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1 Introduction

Let .P/ be a property defined on the set of the natural numbers, and let An be the set
of positive integers less than or equal to n, where n is a positive integer. If an integer is
selected at random from An, then the probability �n that it satisfies .P/ is the number of
elements in An that satisfy .P/ divided by n. If the limit of �n when n tends to infinity
exists, this limit is called the natural density or asymptotic density of the integers satisfy-
ing .P/. Intuitively, this density measures how frequently an integer satisfies .P/. One can
define analogously the natural density on any infinite subset of the set of natural numbers.
Let us consider the following situation.

Man betrachte eine bestimmte Eigenschaft P der natürlichen Zahlen N und eine Par-
tition von N in disjunkte, unendliche Teilmengen Ei ; i 2 N, so dass in jedem Ei
nur endlich viele Zahlen die Eigenschaft P besitzen. Insbesondere ist die Dichte der
Zahlen mit der Eigenschaft P in jeder Teilmenge Ei gleich 0. Kann es sein, dass
trotzdem die Dichte der Zahlen mit der Eigenschaft P in N mindestens 1=2 be-
trägt? Auf den ersten Blick scheint dies paradox, obwohl es bei genauerer Betrachtung
einfach zu erklären ist. Dasselbe Phänomen zeigt sich auch im Kontext von algebrai-
schen Zahlen: Auch dort wurde eine Klasse algebraischer Zahlen mit einer Dichte von
1=�.3/ D 0:8319 : : : identifiziert, obwohl eine Zerlegung scheinbar nahelegt, dass die
Zahlen selten sind. Die Autoren der vorliegenden Arbeit gehen dem Phänomen auf den
Grund und formulieren interessante Anschlussfragen für die weitere Forschung.
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Let E be an infinite set on which a property .P/ is defined. Suppose that E D
S
i2I Ei

is a partition, where each Ei is infinite. Suppose also that, in each Ei , the number of
elements satisfying .P/ is finite. Then, clearly, the density of the elements satisfying .P/
is 0 in everyEi . Is it possible that the density of the subset ofE containing all the elements
satisfying .P/ will be at least equal to 1=2?

We were first confronted with this situation while reading the paper of Arno et al. [1].
In fact, it is in the paper [1] where it is shown that the density of certain algebraic numbers
in Q, which we will call Arno et al. numbers in Section 5, is equal to 1=�.3/. We have
partitioned Q in a way that suggests these Arno et al. numbers are rare. This phenomenon
struck us as contradictory, which lead us to consider the situation in greater detail. We
will show in the sequel, through two examples, that the answer to the above question may
be positive. At first glance, this problem resembles to the so called Simpson paradox in
probability and statistics. In this paper, when we say the density, we mean the natural
density.

2 First example

Let E D N n ¹0; 1º. In this set, the relation .P/ will be that x is even. For any i � 1, let

Ei D ¹2iº [ ¹2
ik C 1; k � 1 oddº:

The Ei constitute a partition of E; each class contains a unique element satisfying .P/. On
the other hand, the density in E of the elements satisfying .P/ is equal to 1=2.

Before producing the second example, we need to state, in the following section, some
results on the denominator and constant coefficient of an algebraic number. The reader
who is familiar with these notions may skip this section.

3 Denominator of an algebraic number

Let 
 be an algebraic number of degree n, and let

g.x/ D cnx
n
C cn�1x

n�1
C � � � C c1x C c0

be the unique irreducible polynomial with integral coefficients such that g.
/ D 0 and
cn > 0. This polynomial will be called the minimal polynomial of 
 over Z. Let

I D I.
/ D ¹k 2 Z; k
 an algebraic integerº (1)

Then I.
/ is a principal ideal of Z. Since cn
 is an algebraic integer, then cn 2 I.
/. Hence
I.
/ ¤ .0/. Let d > 0 be a generator of I.
/, then d is the smallest positive integer such
that d
 is integral. Moreover, d j cn. Call this integer d the denominator of 
 . Let � D d
 ,
then � is an algebraic integer, called the numerator of 
 . The leading coefficient cn of g.x/
will be called the leading coefficient of 
 . Denote by d.
/ and c.
/ the denominator and
the leading coefficient of 
 respectively.
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Proposition 1. Let 
 be an algebraic number of degree n, and let 
1; : : : ; 
n be the list of
its conjugates over Q. For any i D 1; : : : ; n, let si .E
/ D si .
1; : : : ; 
n/ be the elementary
symmetric function of degree i of the 
j . Let

J D J.
/ D ¹k 2 Z; ksi .E
/ 2 Z for i D 1; : : : ; nºI (2)

then J is a principal ideal of Z generated by c.
/. Moreover, c.
/ j dn.

