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Identitäten des sinus cardinalis und seiner Potenzen ziehen mindestens seit Shannons
berühmtem Abtasttheorem und der in der Signalverarbeitung verwendeten Rekon-
struktionsformel periodisch das Interesse von Mathematikern, Physikern und Inge-
nieuren auf sich. Der vorliegende Artikel beschäftigt sich nun mittels Methoden der
Fourier-Analyse mit dem Lobachevski-IntegralZ 1

�1

�
sin.�x/
�x

�k
p.x/ dx;

wobei p eine gegebene periodische Funktion und k eine positive ganzen Zahl ist. Zur
Berechnung des Integrals wird eine Parseval-Formel „gemischten Typs“ verwendet,
die eine periodische Funktion f (und ihre Fourier-Koeffizienten) mit einer kompakt
getragenen Funktion g (und ihrer Fourier-Transformierten) wie folgt in Beziehung
setzt: Z

R
f .x/ Og.x/ dx D

X
n2Z

Of .n/g.n/:

In der Signalverarbeitung entspricht die rechte Seite dieser Gleichung dem Abtasten
und Aliasing einer bandbegrenzten Funktion im Frequenzraum.

https://creativecommons.org/licenses/by/4.0/


R. Cai, H. Hohberger and M. Li 106

1 Introduction

Going back to Lobachevsky’s original work [6], the following is known as a Lobachevsky-
type integral: Z 1

�1

�
sin.�x/
�x

�k
p.x/ dx: (1)

Here k 2 N n ¹0º is a positive integer, and pWR! C is a periodic function with period
T > 0 that is assumed to be integrable over a single period. Recently, Jolany [4] has pub-
lished identities for this integral when k is even and p is a continuous function of period
T D 1, using methods of complex analysis. We will base our discussion on the Fourier
transform and obtain corresponding identities for all k 2 N n ¹0º and p integrable of arbi-
trary period T .

In the setting of information and communication theory, the sine cardinal generates
the Shannon basis, and there exist a plethora of identities that are “folklore” in the signal
processing community. For example, the “reconstruction formula” using the Shannon basis
in signal processing is just the cardinal series expansion of the mathematical literature [11].
Such identities have inspired the present discussion.

In mathematics, too, there is periodically renewed interest in the surprising properties
of integrals involving the sine cardinal, including some recent discussion [2, 3, 7, 12, 13].
It turns out that Fourier transform theory both readily explains these phenomena and pro-
vides an interpretation in terms of signal processing.

The “mixed-type” Parseval formula that we develop below yields not only formulas
for the Lobachevsky-type integral (1) but can also be used to generate identities for similar
integrals involving functions other than the cardinal sine. We give two examples where
certain Bessel functions play a role.

2 Parseval formula

For functions f WR! C, we define the Fourier transform as follows:

Of .�/ D .F f /.�/ D

Z 1
�1

f .x/e�2�ix� dx; (2)

whenever the integral exists. Similarly, the inverse Fourier transform is defined by

Lf .�/ D .F �1f /.�/ D

Z 1
�1

f .x/e2�ix� dx;

again, whenever the integral exists.
The set of absolutely integrable functions on the real axis is denoted by L1.R/, while

BV.R/ denotes the set of functions that are of bounded variation on R.
In this treatment, complex-valued, periodic functions of period T > 0 that are abso-

lutely integrable over a single period play a major role. The set of such functions is denoted
by L1.Œ�T

2
; T
2
�/. In the case T D 1, we will write simply L1.T /.
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For f 2 L1.Œ�T
2
; T
2
�/, we define the Fourier coefficient

Of .n/ D
1

T

Z T
2

� T2

e�2�i
nx
T f .x/ dx; n 2 Z:

The minor clash of notation with (2) should not give rise to confusion [8].
We will also use the standard notation

f .x�/ WD lim
"&0

f .x � "/; f .xC/ WD lim
"&0

f .x C "/

for any function f on R and x 2 R.
The classical strong form Parseval formula from Zygmund [14, Theorem 8.18, Chap-

ter IV] of the so-called “mixed type” (i.e., a periodic and a non-periodic function) may be
formulated as follows.

