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1 Introduction

The authors of [1] (along with obtained interesting results) posed the following conjecture.

Conjecture 1 (A. Akopyan and V. Vysotsky [1]). Let y be a curve such that its convex
hull covers a planar convex figure K. Then length(y) > per(K) — diam(K).

It should be noted that this conjecture has been proved in the case when y is passing
through all extreme points of K (see [1, Theorem 7]). This note is devoted to the proof of
the above conjecture in the general case. Figures 1 and 2 show the difference between the
general case and the special case mentioned above.

We identify the Euclidean plane with R? supplied with the standard Euclidean met-
ric d, where d(x, y) = /(x1 — y1)? + (x2 — y2)?. For any subset A C R?, co(A) means
the convex hull of A. For any points B, C € R2, [B, C] denotes the line segment between
these points.

Arseniy Akopyan und Vladislav Vysotsky dusserten 2017 im American Mathematical
Monthly folgende Vermutung: Wenn die konvexe Hiille einer ebenen Kurve y eine
ebene konvexe Figur K iiberdeckt, dann gilt length(y) > per(K) — diam(K). Das
heisst, die Linge der Kurve y wird von unten durch den Umfang und den Durch-
messer der Figur K abgeschitzt. Die Autoren der vorliegenden Arbeit beweisen diese
Ungleichung. Sie identifizieren zudem alle Fille, in denen Gleichheit auftritt. Die Ab-
schitzung mag auf den ersten Blick harmlos erscheinen, dennoch mussten die Autoren
fiir den Beweis recht tief in die mathematische Werkzeugkiste greifen. Es wire inter-
essant, Analogien dieser Ungleichung in euklidischen Raumen der Dimension drei und
hoher aufzustellen.



https://creativecommons.org/licenses/by/4.0/

Y. Nikonorov and Y. Nikonorova 160

14 14
K K
Figure 1. Illustration to the case when y is passing Figure 2. Illustration to the case when y is not passing
through all extreme points of K. through some extreme points of K.

A convex (planar) figure is any compact convex subset of R2. We shall denote by
per(K), bd(K) and int(K), respectively, the perimeter, the boundary, and the interior of
a convex figure K. Note that the perimeter of any line segment (i.e. a degenerate convex
figure) is assumed to be equal to its double length. Note also that the diameter

diam(K) := max{d(x,y) | x,y € K}

of a convex figure K coincides with the maximal distance between two parallel support
lines of K. Recall that an extreme point of K is a point in K which does not lie in any open
line segment joining two points of K. The set of extreme points of K will be denoted by
ext(K). It is well known that ext(K) is closed and K = co(ext(K)) for any convex figure
K C R%

A planar curve y is the image of a continuous mapping ¢: [a, b] C R — R2. From
now on, we will call planar curves simply curves for brevity, since no other curves are
considered in this note. As usual, the length of y is defined as

length(y) == sup{z d(p(ti-1), ‘P(Ii))}’

i=1
where the supremum is taken over all finite increasing sequences
a=ig<i1 <+ <ip1<im=Db

that lie in the interval [a, b]. A curve y is called rectifiable if length(y) < oo.

We call a curve y C R? convex (closed convex) if it is a closed connected subset of the
boundary (respectively, the whole boundary) of the convex hull co(y) of y.

Let us consider the following example.

Example 1. Suppose that the boundary bd(K) of a convex figure K is the union of a line
segment [A, B] and a convex curve y with the endpoints 4 and B. Then K C co(y) and
length(y) = per(K) — d(A, B). Moreover, length(y) = per(K) — diam(K) if and only if
d(A, B) = diam(K).

The main result of this note is the following.
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Figure 3. If K is a circular segment with the arc y and Figure 4. If K is a circular segment with the arc y and
the central angle subtending the arc is at most , then the central angle subtending the arc is greater than 7,
the equality length(y) = per(K) — diam(K) holds. then the inequality length(y) > per(K) — diam(K)
holds.

Theorem 1. For a given convex figure K and for any planar curve y with the property
K C co(y), the inequality

length(y) > per(K) — diam(K) (1)

holds. Moreover, this inequality becomes an equality if and only if y is a convex curve,
bd(K) = y U [A4, B], and diam(K) = d(A, B), where A and B are the endpoints of y.

Figures 3 and 4 illustrate the fulfillment of the equality in the inequality length(y) >
per(K) — diam(K) for circular segments.

