
Elemente der Mathematik 77 (2022), 122–137
DOI 10.4171/EM/451

© 2021 Swiss Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

The smallest convex k-gon containing n congruent disks

Orgil-Erdene Erdenebaatar and Uuganbaatar Ninjbat

Orgil-Erdene Erdenbaatar works as a data analyst at a local fintech company and
enrolled to the master program in mathematics at the National University of Mongolia.
He is a former mathematics Olympiad runner and currently writing his master’s thesis
under supervision of the second author.

Uuganbaatar Ninjbat obtained PhD in Economics from the Stockholm School of
Economics in 2012. After returning to Mongolia, he joined the mathematics depart-
ment of the National University of Mongolia and spent the last eight years in learning,
teaching and doing mathematics. His research interests in mathematics are discrete
and convex geometry, logic and computation. He also enjoys teaching probability
theory.

1 Introduction

Efficiently packing a number of objects is one the most frequently encountered prac-
tical problems. Since ancient times, it appeared in every household, in small shops and
large factories, in puzzles and recreations and probably in the nature too. The simplest
non-trivial objects to be packed are congruent spheres and some of the well-known math-

Das Problem, Kugeln oder Kreise möglichst eng zu packen, kann auf ganz unter-
schiedliche Weise formuliert werden. Die bekannteste Version ist wohl das Keplersche
Problem, die dichteste Packung gleich grosser Kugeln im dreidimensionalen Raum
zu finden. Endliche Varianten des zweidimensionalen Problems verlangen, eine end-
liche Anzahl von Kreisen so anzuordnen, dass sie in einem konvexen Container mit
minimaler Fläche oder minimalem Umfang Platz finden. Der Container kann beispiels-
weise die konvexe Hülle sein oder ein konvexes Polygon mit gegebener Eckenzahl.
Derartige Probleme gehören zu den Klassikern der Computational Geometry und des
Operations Research. Zahlreiche numerische Lösungsverfahren wurden vorgeschla-
gen, wobei nicht nur Kreise gepackt werden, sondern auch Ellipsen oder konvexe und
nicht-konvexe Polygone. Die Autoren der vorliegenden Arbeit betrachten das Problem,
ein flächenminimales konvexes Polygon mit einer festen Eckenzahl zu finden, das
eine gegebene Anzahl von nicht überlappenden Einheitskreisscheiben enthält. Es wer-
den untere Schranken für die minimale Fläche mithilfe von einfachen geometrischen
Konstruktionen angegeben. Es wird auch diskutiert, in welchen Fällen die Schranken
scharf sind.

https://creativecommons.org/licenses/by/4.0/
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ematical problems on sphere packing are the Kepler conjecture and the kissing number
problem [20]. These problems attract our mind by their innocent statements but defy our
attempts by their hidden complexities. At the moment, the problem of filling the entire
space with congruent spheres as efficiently as possible is solved for 2, 8, 24 dimensions,
and the proposed solution of J. Kepler for 3 dimensions is verified [23]. Mathematicians
expect that some deep and unexpected connections will be discovered when these prob-
lems are solved.

On the other hand, we are free to restrict our attention to finitely many spheres, and
this is the approach we follow now. Most of such problems fall into two types [12].
• Free packing: Locate a finite set of congruent spheres so that the volume of their convex

hull is minimal. In the two-dimensional space, notable results on this problem are
the Thue–Groemer and Oler inequalities (see [4, Chapter 4.3], [10]) and the Wegner
inequality (see Theorem 2). In higher dimensions, L. F. Tóth’s sausage conjecture is
a partially solved major open problem [3].

• Bin packing: Locate a finite set of congruent spheres in the smallest volume container
of a specific kind. In the two-dimensional space, the container is usually a circle [9],
an equilateral triangle [15] or a square [16]. In such cases, the smallest containers and
the corresponding optimal packings are known when the number of disks is not so big,
e.g. up to 20 (see [11]).
The problem that we study in this paper contains elements of both types.

Problem 1. For k � 3, find the smallest-area convex k-gon containing n 2 N unit radius
(“unit” in brief) disks without an overlap.

The solution to this problem for n D 1 is given by the following well-known result
(see [1, Chapter 2]).