Proof. Let c0 be a generator of J.
/, and let d D d.
/. Set 
 D �=d , where � is an
algebraic integer. Since

dnsk.
/ D d
n
X


i1 � � � 
ik D d
n
X

.�i1=d/ � � � .�ik=d/;

then dn 2 J.
/, thus c0 j dn. Let c D c.
/, and let g.x/ be the minimal polynomial of 

over Z, then

g.x/ D c.x � 
1/ � � � .x � 
n/

D c
�
xn � s1.
/x

n�1
C � � � C .�1/nsn.
/

�
D cxn � cs1.
/x

n�1
C � � � C .�1/ncsn.
/:

Since g.x/ 2ZŒx�, then csk.E
/ 2Z for k D 1; : : : ; n, hence c 2 J.
/, which implies c0 j c.
On the other hand, let

g1.x/ D c
0.x � 
1/ � � � .x � 
n/

D c0xn � c0s1.
/x
n�1
C � � � C .�1/nc0sn.
/ 2 ZŒx�:

Since g1.
/ D 0, then g.x/ divides g1.x/ in QŒx�. Set g1.x/ D g.x/q with q 2Q. Using
the content of polynomials, denoted by cont, we have cont.g1/ D q cont.g/ D q, hence
q 2 Z. The comparison of the leading coefficients leads to c0 D cq, hence c j c0. Finally,
we get c D c0.

Remark 2. We have shown that d.
/ j c.
/ and c.
/ j d.
/n, hence d.
/ and c.
/ have
the same prime factors.

Example 3. In the following example, we compare the denominator and the leading coef-
ficient. In particular, we look for the condition d.
/ D c.
/.

Let 
 D
p
2=.q2k/ with q positive and odd and k � 0. Here d.
/ D q2k . Moreover,


 is a root of the equation 22kq2
2 � 2 D 0 which is not always irreducible over Z. In the
different cases which follow, we make the minimal polynomial g.x/ of 
 over Z precise.
• k D 0, g.x/ D q2x2 � 2, hence d.
/ D q and c.
/ D q2 > d.
/ except if q D 1,

i.e. 
 D
p
2.

• k D 1 and q D 1. Here g.x/ D 2x2 � 1, d.
/ D c.
/ D 2.
• k D 1 and q � 2. Here g.x/ D 2q2x2 � 1, hence d.
/ D 2q, c.
/ D 2q2 > d.
/.
• k � 2 and q � 1. Here g.x/D 22k�1q2x2 � 1, hence d.
/D 2kq, c.
/D 22k�1q2 >

d.
/.
We thus get c.
/ D d.
/ if and only if 
 D

p
2 or 
 D

p
2=2. This example suggests

that we almost always have c.
/ > d.
/.
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4 Result of Arno–Robinson–Wheeler

These three authors have shown that the density in Q of the algebraic numbers 
 such that
c.
/ D d.
/ is equal to 1=�.3/ D 0:8319 : : : . These numbers will be called Arno et al.
numbers. The height of a polynomial with integral coefficients, P.x/ D akxk C � � � C a0,
is defined by H.P / D maxi jai j. The height of an algebraic number is the height of its
minimal polynomial over Z. To prove their result, Arno et al. define the sets

Ad .H/ D ¹
 2 Q; deg.
/ D d; and H.
/ � H º;
OAd .H/ D ¹
 2 Ad .H/º; c.
/ D d.
/º;

whereH is a positive integer andH.
/ denotes the height of 
 . After obtaining an asymp-
totic formula of j OAd .H/j=jAd .H/j, they deduce that

lim
d!1

lim
H!1

ˇ̌̌[
k�d

OAk.H/
ˇ̌̌ıˇ̌̌[

k�d

Ak.H/
ˇ̌̌
D 1=�.3/:

This result makes appear that the Arno et al. numbers are very frequent in the set of the
algebraic numbers. In the sequel, we define a partition of Q which suggests that the Arno
et al. numbers are rare. With the characterizations of d.
/ and c.
/ given above, this result
of Arno et al. seems surprising. Actually, d.
/ is the smallest positive integer d such that
d
 is an algebraic integer. In contrast, c.
/ is the smallest positive integer c such that all
the products

c.
1 C � � � C 
n/; c.
1
2 C � � � C 
n�1
n/; : : : ; c
1 � � � 
n

are rational integers. For the first product, we clearly see that c may be replaced by d , but
for the others? Arno’s et al. result tells us that it is also true with a high probability.