Remark 1. Since obviously per(K) > 2 diam(K), inequality (1) immediately implies the
following widely known inequality: length(y) > % per(K); see e.g. [4].

The strategy of our proof is as follows. We fix a convex figure K C R2. Then we prove
the existence of a curve yy of minimal length among all curves y satisfying the condition
K C co(y) (Section 2). After that, we prove the inequality length(y) > per(K) — diam(K)
and study all possible cases of the equality length(y) = per(K) — diam(K), where y, is an
arbitrary curve of minimal length among all curves y satisfying the condition K C co(y)
(Section 3). This allow us to get the proof of Theorem 1 in Section 4.

2 Some auxiliary results

To prove the desired results, we first recall some important properties of curves and convex
figures.

Let us recall the following useful definition. A sequence of curves {y; };en converges
uniformly to a curve y if the curves y; admit parameterizations with the same domain that
uniformly converges to some parameterization of y. We will need the following result (see
e.g. [3, Theorem 2.5.14]).
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Proposition 1 (Arzela—Ascoli theorem for curves). Given a compact metric space, any
sequence of curves which have uniformly bounded lengths has a uniformly converging
subsequence.

We also note one important property (the lower semi-continuity of length) of the limit
curve in the above assertion (see e.g. [3, Proposition 2.3.4]).

Proposition 2. Suppose that a sequence of rectifiable curves {y;}ieNn Which converges
pointwise to y (with respect to parameterizations with the same domain) is given. Then
the inequality lim inf;_, o, length(y;) > length(y) holds.

The following property (of the monotonicity of perimeter) of convex figures is well
known (see e.g. [2, § 7]).

Proposition 3. If convex figures K1 and K in the Euclidean plane are such that K; C K,
then per(K,) < per(K>), and the equality holds if and only if K1 = K.

We need also the following well-known result (it could be proved using the Crofton
formula; see e.g. [1, pp. 594-595]).

Proposition 4. Let ¢: [c,d] — R be a parametric continuous curve with ¢(c) = ¢(d).
Then the length of the curve y = {@(t) | t € [c, d]} is greater than or equal to per(co(y)).
Moreover, the equality holds if and only if y is a closed convex curve.

Now, we are going to prove the following.

Proposition 5. For a given convex figure K C R?, there is a curve yo of minimal length
among all curves y satisfying the condition K C co(y).

Proof. If int(K) = @, then the proposition is trivial. In what follows, we assume that
int(K) # 0. Denote by A(K) the set of all planar curves y such that K C co(y). Let
us consider M = inf{length(y) | y € A(K)}. It is clear that M < per(K) since bd(K)
could be considered as a curve y. Now, we consider the sequence of curves {y; };en from
A(K) such that length(y;) — M as i — oco. Without loss of generality, we may assume
that length(y;) < M + 1 foralli =1,2,3,....

Let us take a point O € int(K). There is > 0 such that the ball with center O and
radius r is inside K. For a fixed i € N, we consider the point C; € y; such that d(C;, O) =
max{d(x, O), x € y;} and the straight line /; passing through O is perpendicular to the
straight line OC;. Since K C co(y;), there is a point D; € y; such that the line segment
[C;, D;] intersects /;. This means that

M + 1 > length(y;) > d(C;, D;) > d(C;, 0) > r > 0.
It implies that M > r > 0 and
i CB(O,M +1):={xeR? d(x,0) <M +1}.

Since the ball B(O, M + 1) is compact and the lengths of the curves y;,i = 1,2,3,...,
are uniformly bounded, then the sequence {y;} has a uniformly converging subsequence
by Proposition 1. Passing to a subsequence if necessary, we can assume that the sequence
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Figure 5. Illustration to Remark 3: a non-convex shortest curve y.

{yi}ien converges uniformly to some curve yq. Since K C co(y;) fori =1,2,3,...,
then K C co(yp) too. The lower semi-continuity of length (see Proposition 2) implies
M = lim;_, o length(y;) > length(yy), and therefore, length(yg) = M. This proves the
proposition. ]

Remark 2. Note that the curve y, in Proposition 5 may not be unique. For instance, if K
is an equilateral triangle, then the union of any two of its sides is such a curve.