Theorem 1. When nD 1, the regular k-gon circumscribing a unit disk is the only solution
to Problem 1 for k � 3.

In Theorem 4 of this paper, we give an extension of this result as an inequality bound-
ing area of the containing polygon from below. This inequality is tight in many cases
including
• n D 1 and k � 3,
• n D 2 and k D 2k0 for k0 � 2,
• n 2 ¹3; 6º and k D 3k0 and
• n is a centred hexagonal number and k D 6k0.
The solution of Problem 1 for these tight cases is obtained in Theorem 5. Then we dis-
cuss its solution for cases where this bound is not tight, i.e. for n D 2, k D 2k0 C 1 in
the remark following Theorem 5, and for n D 3, k D 4 in Theorem 6. The latter case
is essential as it demonstrates the possibility of disks being packed non-efficiently inside
a minimal polygon. Along the way to prove our main results, we prove two intermediate
results which are interesting on their own. The first one gives geometric invariants between
two polygons whose sides are pairwise parallel; see Proposition 1. The second one gives
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a simple geometric characterization for a well-known curve, the trisectrix of Maclaurin;
see Proposition 2.

Instead of spheres, one can pack more complicated objects and let us give a glimpse on
the research in this direction. In [22], the problem of free packing of two convex polygons
is analysed. The authors of [22] parametrize the set of possible contact configurations of
two polygons by two parameters, one indicating location and the other indicating orienta-
tion or alignment. This idea is reminiscent of the well-known solution of Buffon’s needle
problem in probability theory. Then, with simple but elegant steps, they reduce the search
space for optimal packing into a finite set and provide a fast algorithm to find a solution.
Besides establishing correctness, computational complexity of the proposed algorithm is
also analysed.

In a series of papers, e.g. [2, 7], the so-called phi-function method was developed and
used to solve various packing and cutting problems. According to [7], roots of this method
date back to the 1980s, and the main objective is to provide a general setting where such
problems can be formulated so that computationally efficient solutions are possible. The
phi-function method is a smart combination of ideas in combinatorial topology, discrete
geometry (in line with Hilbert’s third problem), analytical geometry and optimization.
In [2], it is applied to pack two irregular objects, which can have arbitrary strange shapes as
long as they satisfy certain topological regularities, into a container (i.e. a circle, rectangle
or regular polygon) to minimize area, perimeter or homothetic coefficient. There is also
a possibility of imposing additional distance constraints between objects, and objects and
the container.

As usual with packing problems, we believe that Problem 1 is computationally hard.
The main difficulty comes from two optimization problems embedded in it, namely sim-
ultaneously choosing the right configuration of n spheres and finding the right k-gon. The
reader is expected to feel this difficulty towards the end of Section 3 and invited to face it
in Section 4.

2 Preliminaries

In addition to the usual ones, we use the following definitions. A region is a subset of the
plane with finite area, and when X is a region, kXk denotes its area. The line segment
connecting points A; B is denoted as AB; jABj is its length, and .AB/ is its interior.
Let a finite set of unit disks be located in R2 without an overlap, i.e. each pair has a dis-
joint interior. Their joint tangent is a line which is tangent to at least two of the disks
and supports their convex hull. Each joint tangent bounds a half plane which contains the
disks. The intersection of these half planes is called tangent polygon of the disks (Fig-
ure 1 (a), (b)). Clearly, every tangent polygon is convex, and it is a convex polygon as long
as the centres of the disks are not all collinear.

The regular k-gon circumscribing a unit disk is called unit k-gon. Thus, a unit triangle
has sides of length 2

p
3, while a unit square has sides of length 2. The 1

m
-th of a reg-

ular mk-gon is a polygon obtained after cutting the original polygon by two apothems
intersecting at 2�

m
angle; see Figure 2.
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Figure 1. Tangent polygons (a quadrilateral and an infinite strip) and a cap.

(a) (b) (c)

Figure 2. Half, one-third, one-sixth of a regular hexagon.

Let C � R2 be a convex disk, and let P be a convex polygon containing C . Using
a terminology of [19], a cap of P with respect to C is the region enclosed by the boundary
of C and two consecutive sides of P which are tangent to C ; see Figure 1 (c). The sum of
areas of all caps of P with respect to C is denoted as kCapC .P /k.

