a preorder on

NP problems. If language B can be decided in polynomial time, then so can language A:

just use the reduction f to convert w into f .w/, this takes polynomial time, then decide

whether f .w/ 2 B in polynomial time using the known program for B . We are thus jus-

tified to read A �P B as “A is polynomially easier to solve than B”. The most difficult

problems in NP with respect to this preorder are called NP-complete, every other problem

in NP can be reduced in polynomial time to one of these problems. And they certainly

scare the hell out of the programmer, as most probably no polynomial algorithm to solve

them can be found. They are good candidates for problems in NP n P.

The question whether P D NP is a famous open problem [5]. It isn’t that pressing for the

software engineer, though. Experience shows that the runtime of any solution algorithm for

any NP-complete problem will scale exponentially and thus lead to software with perfor-

mance bottlenecks and bad user experience. Should it turn out that P D NP, NP-complete
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Figure 1. Various fill-in puzzles, from left to right: Hashiwokakero, Flow and Nomogram.

problems would most probably still scale with a rather high power of the input size, so

customer satisfaction will not change. As the matter stands, knowing that a problem is

NP-complete is as close as we can currently get to knowing that a problem is hard to solve

by computer.

The practitioner will hardly ever directly prove that a problem is NP-complete. Instead,

she will try to relate the problem at hand to some problem known to be NP-complete

from references like [2, 4], using polynomial reduction. In most cases, she will attempt a

one-to-one reduction to a reference problem. A large body of reference problems is there-

fore required and has been built over the years using very ingenious techniques, starting

with Richard Karp’s famous initial catalog [3]. Sipser [7] beautifully illustrates how many

problems are equivalent to problems about graphs. This note intends to add another such

device, the fill-in puzzle. In addition to the familiar Sudoku puzzle, Figure 1 shows some

more examples of this kind of puzzle. All of them are interesting in the sense that solving

them is not straightforward, no polynomial solution algorithm is known. They use an array,

from a programmer’s perspective an even more basic data structure than a graph, though,

according to [1], very much related.

From the theoretical perspective we first need to establish that there actually is such a

“most difficult” problem. The Cook–Levin theorem below states that satisfiability, i.e.,

SAT D ¹' D '.x1; : : : ; xn/ j ' is a satisfiable logical formulaº

is such a problem. A formula is called satisfiable if there is a choice of logical values for

the variables xi such that the formula becomes true.

Theorem 1 (Cook–Levin). Any language that can be decided by a nondeterministic Tur-

ing machine in polynomial time can be polynomially reduced to SAT.

A Turing machine operates on symbols written into cells of an infinite tape, initialized to

contain the word w under consideration and filled with blanks symbolized as on both

sides of w. A read-/write-head controlled by a finite state machine can move over the tape

in both directions one cell at a time and it can change the contents of one cell in each step.

It stops when it enters any of the two special states qaccept and qreject. The word is accepted

by the computation if the machine stops in state qaccept. This is how the Turing machine

decides membership of the word w in the language.
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In a deterministic machine, the rules uniquely determine the followup state and the new

cell content. In a nondeterministic machine, multiple states or cell contents are consistent

with the rules defining the machine. This adds an element of choice and exponentially

multiplies the possible paths the computation can take. To simulate such a machine on a

deterministic machine, all the possible choices have to be tried out, which usually results

in exponentially increasing runtime. To say that such a machine can decide a problem in

polynomial time means that the number of steps is bounded polynomially by the input

size, provided the machine “knows” which choice to make whenever there is one. So the

problem is to find the computation where all the “right” choices were made. This is very

simular to the situation the experienced Sudoku player finds himself in. The rules may not

uniquely determine the number to place in a cell, some choice needs to be made which

may later turn out to be wrong, forcing the player to retrace his steps.

There are standard software solutions for the question asked by the SAT problem. A con-

straint solver is a program that finds values for the variables in a predicate that will result

in a true value. The constraint module in Python [6] offers such a solver and can be

used to find solutions to Sudoku problems. To a programmer, a constraint solver is some

kind of a pancea: at least in principle, every finite discrete problem can be solved by a

constraint solver, albeit very slowly in most cases. The idea that every problem can be

reduced to SAT is thus not completely surprising to a programmer.