Remark 3. Note also that the curve y, in Proposition 5 could be non-convex. For instance,
let K be the parallelogram ABCD C R? with A = (0,0), B = (1,1),C = (t + 1,1)
and D = (¢,0), where ¢t > 1. It is easy to see that the broken line ABCE with E =
(t + 1,0) is one of the shortest convex curves, whose convex hull covers K, and its length
is 1+ 42+ t; see Figure 5. On the other hand, the length of the broken line ABDC
(whose convex hull is K) is equal to 2+/2 4+ +/2 — 2t + 2. It is easy to check that

2V24+ V220412 <14+ V241 fort > (324 2)/4 ~ 1.5606.

The above discussion leads to the following natural problem.

Problem 1. Give a comprehensive description of the class of planar curves y with the
following property: there is a compact convex figure K C R? such that y is the shortest
curves among all curves, whose convex hulls cover K.

In the next section, we give more detailed information about any curve of shortest
length among all curves y satisfying the condition K C co(y) for a given K.

3 Some properties of shortest curves y with K C co(y)

Let U C R? be a convex figure. We say that a straight line / C R? divides U into U;
and U, if Uy and U, are convex figures lying in different half-planes relative to / such that
U=U1UU2andUlﬂU2=Uﬂl.

We need the following two simple results.

Lemma 1. Let U C R? be a convex figure, and let us consider some points E, F € ext(U).
Then the straight line | = EF divides U into convex figures Uy and U, such that

U =coext(U)NU;), i=1,2.
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Figure 6. Illustration to Lemma 2: the convex figure U and AA; AA;.

Proof. 1tis clear that co(ext(U) N U;) C U;. Let us suppose that co(ext(U) N U;) # U;.
Then there is a point C € ext(U;) such that C ¢ co(ext(U) N U;). On the other hand,
ext(U;) C ext(U), and we obtain the contradiction. |

Lemma 2. Let U C R? be a convex figure. Let us suppose that a point A ¢ U and points
A1, Ay € U are such that the straight lines AA, and AA, are support lines for U and
AAy L AA,. Then d(A, Ay) + per(U) > per(co(U U {A})).

Proof. Let us consider the triangle 41 AA5, and let y* be a part of bd(U) between the
points A; and A, such that U C co(y* U {A}) (Figure 6). It is clear that

bd(co(U U {A})) = y* U[A, A1] U [A, 4,].

It is also clear that per(U) — length(y*) is the length of the part of bd(U) complementary
to y* between the points A; and A;; hence, per(U) — length(y*) > d(A41, A2) > d(A, A3),
and we get

d(A, Ay) +per(U) > d(A, A1) + length(y™*) + d (A, A2) = per(co(U U {A4})),
which proves the lemma. ]

Let us fix a curve y with an arc length parameterization ¢(¢), ¢ € [a, b], such that
K C co(y) and it has minimal possible length among all curves with this property. We put
A= ¢(a), B = ¢(b) and K := co(y).

Lemma 3. In the above notation, A, B € ext(K) and A # B. Moreover, K N [A, B] # 0.

Proof. Let us suppose that A ¢ ext(K); then there is a sufficiently small & > 0 such that
o(la,a +¢])N ext(K) = ) (recall that ext(K) is a closed set in R?). Hence, if we modify
yupto y; :={p) |t € [a + & b]}, then we get a shorter curve with the same convex
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hull. This contradictions shows that A = ¢(a) € ext(]? ). Similar arguments imply that
— ¢(B) € ext(K).

Suppose that B = A. Let us consider a support line /; for K through the point B.
Since B € ext(K ), we may take a point C € /1 and a support line /5 for K through C
such that C ¢~K and /> is perpendicular to /1. Now, take a point D € K N I,. Let y* be
a part of bd(K) between the points B and D such that K C co(y* U [C, D]). Lemma 2
and Proposition 4 imply d(C, D) + length(y*) < per(K) < length(y). Hence, the curve
y* U[C, D] is shorter than y, and we get a contradiction due to K C co(y* U [C, D]).
Therefore, B # A.

Let us suppose that K N [A, B] = 0. Then the distance min{d(x,y) | x € K,y €1}
between K and the straight line AB =: [ is positive (recall that K C K and A, B are
extreme points of K). Therefore, K C co{y (1) | 1 € [a + £,b — €]} C co(y) for sufficiently
small & > 0. Since the curve y, := {Y(t) | t € [a + &, b — ¢]} is shorter than y, we get
a contradiction. This proves that K N [A, B] # @. |

Proposition 6. Let us consider a, B € [a, b] such that ¢(a), p(B) € ext(IZ). Then one of
the following assertions holds:

(D) [p(@). ¢(B)] € bd(K);
(2) the straight line | through the points ¢(a) and ¢(B) divides K into Ky and K
such that (K; \ [p(@),o(B)DNK #0,i =1,2.