A set of n unit disks constitute a Groemer packing if each pair has disjoint interior and
the convex hull of their centres is either a line segment of length 2.n � 1/ or can be trian-
gulated into equilateral triangles of edge length two using the n centres as vertices [13].
If, in addition, perimeter of the hull is 2d

p
12n � 3� 3e, where dxe Dmin¹z 2Z W z � xº,

then the Groemer packing is a Wegner packing [5]; see Figure 3. By using these geometric
properties, it is easy to show that the convex hull of the centres of the disks in a Wegner
packing has at most six sides; see [4, Chapter 4.3]. The number n 2N is called exceptional
if there is no Wegner packing of n unit disks. The smallest exceptional number is 121, and
they constitute less than 5 % of all N (see [5]). The following result is known as Wegner
inequality; see [4, Chapter 4.3], [5].
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Figure 3. Wegner packing of n D 10 disks.

Theorem 2 (Wegner inequality). If H is the convex hull of n 2 N non-overlapping unit
disks, then

kHk �
p
12 � .n � 1/C .2 �

p
3/ � d
p
12n � 3 � 3e C �:

Equality holds if and only if the disks are packed in a Wegner packing.

The following result is a reliable tool when one studies the smallest circumscribing
polygons of convex figures [6, 25].

Theorem 3. Let C � R2 be a convex disk, and let P be the smallest-area convex polygon
containing it. Then midpoints of sides of P lie on the boundary of C .

If an internal angle at a vertex of a polygon is greater than � , then the vertex is reflex.
If P D A1 : : : An and Q D B1 : : : Bn are two simple polygons with the same orientation
and AiAiC1 k BiBiC1 for all 1 � i � n, then they are called parallel polygons. Finally,
the Maclaurin trisectrix is a cubic plane curve defined as the locus of the point of intersec-
tion of two lines, each rotating uniformly about a separate point with a ratio of speeds of 1

3

and the lines initially coincide. Its polar equation is r D a sec �
3

, and its Cartesian equation
is y2 D x2.xC3a/

a�x
(see [24]).

3 The main results

We shall prove two intermediate results.

Proposition 1. Let P and Q be two simple parallel polygons.

(a) Then they have the same number of reflex vertices.

(b) If one is convex, so is the other, and their corresponding internal angles are equal.

Proof. Let P D A1 : : : An and Q D B1 : : : Bn, and we denote their internal angles as
]Ai D ˛i , ]Bi D ˇi for 1 � i � n. Let I D ¹i 2N W 1 � i � n; ˛i D ˇiº, I1 D ¹i 2N W
1 � i � n; ˛i < ˇiº and I2 D ¹i 2 N W 1 � i � n; ˛i > ˇiº. Since AiAiC1 k BiBiC1 for
1 � i � n, i 2 I1 implies ˛i C � D ˇi , and i 2 I2 implies ˛i D ˇi C � .
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Note thatX
i2I

˛i C
X
i2I1

˛i C
X
i2I2

˛i D
X
i2I

ˇi C
X
i2I1

ˇi C
X
i2I2

ˇi D .n � 2/�:

Since
P
i2I ˛i D

P
i2I ˇi ,

P
i2I1

.˛i C �/D
P
i2I1

ˇi and
P
i2I2

˛i D
P
i2I2

.ˇi C �/,
we get X

i2I1

˛i C
X
i2I2

ˇi C jI2j� D
X
i2I1

˛i C jI1j� C
X
i2I2

ˇi ;

which simplifies to jI1j D jI2j. This proves Proposition 1 (a) after noting that jI1j is the
number of reflex vertices inQ whose corresponding vertex in P is normal, i.e. non-reflex,
and jI2j is the number of reflex vertices in P whose corresponding vertex in Q is normal.

Assume P is convex. Then, by part (a), both polygons have 0 reflex vertices. Hence,
Q is convex. Since nD jI j C jI1j C jI2j and jI1j D jI2j D 0, we have nD jI j, i.e. ˛i D ˇi
for all 1 � i � n.

Remarks. There seems to be a slight confusion in the computational geometry literature
regarding to geometric invariants between parallel polygons. For example, on [14, p. 2],
it is (mistakenly) claimed that “two polygons are parallel if and only if they have the same
sequence of angles”. The above result clarifies the situation.