To prove Theorem 1, one has to construct a formula from the nondeterministic Turing

machine mentioned in the theorem. The purpose of this note is to show that the well-known

but relatively abstract construction shown, e.g., in [7] can be made more intuitive, and as

Corollary 4 shows, more practically useful, by the concept of a polynomial fill-in puzzle

explained in Section 3. Section 2 uses the well-known Sudoku puzzle to motivate the

concept and shows how to derive a formula from such a puzzle. The proof of Theorem 1

can then be completed by showing that any nondeterministic decision problem can be

reduced to a polynomial fill-in puzzle, which is done in Section 4.

2 Sudoku

The Sudoku puzzle (Figure 2) consists in filling each square of a n2 � n2-grid with one

of the numbers Œn2� D ¹1; : : : ; n2º in such a way that no row, no column and no n � n-

subsquare contains any number more than once. Furthermore, some squares with grid

coordinates .i; j / 2 I � Œn2� � Œn2� have a number vij prescribed, .i; j / 2 I . The case

n D 3 is the puzzle played by many people on a regular basis. Let us call

SUDOKU D

²

hn; I; vij i

ˇ

ˇ

ˇ

ˇ

The n-Sudoku puzzle with squares .i; j / 2 I prefilled

with values vij can be solved.

³

;

where the notation hn; I; vij i indicates a string representation of the triple .n; I; vij / to

bring the problem in line with our terminology of languages and decision problems. Is it

possible to convert each Sudoku puzzle into a formula that is satisfiable if and only if the

puzzle has a solution? Can a Sudoku puzzle be solved by a constraint solver? Indeed:

Theorem 2. SUDOKU can be reduced in polynomial time to SAT.
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Figure 2. The familiar Sudoku puzzle is a special case n D 3 of the general n2 � n2 puzzle.

Proof. The solution of the Sudoku puzzle is an assignment of values zij to each cell .i; j /

of the grid such that rules of the game are respected. In the following, we first express

the rules of the game as a formula  in the variables zij . The second step converts  to

formula ' with purely logical variables. The Sudoku puzzle has a solution precisely when

the variables can be chosen in such a way that the formula becomes true.

Step 1: We construct a formula  .zij j1 � i; j � n2/ in the variables zij with values in

Œn2�. The prescribed values lead to the constraint

 prescribed D
^

.i;j /2I

.zij D vij /:

The rules for rows, columns and subsquares translate to formulae as follows. For each row

i , all the zij are different or

each symbol exactly

once in each row
)  rows D

n2
^

iD1

�

^

j ¤k

.zij ¤ zik/

�

:

Similarly for columns and subsquares:

each symbol exactly

once in each column
)  columns D

n2
^

iD1

�

^

j ¤k

.zj i ¤ zki /

�

;

each symbol exactly

once in each subsquare
)  subsquares D

^

subsquares

�

^

.i;j /¤.k;l/
within subsquare

.zij ¤ zkl /

�

:

Then  D  prescribed ^  rows ^  columns ^  subsquares is a formula that is satisfiable if and

only if there is a solution to the Sudoku puzzle.

Step 2: We convert the formula  into a formula using only logical variables. To this end,

for each variable z with values in Œn2� we construct n2 boolean variables x1; : : : ; xn2 . If

the value of z is c, then xc is the only one of those variables that is true. We call the xi

indicator variables for the value of z.
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We have to construct a formula that ensures that precisely one of those variables is true.

This is equivalent to saying that if xc is true, then no other xd can be true, and this must

hold for all c 2 †. As a logical formula, this is

'z.x1; : : : ; xn2/ D

n2
^

cD1

�

xc ) :
_

d¤c

xd

�

D

n2
^

cD1

�

:xc _ :
_

d¤c

xd

�

: (1)

Thus to convert each variable zij into the indicator variables xij;1; : : : ; xij;n2 , we have to

add the additional constraint

 logical D

n2
^

iD1

n2
^

j D1

'zij
:

In the first step we have built the formula from terms of the form zij D c and zij D zkl .