Proof. Let us suppose that [¢p(«), (B)] € bd(f) then every K;,i =1,2,hasa point C;
from ext(K) \{p(a), p(B)}. It is clear that C; = ¢(fo) for some 79 € [a, b].

If (Ki \ [p(@). ¢(B)]) N K =@, then K C co(ext(K ), j €{1,2}\ {i}, by Lemma 3.
Now, we will show how one can modify y to a curve y; which is shorter than y, but
K C co(yy).

If 1o = a (o = b), then we can take a sufficiently small & > 0 such that

o(la,a+e))Nl =@ (respectively, ([b —e,b]) NI = B).

Then we see that K C co(ext([?j)) C co(y1), where y; = {@(t) | t € [a + ¢, b]} (respec-
tively, y1 = {¢(t) | t € [a,b — €]}). Hence, we have found a curve that is shorter than y
and whose convex hull contains K, which is impossible.

If 7o € (a, b), then we can take 1,1 € [a, D], 11 < 12, such that #p € (11,12) and
o([t1,t2]) NI = B. Since ¢(tp) € ext(K), then ¢([t1, to]) # [¢(t1), ¢(t2)]. Now, we con-
sider a curve y, = (¥ \ ¢([t1,%0])) U [¢(t1), ¢(t2)]. Obviously, y, is shorter than y, but its
convex hull still contains K. This contradiction proves the proposition. ]

Corollary 1. Suppose that ¢(to) is an extreme point of K and it is not isolated in the set
ext(K). Then ¢(ty) € K.

Proof. Let us take a sequence {/n}neN, In € [a, b], such that all points ¢(#,) are extreme
for K, ¢(tn) # ¢(10), [p(t0), ¢(1x)] € bd(K), and ¢(t,) — ¢(to) as n — oo. By Propo-
sition 6, the straight line /,, through the points ¢(#,) and ¢(fo) divides K into two convex
figures; each of them contains some point of K. Let K, be a one of these two figures,
which has a smaller diameter. It is clear that dlam(K )—>0asn — 0. IfCy, € K, NK,
then C,, — ¢(tp) as n — o0. Since K is closed, we get ¢(ty) € K. |
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By Lemma 3, the points A and B are extreme points of K. If A (respectively, B) is
not an isolated point in the set ext(K), then 4 € K (respectively, B € K). The following
proposition deals with the case when A (or B) is isolated in ext(K).

Proposition 7. If A = ¢(a) is isolated in ext(l? ), then there are 11, 15 € (a,b], 11 < 12,
such that the following assertions hold:

(1) [A, ¢(r1)] U [A, ¢(12)] covers some neighborhood of A in bd(IZ);

2 e(la, u1]) = [4, o(x)];

3) ¢([a, 12]) U [A, ¢(12)] is a closed convex curve;

@ [A,p(t)] N K #0;

(5) the angle between the line segments [A, ¢(t1)] and [A, p(12)] is equal to 7 /2.
Similar results hold for B = ¢(b) if it is isolated in ext(K).

Proof. Since the point 4 is extreme in K and isolated in~ext(1?), then there are points
Ay, Ay € ext(K) C bd(K) such that [A4, A1],[A, A2] Cbd(K) and [A4, A;] U [A, A3] covers
some neighborhood of A4 in bd(K~) (roughly speaking, A; and A, are closest extreme
points to A with respect to different directions on bd([g )). It is clear that Ay = ¢(t1) and
Ay = ¢(1p) for some 11, 75 € (a, b]. Without loss of generality, we may suppose that
0< 71 < Tp.

Let us consider the following closed curves:

1 =9¢(a, u) U4, o(x)], y2 = ¢(a,2]) U[4, p(r2)].