Let P be a convex k-gon containing n unit disks without an overlap such that each
side of P is tangent to at least one of the disks. Let us pick one of the disks, and for
each side of P , there are two tangents to the disk which are parallel to it. Choose the one
which is closer to the side, and the polygon whose sides are contained in these tangents is
called shrink of P for the picked disk; see Figure 5. By construction, P and its shrink are
parallel, and by Proposition 1 (b), they have the same internal angles.

Our second intermediate result is as follows.

Proposition 2. Let ! be a circle with centre O and radius r! , let l be a line tangent
to ! at T , and let X be an arbitrary point on l . Let m be the other tangent from X to !,
R D m \ !, and let X 0 be the reflection of X on m with respect to R. Then t .!; l/, the
locus of X 0, is a Maclaurin trisectrix. Conversely, if t .!; l/ is a Maclaurin trisectrix, then
there exist a circle ! and a line l which generates it as described.

Proof. Let us introduce a polar coordinate system with a pole atO and axis on the TO-ray.
The angular coordinates are measured in the counterclockwise direction; see Figure 4. Let
azimuth of X be � 2 Œ0; �

2
/[ .3�

2
; 2��. If � 2 Œ0; �

2
/, then jOX j D r! sec�. By construc-

tion,4OX 0X is isosceles with jOX 0j D jOX j. Since4OTX D4ORX D4ORX 0, we
have ]TOX 0 D 3�. Thus, X 0 has polar coordinates .r! sec �; 3�/, which gives the polar
equation r D r! sec �

3
. If � 2 .3�

2
; 2��, we get the same equation after replacing � in our

analysis by �0 D 2� � �. Note that t .!; l/ has an asymptote which is perpendicular to the
polar axis and passes over the point .2�; 3r!/.

Conversely, suppose t .!; l/ is a curve with polar equation r D a sec �
3

. Then ! is
chosen as the circle with centre at the pole and radius a, and l is tangent to ! at point
T .a; 0/. We can repeat the above argument to show that this configuration generates
t .!; l/.
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Figure 4. A characterization of the Maclaurin trisectrix.

Remarks. Another derivation of this curve and some motivations for finding alternative
derivations of classical curves are given in [21].

Let us now prove our first main result.

Theorem 4. If P is a convex k-gon containing n 2 N non-overlapping unit disks, then

kP k �
p
12 � .n � 1/C .2 �

p
3/ � d
p
12n � 3 � 3e C k � tan

�

k
:

Equality holds if and only if the disks are located in a Wegner packing, P is equiangular,
each side of P is tangent to at least one of the disks and each cap of P with respect to the
convex hull of the disks is a cap with respect to a unit disk.

Proof. By Theorem 3, we may assume that each side of P is tangent to the convex hull
of the disks, which we denote as H . This is equivalent to assume that each side is tangent
to at least one of the disks. Since kP k D kHk C kP nHk, by Theorem 2, it suffices to
prove that

kP nHk � k � tan
�

k
� � (1)

where the right-hand side is the sum of cap areas of a unit k-gon with respect to the
circumscribed unit disk, while the left-hand side is kCapH .P /k.

Let ! be one of the disks and P 0 the shrink of P for !; see Figure 5 (a). Since P 0 is
a circumscribing convex k-gon of !, by Theorem 1,

kCap!.P
0/k � k � tan

�

k
� � (2)
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(a) (b)

Figure 5. Shrinking P to P 0 in (a); adding an auxiliary disk in (b).

and equality holds if and only if P 0 is regular.
We claim that each cap of P 0 with respect to ! is smaller (in area) than the corres-

ponding cap of P with respect to H . To see this, let A1; : : : ; Ak be the vertices of P , and
let S be the set of n disks that it contains. Choose one of the vertices, Ai . If Ai�1Ai and
AiAiC1 are tangent to the same unit disk in S, then the cap of P with respect to H with
a vertex at Ai is a cap with respect to a unit disk. Since shrinking preserves the internal
angle at Ai , the corresponding cap of P 0 is a translation of this cap; see Figure 5 (b). Thus,
they are congruent.

