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Short note  On the universality of Somos’ constant

Jorg Neunhéuserer

Abstract. We show that Somos’ constant is universal in a sense that is similar to the
universality of the Khinchin constant. In addition, we introduce generalized Somos’
constants, which are universal in a similar sense.

1 Introduction and main result

Let us first recall the definition of the Khinchin constant

o0 .
1 logy i
K=TT(14——)"" = 2.6854520010... .

1:[1( +i(i+2))

By the famous theorem of Khinchin [3], this constant is universal in the following sense:
For almost all real numbers x, the geometric mean of the entries of the continued fractions
of x converges to K. We consider here Somos’ constant

o

o =] Vi = 1.66168794% ...,

i=1

which first appeared in [7] in the context of the quadratic recurrence g, = n gﬁ_l, see
also [1, page 446]. In the recent past, this constant raised some attention, see for instance
[2,4,6]. We will show that the Somos constant is universal in a sense that is similar to the
universality of the Khinchin constant. In [5], we represent real numbers x € (0, 1] in the
form

o0
X = {ny,na,n3,...) = Z o~ (nitnatetng)
k=1
with ny € N and show that the representation is unique. Replacing the continued fraction
representation by this representation, we obtain the universality of Somos’ constant.

Theorem 1.1. For almost all x = (ny,nz,ns,...) € (0, 1], we have

lim /niny ... n; =o.

1—>00
We will prove this theorem in the next section. In the last section, we will introduce

generalized Somos constants, which are universal with respect to a modification of the
representation used here.
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2 Proof of the main result

Consider the map T': (0, 1] — (0, 1], given by T'(x) = 2'x — 1 for x € (&, s1y] and i € N.

20 =T
The relation of this transformation to the expansion of real numbers, defined in the last
section, is given by the following lemma.

Lemma2.1. Letx = (ny,nz,ns3,...) € (0,1]. Forallk € N, we have T¥"1(x) € (%, 2%1]
ifand only if ny = 1.

Proof. Obviously, T ({ny,n,,ns,...)) = (na,n3,ng,...).Since x € (%, 2[%1] if and only
if ny = i, the result follows immediately. [

To apply Birkhoff’s ergodic theorem, we prove the following.

Proposition 2.1. The Lebesgue measure & is ergodic with respect to T .

Proof. For an open interval (a, b) C [0, 1], we have

T (a. b)) = B(U(% + 2l 22 + zl))

i=1

o0
=Y rte((5+ 55+ 7))

i=1
= 22_’(1) —Cl) =b—a= 8((a’b))
i=1

Hence (T~ 1(B)) = £(B) for all Borel sets B C (0, 1], which means that £ is invariant
under 7. Let B be a Borel set with £(B) < 1, which is invariant under T'; thatis 7 (B) = B.
Note that, for all k € N, the intervals of the form

Im1 ..... mk:{<nlan27n37"')|ni:mifori:17~-~’k}

build a partition of (0, 1], where the length of the partition elements is bounded by zlk By
Lebesgue’s density theorem, for every € > 0, there is an interval I = Iy, . m, such that
L(I\B) = (1 —€)&(I). Since T*(I) = (0, 1], we have

.....

L((0.1\B) = YT*(1\B) = (1 - LT (1) = 1 ~e.
Hence £(B) = 0. This proves that p is ergodic. |
Now we are prepared to prove Theorem 1.1. Let
o0
S) =Y log(i)xa/2t1/2-1(x),
i=1

where y is the characteristic function. By Lemma 2.1, we have f(T%~1(x)) = log(ny) for
x = (n1,n2,n3,...). Applying Birkhoff’s ergodic theorem to 7" with the L!-function f,
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we obtain

i i 1 oo
Jim = S togne) = fim 237 £ ) = [ dx = Y togir2”
k=1 k=1

i=1

for almost all x = (ny,n,,n3,...) € (0, 1]. Taking the exponential gives the result.

3 A generalization

Let b > 2 be an integer. It is easy to show that a real number x € (0, 1] has a unique
representation in the form

o0
x = (n1,n2,n3,...)p:=(b—1) Zb_("1+"2+'"+nk)
k=1

with n; € N; the argument can be found in [5]. Now 'consider the map Tp:(0,1] — (0, 1],
given by Tp(x) = bix — (b — 1) forx € (b — 1)b~", (b — 1)b' "] and i € N. Using the
argument in the last section with respect to Tp instead of 7', we obtain the following.

Theorem 3.1. For almost all x = (ny,n3,ns3,...)p € (0, 1], we have

e i
. b f-
lim {/nin,...n; = 1_[ Vib—1 =: gy.
i—00

i=1

We call oy, for b > 2 a generalized Somos constant. These constants are universal with
respect to the base b representation (ny, n,, ns,...)p. The generalization given here is
slightly different from the generalization of Somos’ constant studied in [8], which is not
related to universality.'

We end the paper with a nice expression of generalized Somos constants 0 using
values of the generalized Euler-constant function

v = Y (L tog(2EL)),

i=1

where |z| < 1.

Proposition 3.1. For all integers b > 2, we have

b
o — oY (/D).
b=

"They consider 4-1/c7.
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Proof. We have

y(l) _ i(b_ZH — b log(i + 1) 4 b log(i)>

i=1

b(z bl;l =Y b logli + 1)+ Y b7 log(i))

i=1 i=1 i=1

b b b
b(loe(; =) - bibl + ba—b1) = blOg((b— l)ab)

using
[ pi b 00 By .
X; - = log<m) and log(op) = X;b (b — 1) log(i).
1= 1=
Hence
b b b bhe—r(1/b)/b
y(1/b) _ d e?/b)/b — ; —
e ((b — l)ab) and e b= T)op given 0p b1 |

Estimates of y(%) can be found in [4].
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