Theorem 1 (Parseval formula of mixed type in the strong form). Let f 2 L1.T / and
g 2 L1.R/ \ BV.R/. ThenZ 1

�1

f .x/g.x/ dx D

1X
nD�1

Of .n/ Og.n/; (3)

where f .x/ denotes the complex conjugate of f .x/.

The drawback of this theorem is that the condition on g is frequently difficult to check:
it may not be easy to show that g is of bounded variation. More significantly, in certain
interesting situations, e.g., where the cardinal sine is involved, Theorem 1 is simply not
applicable.

Therefore, we establish the following result in the spirit of Titchmarsh [10, Theo-
rem 47], which yields a “weak-form” Parseval formula of mixed type under the condition
that the Fourier transform of g, rather than g itself, is of compact support and of bounded
variation at appropriate points. We denote the support of a function g by suppg.

Theorem 2 (Parseval formula of mixed type in the weak form). Let f 2 L1.T / and
g 2 L1.R/, and suppose that there exists some A> 0 such that suppg � Œ�A;A�. Further,
let g be of bounded variation in neighborhoods of all n 2 Z with jnj � A. ThenZ 1

�1

f .x/ Og.x/ dx D
X
n2Z
jnj�A

Of .n/ �
g.n�/C g.nC/

2
:

Theorem 2 can be adapted to periodic functions p with arbitrary period T > 0 by
setting f .x/ WD p.T x/, yielding the following.

Corollary 3. Let p 2 L1.Œ�T
2
; T
2
�/, g 2 L1.R/, and suppose that there exists some A > 0

such that supp g � Œ�A; A�. Further, let g be of bounded variation in neighborhoods of
all points n

T
, n 2 Z, with j n

T
j � A. ThenZ 1

�1

p.x/ Og.x/ dx D
X
n2Z
j nT j�A

Op.n/ �
g.. n

T
/�/C g.. n

T
/C/

2
: (4)
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Functions of compact support are related to signals that are “band-limited” in the par-
lance of the signal processing community, since it is possible to recover a band-limited
(continuous) signal by appropriate (discrete) sampling [11].

Example 1. Consider  1 2 L1.R/ given by

 1.x/ D

´p
1 � x2; �1 � x � 1;

0; otherwise:

Its Fourier transform is given by

O 1.�/ D

8̂<̂
:
J1.2��/

2�
; x ¤ 0;

�

2
; x D 0;

where J1 is the Bessel function of the first kind of order one. (The function given by
J1.�/
�

and its scaled versions are sometimes called Sombrero function, besinc function, or
jinc function.) A Parseval formula (either (4) or (3)) then givesZ 1

�1

J1.2�x/

2x
p.x/ dx D

X
j nT j<1

Op.n/

r
1 �

� n
T

�2
for any p 2 L1.Œ�T

2
; T
2
�/. If 0 < T � 1, only the summand for index n D 0 remains, and

we have Z 1
�1

J1.2�x/

2x
p.x/ dx D Op.0/ D

1

T

Z T
2

� T2

p.x/ dx:

To apply Corollary 3, we need to check that  1 is of bounded variation at least locally near
any point of R, which is not difficult. On the other hand, invoking Theorem 1 would entail
verifying that O 1 is of bounded variation, a much more difficult task.

Example 2. Now consider  2 2 L1.R/ given by

 2.x/ D

8<:
1

p
1 � x2

; �1 < x < 1;

0; otherwise;

with Fourier transform
O 2.�/ D �J0.2��/;

where J0 is the Bessel function of the first kind of order zero. Since J0 … L1.R/, Theo-
rem 1 cannot be applied.