Otherwise,Ai�1Ai andAiAiC1 are tangent to two different unit disks in S. Let they be
� with centre T and � with centre K, respectively. Draw a line passing through T which
is parallel to Ai�1Ai and another line passing through K which is parallel to AiAiC1
as in Figure 5 (b). Let A�i be their intersection. Note that this point is well defined; on
the bisector of †Ai and because of convexity, it is inside P and closer to Ai than both
T and K. Let .�; �/ be the unit disk centred at A�i . By construction, .�; �/ is tangent to
Ai�1Ai and AiAiC1. If H 0 is the convex hull of S [ ¹.�; �/º, then the cap of P with
respect to H 0 with a vertex at Ai is the same as the corresponding cap of P 0 with respect
to ! by the above argument. But the former cap is smaller than the cap of P with respect
to H with a vertex at Ai by the amount

kH 0k � kHk D k4A�i TKk C jTA
�
i j C jA

�
i Kj � jTKj > 0

(recall the triangle inequality). This proves our claim, which implies that

kCapH .P /k � kCap!.P
0/k (3)

and equality holds if and only if each cap of P with respect to H is a cap with respect to
a unit disk. Inequalities (2) and (3) imply (1).
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O1 O2 O1 O2

(a) (b)

Figure 6. Construction of optimal polygons for n D 2 and k D 4 in (a), k D 6 in (b).

From the proof above, it should be clear that equality holds if and only if
• each side of P is tangent to at least one of the disks,
• kHk D

p
12 � .n � 1/C .2 �

p
3/ � d
p
12n � 3 � 3e C � , which happens if and only

if the disks constitute a Wegner packing by Theorem 2,
• each cap of P with respect to the convex hull of the disks is a cap with respect to a unit

disk,
• P 0 is regular, which happens when P is equiangular (recall that P 0 and P have the

same internal angles).

Remarks. Above, we used Theorem 2 to prove Theorem 4. One should notice that the
reverse implication is also possible and very much the same.

The following result shows that the above inequality is tight in many cases.

Theorem 5. If

(a) n D 2 and k D 2k0 with k0 � 2, or

(b) n 2 ¹3; 6º and k D 3k0, or

(c) n 2 N n ¹2º is not exceptional and k D 6k0,

then the inequality in Theorem 4 is tight and the solution of Problem 1 can be constructed.
In particular, when n D 3m.m � 1/C 1 and k D 6, the solution is the regular hexagon
with sides of length 2.m � 1/C 2p

3
.

Proof. Let us prove (a). Two unit disks are Wegner packed if and only if they are tangent.
Let O1; O2 be the centres of the disks, and let us construct the solution of Problem 1 as
follows. First, draw the tangent polygon of the disks; recall that in this case it is an infinite
strip. Cut out a rectangle whose two opposite sides are contained in the joint tangents of
the disks, and the other two sides pass through O1 and O2. For each of these latter two
sides, take half of a unit 2k0-gon, and paste (i.e. glue) it over its side of length 2 with
the rectangle. The resulting 2k0-gon contains the two disks and satisfies all the equality
requirements in Theorem 4; see Figure 6.

Let us prove (b). Let n D 3, and it is easy to see that centres of three Wegner packed
disks constitute vertices of an equilateral triangle with sides of length 2 as in Figure 7 (a).
Then their tangent polygon T1 satisfies all the equality conditions in Theorem 4. Thus, T1
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(a) (b) (c)

Figure 7. Wegner packing and optimal polygons when n D 3; 6.

is the solution when k0 D 1. For k0 D 2, we can cut from T1 three equilateral triangles;
each has a vertex common with T1 and a side tangent to the convex hull of the circles.
The remaining hexagon which we denote by T2 satisfies the necessary conditions; see
Figure 7 (b). In general, Tk0 is constructed as follows. Remove all caps of T1 with respect
to the convex hull of the disks, and replace each by the union of caps of one-third of
the unit 3k0-gon with respect to the circumscribed unit disk. It is easy to check that this
construction is well defined and satisfies the necessary conditions.

If n D 6, a similar argument proves the statement after noting that centres of six
Wegner packed disks constitute vertices of an equilateral triangle with sides of length 4
as in Figure 7 (c).