These have to be converted into expressions in the indicator variables xijc as follows:

zij D c ! xijc

zij D zkl !

n2
_

cD1

.xijc ^ xklc/:
(2)

These substitutions convert the formula  into a formula of length on the order of at most

n2 times the size of  . �

The second step is of course the standard method to get to a logical formula from a formula

in character-valued variables also employed by [7]. We will call the terms on the left-hand

side in (2) comparisons. Comparisons are easy to express in terms of indicator variables.

3 Polynomial fill-in puzzles

The Sudoku problem discussed in the previous section can be generalized to a so-called

polynomial fill-in puzzle.

Definition 1. A fill-in puzzle is a game played on an n�m grid by filling in symbols from

an alphabet† subject to a set of rules.

Obviously, Sudoku is such a fill-in puzzle. As a further example, we reformulate the prob-

lem to decide whether a directed graph has a closed Hamiltonian path as a polynomial

fill-in puzzle (see Figure 3). In a directed graph G D ¹V;Eº with n D jV j vertices and

edges E � V � V , we have to find a closed path visiting each vertex exactly once. To

encode the graph, we can use a table of all the edges as in Figure 3. Cell .i; j / is left white

if .i; j / 2 E , also ignoring loops, i.e., edges .v; v/ 2 E . Placing gray dots in white cells

so that each row and column contains exactly one dot selects edges in such a way that

exactly one edge arrives in each vertex and one leaves. However, these vertices could still

form multiple cycles. The selected pairs .v; w/ define a mapping v 7! w. If by iterating

this mapping starting from one vertex, all other vertices can be reached, a Hamiltonian

path has been found.
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Figure 3 Problem of finding a closed Hamiltonian path in a directed graph (left) encoded as polynomial fill-in

puzzle (right). The path is given by the thick arrows in the graph which correspond to dots in the table.

The idea is thus to convert a fill-in puzzle into a formula just like Sudoku, but for this to

work it is necessary to control the computational cost of rule checks. There are many ways

how to bound rule evaluation, we choose the following definition, which leads us most

directly to a proof of Theorem 3 below.

Definition 2. A fill-in puzzle is called polynomial, if the size j†j of the alphabet depends

polynomially on N D nm and the rules can be checked with a formula of length polyno-

mial in N depending only on comparisons.

The interesting thing about these puzzles is that they can be reduced to SAT in a unified

way.

Theorem 3. Any polynomial fill-in puzzle can be reduced to SAT in polynomial time.

Proof. As in the Sudoku example we proceed in two steps. In the first step we construct

a formula  using variables zij 2 † that stand for the symbols to be placed in cell .i; j /

of the grid. Such a formula can be written using comparisons only. In the second step we

convert to a logical formula ' using indicator variables. For both steps we have to ensure

that they are computable in polynomial time.

The fill-in puzzle being polynomial means that rule checking can be done by a formula

depending only on comparisons and of length polynomial in N . So we can write the con-

dition that the puzzle can be completed as a single formula  .zij ji 2 Œn�; j 2 Œm�/ of

length polynomial in N .

For the second step we now replace the comparisons zij D c and zij D zkl by the

expressions (2) in the indicator variables xijc . To ensure that for each pair .i; j / only one

of the variables xijc is true, we add the additional constraints

'logical;ij D
^

c2†

�

:xijc ^ :
_

d¤c

.xijd /

�

;  logical D
^

i;j

'logical;ij ; (3)

just as in (1).



A. Müller 60

The translation of the formula  .zij / leads to a new formula '.xijc ji 2 Œn�; j 2 Œm�; c 2

†/ that is at most O.j†j2/ times longer than  .zij /, both factors depend polynomially

on N . The additional constraints form a formula of length O.j†j2N/, again polynomial

inN . Both cases show that the resulting formula '^'logical has size polynomial inN . �

Corollary 4. Any polynomial fill-in puzzle is in NP.

The corollary implies that many of the puzzles published in newspapers and as apps for

smartphones are in NP. Being hard to solve but easy to verify is of course part of their

appeal. Some of them, Sudoku is an example [8], become even more appealing, to the

mathematician at least, by the fact that they are also NP-complete.