Observe that supp  2 D Œ�1; 1� and that  2 is of bounded variation in the neigh-
borhoods of any point except ˙1. Then, for T … N, we can apply Corollary 3 to p 2
L1.Œ�T

2
; T
2
�/ and obtain

�

Z 1
�1

J0.2�x/p.x/ dx D
X
j nT j<1

Op.n/p
1 � . n

T
/2
:
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As before, if 0 < T < 1, we have

�

Z 1
�1

J0.2�x/p.x/ dx D Op.0/ D
1

T

Z T
2

� T2

p.x/ dx:

3 Lobachevsky integral formulas

We define the usual convolution of f; g 2 L1.R/ by

.f � g/.x/ WD

Z 1
�1

f .y/g.x � y/ dy

and write
f �k WD f � f � � � � � f„ ƒ‚ …

k times

:

We introduce the real function … given by

….x/ WD

8̂<̂
:
1; jxj < 1

2
;

1
2
; x D ˙1

2
;

0; jxj > 1
2
;

as well as the normalized cardinal sine on R,

sinc.x/ WD

8<:
sin.�x/
�x

; x ¤ 0;

1; x D 0:

We remark that sinc D F…, and, more generally, sinck D F .…�k/ for k 2 N n ¹0º.
Furthermore, note that supp…�k D Œ�k

2
; k
2
�, and …�k is piecewise polynomial, hence

also in L1.R/ and is of bounded variation in neighborhoods of all points in supp…�k . The
functions…�k are also known as centered B-splines (or Lobachevsky splines) in the signal
processing community [1, 5, 11].

As a special case of Corollary 3, we have the following theorem on the Lobachevsky
integral formula.

Theorem 4. Let p 2 L1.Œ�T
2
; T
2
�/ for some T > 0 and k 2 N n ¹0º. ThenZ 1

�1

sinck.x/p.x/ dx D
X
j nT j�

k
2

Op.n/…�k
� n
T

�
:

If k � 2, the range of summation may be reduced as follows:Z 1
�1

sinck.x/p.x/ dx D
X
j nT j<

k
2

Op.n/…�k
� n
T

�
:
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Corollary 5. Let k 2N n ¹0º and p 2 L1.Œ�T
2
; T
2
�/ for some T > 0 with kT � 2 if k � 2,

or 0 < T < 2 if k D 1. ThenZ 1
�1

sinck.x/p.x/ dx D …�k.0/ �
Z T

2

� T2

p.x/ dx:

A few identities are then immediate, most notably for k D 1 and k D 2,Z 1
�1

sinc.x/f .x/ dx D
Z 1
�1

sinc2.x/f .x/ dx D
Z 1

2

� 12

f .x/ dx (5)

for f 2 L1.T /. It is not a coincidence that the two cardinal sine integrals yield the same
value; this follows from the fact that ….0/ D …�2.0/ D 1 and both … and …�2 are con-
tinuous at zero.

The identities in (5) further reduce to the well-known Dirichlet and Fejér integrals [8]
when f � 1, Z 1

�1

sin.�x/
�x

dx D

Z 1
�1

�
sin.�x/
�x

�2
dx D 1:

More interestingly, when k D 3, we obtainZ 1
�1

sinc3.x/f .x/ dx D Of .0/…�3.0/C Of .�1/…�3.�1/C Of .1/…�3.1/

D

Z 1
2

� 12

f .x/ dx �
1

2

Z 1
2

� 12

f .x/ sin2.�x/ dx (6)

and, when k D 4,Z 1
�1

sinc4.x/f .x/ dx D Of .0/…�4.0/C Of .�1/…�4.�1/C Of .1/…�4.1/

D

Z 1
2

� 12

f .x/ dx �
2

3

Z 1
2

� 12

f .x/ sin2.�x/ dx: (7)

The identity in (7) was previously derived in [4] using complex analytic methods, while (6)
is new, as the results in [4] did not extend to odd-valued integers k.