Let us prove (c). Since n is not exceptional, there is a Wegner packing of n disks.
Because of the perimeter condition, a linear packing of n disks is never a Wegner packing
for n ¤ 2. Thus, the convex hull of the centres of Wegner packed n ¤ 2 disks which
we denote as Tc has at least three sides. Let T be the tangential polygon of the packed
disks. Since Tc has at least three and at most six sides and is triangulated into equilateral
triangles, and Tc and T are parallel, T has three to six sides, and its internal angles are
either �

3
or 2�

3
(recall Proposition 1 (b)). This gives us the following possibilities:

• T is an equilateral triangle, or
• T is a quadrilateral with two internal angles of 2�

3
and two of �

3
, or

• T is a pentagon with four internal angles of 2�
3

and one of �
3

, or

• T is a hexagon with internal angles of 2�
3

.
In each case, take a vertex with angle �

3
, and cut out an equilateral triangle from T which

shares this vertex and the side of it which does not contain this vertex is tangent to the disk
closest to the vertex. Let the resulting polygon be T1. Then, by construction, T1 is a convex
hexagon containing all the disks; each of its internal angles is 2�

3
, and each side is tangent

to at least one of the disks, and each cap is a cap with respect to a unit disk. Thus, T1
satisfies all equality conditions in Theorem 4 and is a solution to Problem 1 when n is not
exceptional and k D 6.
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In general, Tk0 is constructed as follows. Remove all six caps of T1 with respect to the
convex hull of the disks, and replace each by the union of caps of one sixth of the unit
6k0-gon with respect to the unit disk which it circumscribes. It is easy to check that this
construction is well defined and satisfies the equality conditions.

If n D 3m.m � 1/C 1, i.e. the centred hexagonal number, it is easy to verify that the
Wegner packing of n disks is so that the convex hull of their centres is a regular hexagon
with sides of length 2m. Then their tangent polygon is the regular hexagon of sides of
length 2.m � 1/ C 2p

3
and satisfies all the equality conditions in Theorem 4. Thus, the

tangent hexagon is the solution.

Remarks. With some effort, one can show that a construction similar to that in The-
orem 5 (a) works for n D 2 and k D 2k0 C 1. This time, we need to paste half of a unit
2k0-gon and half of a unit 2.k0 C 1/-gon to the central rectangle. Moreover, this reas-
oning can be applied to finding the smallest convex k-gon containing n linearly packed
disks. In [17], we used insights from this result to mathematically investigate features of
a cultural artefact from the National Museum of Mongolia.

So far, our solutions for Problem 1 relied on the cases where the disks are Wegner
packed, i.e. efficiently packed. The following result shows that this is not always the case.

Theorem 6. Let MNKL be the smallest-area convex quadrilateral containing three effi-
ciently packed unit disks, and let P � be the 2 � 6 rectangle in which the disks are packed
linearly. Then kMNKLk > kP �k.

Proof. Let !i , i D 1; 2; 3, be the disks and Oi their centres. We know that jO1O2j D
jO2O3j D jO3O1j D 2. Let 4ABC be the tangent polygon of the disks such that A; B
are on the joint tangent of !1; !2, B; C are on the joint tangent of !2; !3 and C; A are
on the joint tangent of !3; !1. Let !1 \ AB D T1, !2 \ AB D T2, !2 \ BC D T3,
!3 \ BC D T4, !3 \ AC D T5 and !1 \ AC D T6. Further, let 4AA0A00 be such that
A0 2 AB , A00 2 AC and !1 is an excircle tangent to A0A00 on its midpoint. Let 4BB 0B 00

and4CC 0C 00 be defined analogously; see Figure 8.
Let us draw the section of the Maclaurin trisectrix for !1 and the AB-line ranging

between A00 and the reflection A with respect to T6. We call this curve the trisectrix for
.!1;AA

0/. Draw similarly trisectrices for .!1;AA00/, .!2;BB 0/, .!2;BB 00/, .!3;CC 0/ and
.!3;CC

00/. Let I1; I2; I3 denote pairwise intersections of these six curves. LetR1 2 .AA0/
be such that R1I3 is tangent to !1 by its midpoint. We define other points Ri , 2 � i � 6,
analogously. Let rij with i; j 2 ¹1;2;3º and i < j denote the radical axis of !i and !j , and
let O be their common intersection. Because of symmetry in our configuration, I1 2 r12,
I2 2 r23, I3 2 r13. Let r12 \ AB D P1 and r23 \ BC D P2.