4 Proof of the Cook–Levin theorem

The proof of Theorem 1 usually uses the compute history. Our proof does the same, but

differs in how we obtain it as the solution of a polynomial fill-in problem. The compute

history is a list of words built from tape characters† and state symbolsQ representing the

state of the Turing machine and the content of the tape at each step of the computation. A

string of the form

: : : a1a2a3 : : : ak�1qak : : : an : : :

represents a tape containing the word a1a2a3 : : : ak�1ak : : : an of the machine in state q

with the read/write-head looking at the cell containing ak .

Even if there are multiple accepting compute histories of a nondeterministic Turing ma-

chine for a word w, the difficult problem still is to find at least one of them.

Proof of Theorem 1. We show that the question whether w 2 †� is in the language can

be reduced to a polynomial fill-in puzzle. If a nondeterministic Turing machine accepts

w 2 A in time t.n/, then the compute history fits into a rectangular array of dimensions

.t.n/C1/� .2t.n/Cn/, which has to be filled with symbols fromQ[†. The rules these

symbols are subject to are as follows.

1. The first row contains the initial state followed by the input wordw D a1a2a3 : : : an:

: : : q0a1a2a3 : : : an : : :

which can be described by a formula of comparisons of lengthO.t.n//.

2. The last row with i D t.n/ must contain the accepting state qaccept. This can be

enforced with the formula
_

j

.zij D qaccept/

which contains O.t.n// comparisons.

3. If a row contains an accepting state, then the machine stops and every subsequent

row must be identical. For row i and i C 1, this can be expressed as
_

j

�

.zij D qaccept/ _ .zij D qreject/
�

)
^

j

.zij D ziC1;j /:

This formula is of size O.t.n// and depends only on comparisons.
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4. Each row must follow from the previous row by exactly one Turing machine step.

This means that most symbols are the same, just around the state symbol changes

are expected.

More precisely, we can compare length three subwords

zij zi;j C1zi;j C2 and ziC1;j ziC1;j C1ziC1;j C2

at .i; j /. There areM D j†[Qj6 such word pairs. Three characters are sufficient to

capture a Turing machine transition, but only some of these pairs are consistent with

Turing machine transitions, of which there are finitely many. If p D .abc; def / is

such a word pair, then the formula

 ijp D .zi;j D a/ ^ .zi;j C1 D b/ ^ .zi;j C2 D c/

^ .ziC1;j D d/ ^ .ziC1;j C1 D e/ ^ .ziC1;j C2 D f /

becomes true precisely if at position .i; j / we have a word pair consistent with this

particular Turing machine transition. Thus

 ij D
_

Turing machine transitions

�

^

p consistent with transition

 ijp ;

�

;

a formula containing 6M comparisons, becomes true if and only if at position .i; j /

we have some Turing machine transition. Finally,

 i D
^

j

 ij ;

a formula containing O.t.n// � 6M D O.t.n// comparisons, becomes true if and

only if row i C 1 can be obtained from row i by a Turing machine transition.

The work to be done to verify that one row follows from the other by a valid Turing

machine step is of the order of O.t.n//.

It follows that every language in NP can be reduced to a polynomial fill-in puzzle. By

Theorem 3, the language also reduces to SAT. �

The use of the compute history is well established as a proof technique, embedding it

into the framework of fill-in puzzles shows the more general usefulness of the idea. It

isn’t too far from the computer engineer’s intuition, though. Tracing a processor means

producing a list of machine states. The chip designer’s task is to ensure that subsequent

machine states satisfy the constraints of the processor specification. The programmer adds

additional constraints via the program executed by the processor. He can use a debugger

to trace the machine state, which now includes memory. A problem is solvable in poly-

nomial time if there is a polynomially sized sequence of machine states consistent with

all these constraints. The programmer’s version of the Cook–Levin theorem is thus the

bland observation that debugging programs always reduces to the tedious task of looking

at states and verifying constraints. The silver lining is that the size of the constraints is also

polynomially bounded.
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