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Short note On the universality of Somos’ constant

Jörg Neunhäuserer

Abstract. We show that Somos’ constant is universal in a sense that is similar to the
universality of the Khinchin constant. In addition, we introduce generalized Somos’
constants, which are universal in a similar sense.

1 Introduction and main result

Let us first recall the definition of the Khinchin constant
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By the famous theorem of Khinchin [3], this constant is universal in the following sense:
For almost all real numbers x, the geometric mean of the entries of the continued fractions
of x converges to K. We consider here Somos’ constant
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which first appeared in [7] in the context of the quadratic recurrence gn D ng2n�1, see
also [1, page 446]. In the recent past, this constant raised some attention, see for instance
[2, 4, 6]. We will show that the Somos constant is universal in a sense that is similar to the
universality of the Khinchin constant. In [5], we represent real numbers x 2 .0; 1� in the
form
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with nk 2 N and show that the representation is unique. Replacing the continued fraction
representation by this representation, we obtain the universality of Somos’ constant.

Theorem 1.1. For almost all x D hn1; n2; n3; : : : i 2 .0; 1�, we have

lim
i!1

i
p
n1n2 : : : ni D �:

We will prove this theorem in the next section. In the last section, we will introduce
generalized Somos constants, which are universal with respect to a modification of the
representation used here.
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2 Proof of the main result

Consider the map T W .0; 1�! .0; 1�, given by T .x/D 2ix � 1 for x 2 . 1
2i
; 1
2i�1

� and i 2N.
The relation of this transformation to the expansion of real numbers, defined in the last
section, is given by the following lemma.

Lemma 2.1. Let xDhn1;n2;n3; : : : i 2 .0;1�. For all k 2N, we have T k�1.x/2 . 1
2i
; 1
2i�1

�

if and only if nk D i .

Proof. Obviously, T .hn1; n2; n3; : : : i/D hn2; n3; n4; : : : i. Since x 2 . 1
2i
; 1
2i�1

� if and only
if n1 D i , the result follows immediately.

To apply Birkhoff’s ergodic theorem, we prove the following.

Proposition 2.1. The Lebesgue measure L is ergodic with respect to T .

Proof. For an open interval .a; b/ � Œ0; 1�, we have
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Hence L.T �1.B// D L.B/ for all Borel sets B � .0; 1�, which means that L is invariant
under T . LetB be a Borel set with L.B/< 1, which is invariant under T ; that is T .B/DB .
Note that, for all k 2 N, the intervals of the form

Im1;:::;mk D ¹hn1; n2; n3; : : : i j ni D mi for i D 1; : : : ; kº

build a partition of .0; 1�, where the length of the partition elements is bounded by 1

2k
. By

Lebesgue’s density theorem, for every � > 0, there is an interval I D Im1;:::;mk such that
L.InB/ � .1 � �/L.I /. Since T k.I / D .0; 1�, we have

L..0; 1�nB/ � L.T k.InB// � .1 � �/L.T k.I // D 1 � �:

Hence L.B/ D 0. This proves that � is ergodic.

Now we are prepared to prove Theorem 1.1. Let

f .x/ D

1X
iD1

log.i/�.1=2i ;1=2i�1�.x/;

where � is the characteristic function. By Lemma 2.1, we have f .T k�1.x//D log.nk/ for
x D hn1; n2; n3; : : : i. Applying Birkhoff’s ergodic theorem to T with the L1-function f ,
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we obtain
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for almost all x D hn1; n2; n3; : : : i 2 .0; 1�. Taking the exponential gives the result.

3 A generalization

Let b � 2 be an integer. It is easy to show that a real number x 2 .0; 1� has a unique
representation in the form

x D hn1; n2; n3; : : : ib WD .b � 1/
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with nk 2 N; the argument can be found in [5]. Now consider the map Tb W .0; 1�! .0; 1�,
given by Tb.x/ D bix � .b � 1/ for x 2 ..b � 1/b�i ; .b � 1/b1�i � and i 2 N. Using the
argument in the last section with respect to Tb instead of T , we obtain the following.

Theorem 3.1. For almost all x D hn1; n2; n3; : : : ib 2 .0; 1�, we have
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We call �b for b > 2 a generalized Somos constant. These constants are universal with
respect to the base b representation hn1; n2; n3; : : : ib . The generalization given here is
slightly different from the generalization of Somos’ constant studied in [8], which is not
related to universality.1

We end the paper with a nice expression of generalized Somos constants �b using
values of the generalized Euler-constant function
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where jzj � 1.

Proposition 3.1. For all integers b � 2, we have
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e�.1=b/=b :

1They consider b�1
p
�b .
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Proof. We have
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Hence

e.1=b/ D
� b

.b � 1/�b

�b
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b
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given �b D
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:

Estimates of . 1
b
/ can be found in [4].
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