Claim. MNKL 2 ¹A0BCA00; B 0CAB 00; C 0ABC 00; I1R3CR6; I2R5AR2; I3R1BR4º.

We assume thatMNKL is clockwise oriented. LetH be the convex hull of !1;!2;!3.
Then

kHk D � C 6C
p
3: (4)

By Theorem 3, we know that each side of MNKL is tangent to H on its midpoint. This
implies that each side is tangent to at least one of the disks. Since there are four sides and
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Figure 8. Tangent polygon of the three disks.

three disks, one disk must be tangent to at least two consecutive sides. Let these be MN
and ML. This implies M 2 4ABC . Let us first assume that M is located in the A-vertex
cap of4ABC , i.e. MN , ML are tangent to !1. We shall analyse the following cases.

(a) Assume M D A0. Then (by Theorem 3) L D A00, N is on the A0B-ray, while K is
on the A00C -ray. Since NK must be tangent toH , this implies N D B andK D C . So we
end up with A0BCA00. The case of M D A00 is treated analogously.

(b) Assume M is located in the A0-vertex cap of A0BCA00 with respect to !1. Then
L is located either in the same cap or in 4AA0A00, while N is either in the same cap or
in the region bounded by the trisectrix for .!1; AA00/ and A0T2, or on the T2B-ray. The
location of L implies that K must be either in the A-vertex cap or in the region bounded
by the trisectrix for .!1; AA0/ and AT5. In all cases, NK necessarily cuts at least one of
the disks. Thus, M cannot be in the A0-vertex cap of A0BCA00. Similarly, it cannot be in
the A00-vertex cap of A0BCA00.

(c) Assume M 2 int.4AA0A00/. Then N is located in one of the A0-vertex caps or the
interior of the region bounded by the trisectrix for .!1; AA00/ and A0T2. The former is not
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possible by (b). Then L is located in one of the A00-vertex caps or the interior of the region
bounded by the trisectrix for .!1; AA0/ and A00T5. Again, the former is not possible. The
position ofN impliesK is either in the B 00-vertex cap or above the B 00B 0-line. The former
case is not possible by (b). Similarly, the position of L implies K is located below the
C 0C 00-line. Let Q be the intersection of the B 0B 00-line and the C 0C 00-line. Our last two
conclusions imply that the K-vertex cap of MNKL contains4B 0QC 00, whose area is

k4B 0QC 00k D
4C
p
12

p
3

: (5)

Notice that kMNKLk > kHk C k4B 0QC 00k. On the other hand,

kA0BCA00k D
11C 6

p
3

p
3

: (6)

By using (4), (5), (6), we know

kMNKLk � kA0BCA00k > kHk C k4B 0QC 00k � kA0BCA00k > 0:

Thus, MNKL is not the smallest.
(d) Assume M 2 .R1A0/. Then L is on the section strictly between A00 and I3 of the

trisectrix for .!1; AA0/, while N is on the A0B-ray. The former conclusion implies K
is located above the BC -line and below the I3R4-line. Then NK can only be tangent
to !2. This in turn implies N 2 .T2B/. Then the distance from N to a point on the T2T3-
arc of !2 is much smaller than the distance from K to the same point. In particular, the
former distance is at most jBT3j D

p
3, while the latter distance is greater than jT3T4j D 4

(to see this, just project K to BC ). Thus, such MNKL can not be the smallest. Similarly,
M 2 .R6A

00/ gives a non-optimal solution.
(e) AssumeM 2 .AR1/. ThenL is in the interior of the region bounded by the trisectrix

for .!3; CC 00/. This implies K 2 int.4CC 0C 00/. We can repeat the argument in (c) to
reach a contradiction. Similarly, M 2 .AR6/; then we reach to a contradiction.

(f) Assume M D R1. Then L D I3, which implies K D R4. These imply MNKL D
R1BR4I3. Similarly, M D R6 implies MNKL D R6I1R3C .