5 Second example

Definition 4. Let K be a number field of degree n over Q, � an algebraic integer of K,
and f .x/D xn C an�1xn�1 C � � � C a1x C a0 the characteristic polynomial of � over Q.
The norm of � over Q, denoted by NQ.�/=Q.�/, is defined by NQ.�/=Q.�/ D .�1/

na0.

Proposition 5. Let 
 D �=d be an algebraic number of degree n � 2, where � is an alge-
braic integer and d D d.
/. Suppose 
 is an Arno et al. number, then dn�1 j NQ.�/=Q.�/.

Proof. Let
f .x/ D xn C an�1x

n�1
C � � � C a1x C a0

be the minimal polynomial of � over Q. Since f .d
/ D 0, we have

d
n C an�1

n�1
C � � � C .a1=d

n�2/
 C .a0=d
n�1/ D 0:

The minimal polynomial of 
 over Z has the form

g.x/ D dxn C cn�1x
n�1
C � � � C c1x C c0:
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It follows that g.x/ divides the polynomial

dxn C an�1x
n�1
C � � � C .a1=d

n�2/x C .a0=d
n�1/:

in QŒx�. Let q 2 Q such that

dxn C an�1x
n�1
C � � � C .a1=d

n�2/x C .a0=d
n�1/ D qg.x/:

Identifying the leading coefficients, we get q D 1, and since c0 is an integer, dn�1 j a0.

Make a partition of Q n Q by putting in the same class, say C.�/, all the algebraic
numbers whose numerator is equal to the algebraic integer � . The preceding proposition
shows that any class C.�/ contains a finite number (may be 0) of Arno et al. numbers. We
thus have a second example of a set, namely Q nQ, and the property .P/ states that 
 is
an Arno et al. number.

We have excluded from Q the rational numbers because they are Arno et al. numbers
and any corresponding class C.�/ is infinite.

One may think that the Arno et al. numbers are mostly frequent when their degrees are
large enough. But, let 
 D �=d be an Arno et al. algebraic number of degree n. Let q be
a positive integer divisible by some prime number p such that p − NQ.�/=Q.�/, then, by
the preceding proposition, the number 
q D �=q has the same degree as 
 and generates
the same field, but it is not an Arno et al. number. Obviously, the number of 
q’s is infinite.

6 Denominator and leading coefficient in the formal case

Proposition 6. Let t0; t1; : : : ; tn; x be algebraically independent variables over Z, and let

G.x/ D tnx
n
C � � � C t1x C t0 2 ZŒt0; t1; : : : ; tn�Œx�:

Set Et D .t0; t1; : : : ; tn/. Let � be a root of G.x/ in an algebraic closure of Q.Et /. Let

I D ¹D.Et / 2 ZŒEt �; D� is integral over ZŒEt �ºI

then I is a principal ideal of ZŒEt � generated by tn.

Proof. Obviously, tn 2 I . Let D.Et / 2 I , then, since

tn�
n
C tn�1�

n�1
C � � � C t1� C t0 D 0;

we have

.D.Et /�/n C
tn�1D.Et /

tn
.D.Et /�/n�1 C � � � C

t1D.Et /
n�1

tn
.D.Et /�/C

t0D.Et /

tn
D 0I

hence tn j D.Et /, and thus I D tnZŒEt �.
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This proposition shows that if � is a root of the generic polynomial, then its denomina-
tor and leading coefficient are equal. Since the minimal polynomial over Z of any algebraic
number may be obtained by specializing the coefficients of the generic polynomial, it is
tempting to conclude that this confirms the result of Arno et al.

Question. Is it possible to find an uncountable set E and a property .P/ satisfying the
conditions stated in the introduction?

If the indexing set I is countable, then the set F of elements of E satisfying .P/, being
a countable union of finite sets, is itself countable. So its density in E is 0. The question
remains for E and I uncountable. Our feeling is that the answer is negative.
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first example.
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