4 The Poisson summation formula

One of the crucial ingredients in the proof of Theorem 2 is a version of the Poisson sum-
mation formula [14, equation (13.4)]. It later appeared explicitly in [3, Proposition 1] for
functions of compact support. We present the theorem here, along with a clearer proof,
which follows Zygmund [14, p. 68].
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Theorem 6 (Poisson summation formula). Let g 2 L1.R/, and suppose that there exists
some A > 0 such that supp g � Œ�A;A�. Further, let g be of bounded variation in neigh-
borhoods of all n 2 Z with jnj � A. ThenX

m2Z

Og.m/ D
X
n2Z
jnj�A

g.nC/C g.n�/

2
: (8)

The following identity is immediate since g is of compact support:
1X

mD�1

Og.mC �/ D
X
n2Z
jnj�A

g.nC/C g.n�/

2
e�2�in� : (9)

Proof of Theorem 6. Following Zygmund [14, p. 68], we define a periodic function G
on R as follows:

G.x/ WD

1X
kD�1

g.x C k/:

Since supp g D Œ�A;A�, the sum on the right will be finite for any fixed x 2 R. Further-
more, this will be the case also when x varies in Œ�1

2
; 1
2
�, so we can write, for suitable

K 2 N, Z 1
2

� 12

jG.x/j dx �

KX
kD�K

Z 1
2

� 12

jg.x C k/j dx D

KX
kD�K

Z kC 1
2

k� 12

jg.x/j dx

D

Z 1
�1

jg.x/j dx;

where we have again used the boundedness of the support of g. The last integral is finite
since g 2 L1.R/, and we conclude that G 2 L1.T /.

Since g is of bounded variation in neighborhoods of those n 2 Z with jnj � A, we
deduce that G is of bounded variation in a neighborhood of x D 0. Therefore, we can
apply the Dirichlet–Jordan test for Fourier series [9, p. 406] to deduce that the Fourier
series expansion of G converges in a neighborhood of x D 0 as follows:

G.xC/CG.x�/

2
D

1X
mD�1

OG.m/e2�imx : (10)

A direct calculation yields

OG.m/ D

Z 1
2

� 12

G.x/e�2�imx dx

D

NX
kD�N

Z 1
2

� 12

g.x C k/e�2�imx dx

D

Z 1
�1

g.x/e�2�imx dx D Og.m/:

Setting x D 0 in (10) then establishes (8).
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The above version of the Poisson summation formula may be applied to functions
that are neither of Schwartz class nor of moderate decay (both need to be continuous as
required, e.g., in [8]).

For example, neither … nor sinc are of Schwartz class or moderate decay, yet we can
still obtain a meaningful Poisson summation formula for … by applying Theorem 6. In
particular, using F Œ….�. � //�.�/ D 1

�
sinc. �

�
/, we obtain

1

�

X
n2Z

sin.n/
n
D

X
m2Z

….�m/ D ….0/ D 1:

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since f is periodic with period 1, we can writeZ 1
�1

Og.�/f .�/ d� D lim
M!1

MX
mD�M

Z mC 1
2

m� 12

Og.�/f .�/ d�

D lim
M!1

MX
mD�M

Z 1
2

� 12

Og.� Cm/f .� Cm/d�

D lim
M!1

Z 1
2

� 12

MX
mD�M

Og.� Cm/f .�/ d�:

The Poisson summation formula (9) guarantees that the series converges and is bounded,
so that by the dominated convergence theorem the limit and the integral can be exchanged.
Moreover, Z 1

�1

Og.�/f .�/ d� D

Z 1
2

� 12

lim
M!1

MX
mD�M

Og.� Cm/f .�/ d�

D

Z 1
2

� 12

X
n2Z
jnj�A

g.n�/C g.nC/

2
e�2�in�f .�/ d�

D

X
n2Z
jnj�A

g.n�/C g.nC/

2
Of .n/;

completing the proof.
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