(g) Assume M D A. Then N is on the T2B-ray and L is on the T5C -ray. Since both
NK and KL are tangent to H , we must have either L 2 T5C or N 2 T2B . First, assume
L 2 T5C . If L 2 .T5C/, then by the arguments above, we know that either L D C 0 or
LDR5. In the first case, we end up with ABC 00C 0 and in the second case with AR2I2R5.
If L D C , then MNKL D AB 00B 0C . Similarly, N 2 .T2B/ implies

MNKL 2 ¹B 0CAB 00; I2R5AR2; ABC
00C 0º:

Thus, we conclude that, when M is located in the A-vertex cap of4ABC ,

MNKL 2 ¹A0BCA00; B 0CAB 00; C 0ABC 00; I1R3CR6; I2R5AR2; I3R1BR4º:

A similar argument shows thatMNKL is one of these six polygons whenM is located in
the C -vertex cap or B-vertex cap of4ABC . This proves our claim.
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Symmetries in our configuration imply kA0BCA00k D kB 0CAB 00k D kC 0ABC 00k and
kI1R3CR6k D kI2R5AR2k D kI3R1BR4k. Then

kA0BCA00k D
11C 6

p
3

p
3

> 12 D kP �k:

Notice that kI3R1BR4k D kR1P1OI3kC kP1BP2OkC kP2CI3Ok. Since each of these
three quadrilaterals contains a unit disk and is non-regular, each has area greater than 4 by
Theorem 1. Then kI3R1BR4k > 12 D kP �k.

Remarks. By now, we know that nD 3, k D 4 is the first case where the disks are packed
non-efficiently inside the smallest containing polygon, when we order .n; k/ lexicograph-
ically.

4 Final discussions

Let us discuss some open problems. Because of Theorem 6, packing of n disks in the smal-
lest convex k-gon is not always the most efficient. However, by the Dowker inequality [8],
at any fixed location of the disks, the area of the smallest containing k-gon tends rather
fast to the area of its convex hull as k ! 1. This is a supportive fact for the efficient
packing to realize inside the smallest containing k-gon when k is large. It is believed that
efficient packing of n 2 N unit disks is a Groemer packing [5]. We can then ask whether
the packing of n disks in the smallest convex k-gon is always a Groemer packing?

The following assertion seems very plausible.

Conjecture 1. If n D m.mC1/
2

, i.e. the m-th triangular number, then the smallest triangle
containing n unit disks is the equilateral triangle of side 2.m � 1/C 2

p
3.

In Theorem 1 and Theorem 5 (b), we proved it formD 1;2;3, but our approach stopped
at m D 4, where the Wegner packing of 10 disks is not triangular; see Figure 3. One can
show that the smallest triangle containing two unit disks is the isosceles right triangle with
hypotenuse of length 6C 4

p
2, i.e. it is not equilateral. However, it is plausible that the

smallest triangle containing m.mC1/
2
� 1 unit disks with m > 2 is equilateral. These lead

to a new version of the long standing Erdős–Oler conjecture [18].

Conjecture 2. If n > 3 is a triangular number, then the smallest triangle containing n
disks is the same as that containing n � 1 disks.

In Theorem 5, we showed that if n is a centred hexagonal number, then the smallest
containing hexagon is regular. Then we can propose the following analogy of Conjecture 2.

Conjecture 3. If n 2 N is a centred hexagonal number, then the smallest hexagon con-
taining n disks is the same as that containing n � 1 disks.

The following assertion would simplify some of our proofs. Let P be the smallest
convex k-gon containing a convex disk C . Let P 1 be the convex polygon obtained after
cutting the largest (area) triangles from each cap of P so that P 1 still contains C . Is it
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true that minimality of P implies minimality of P 1? The answer is positive if C is a unit
disk, negative if C is the convex hull of two tangent unit disks and k D 3, but positive in
the latter case when k D 4 (see Theorem 5 (a)). What if C is an ellipse? Moreover, does
minimality of both P and P 1 imply minimality of the rest of members of the sequence
obtained by repeated application of the “greedy cut” procedure?

Finally, we are inclined to think that area and perimeter are close relatives, which raises
the question of solving Problem 1 for perimeter. While we can obtain a lower bound for
the perimeter from Theorem 4 by the isoperimetric inequality, such a bound is too loose.
The technique that we used in Section 3 is not applicable to the perimeter, as the perimeter
of a container is not separable into that of a convex hull of the disks and the remaining
regions. However, we hope to solve this problem in the future.
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