By Proposition 4, we get that length(y1) > per(co(y1)) and length(y2) > per(co(y2)).
Since [A4, A1],[A, A2] C bd(K), then [A4, A1] C bd(co(y;)) and [A4, A5] C bd(co(y2)). Due
to the inclusion y; C co(y;), i = 1,2, we may replace the curve y with the curve

Vi = ¢([ri.b]) U (bd(co(yi)) \ [4. 4i])

with the same convex hull K. Since y has minimal length among all curves whose convex
hull covers K, we get length(y;) = per(co(y;)) by Proposition 4. It means that y; and y,
are closed convex curves by Proposition 4 (see Figure 7).

Aq

A Az

Figure 7. Illustration to the proof of Proposition 7: the curves y; and y».
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Since A, A1 € co(yz), then [A, A1] C co(y2). On the other hand, [4, A;] C bd(K~).
Since co(yz) C K, we get [4, A;] C bd(co(yz)). It implies that [4, A;] = ¢([a, 71]) and
[A4, A2] # ¢([a, t2]). Therefore, assertions (1)—(3) are proved.

Let us prove (4). If [4, ¢(71)] N K = @, then there is ¢ > 0 such that co(¢([a, t1 + €]))
and K are situated in different half-planes with respect to some straight line. Therefore,
K C co(ys3), where y3 := ¢([t1 + &,b]) U [4, ¢(t1 + &)]. On the other hand, y; is shorter
than y (recall that ¢(t;) is extreme in K; hence, ¢([a, 71 + €]) # [A, ¢(t1 + ¢)]). This
contradiction implies [4, ¢(t1)] N K # @.

Finally, let us prove (5). If ZA; AA, # 7/2, then we can take A’ € [A, A1] such that
A" # A and d(A, A') is less than the distance from A to K. Then A’ = ¢(z’) for some
7’ € (a, 71). Now, take a point A” € [A, A,] such that [4’, A”] is orthogonal to [4, A45].
If we consider y4 := ¢([t/, b]) U [A’, A”], then K C co(ys) and length(ys) < length(y)
(since the leg is shorter than the hypotenuse in any right triangle). This contradiction shows
that LZA1AA, = 7T/2.

Similar results for the point B we get automatically, reversing the parameterization of
the curve y. The proposition is completely proved. ]

Proposition 8. In the above notation, let 1 be the smallest number in T, and let 1, be
the largest number in T, where T = {t € [a,b] | ¢(t) € K}. Then the following inequality
holds:

length(y) + d(¢(11), ¢(n2)) > per(K) > per(K).

Proof. Since K C K, then the inequality per(f ) > per(K) follows directly from Propo-
sition 3. Therefore, it suffices to prove the inequality

length(y) + d(¢(11), ¢(12)) > per(K). )

We have ¢([a, m1]) = [A. ¢(n1)] C bd(K) and ¢([n2, b]) = [¢(n2). B] C bd(K) by
Proposition 7. Proposition 7 also implies that there is 6; € (a, b] such that [A4, ¢(n;)] U
[A, ¢(6;)] covers a neighborhood of A in bd(K) if A ¢ K and there is 0, € [a, b) such that
[B, ¢(n2)] U [B, ¢(62)] covers a neighborhood of B in bd(IZ) if B ¢ K (note that 6; = b
if and only if 6, = a).

Let us consider y = ¢([n1, n2]) and K = co(7). Note that K C K and K contains all
extreme points of K with the possible exception of points A and B (the latter is possible
only if A or B is not in K). Therefore, K = co(K U {A, B}).

Since ¥ U [¢(n1), ¢(n2)] is a closed curve, Proposition 4 implies the inequality

length(P) + d(¢(11), 9(12)) > per(K). 3)

Let us consider the following four cases: (1) A, B € K, (2) exactly one of the points A
and Bisin K, (3) A,B ¢ Kand@lfb,@)A,B ¢ K and 0, = b.
In case (1), we have y = ¥ and K = K; hence, (3) implies

length(y) + d(¢(m). p(n2)) > per(K),

and we got what we need.
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Let us consider case (2). Without loss of generality, we may assume that B € K (hence,
n, =b and ¢(n2) = B)and A ¢ K. Hence, K= co(I? U {A}). Let us consider the triangle
A1 AA,, where A1 = ¢(n1) and A, = ¢(6;). By Proposition 7, we have ZA1 AA, = /2.
Since A1, A, € bd(]?) N7, we get that Ay, A € bd(l?). Then (3) and Lemma 2 imply

length(y) + d(¢(n1), ¢(n2)) = d(A, Ay) + length(¥) + d(¢(n1). ¢(12))
> d(A, Ay) + per(K) > per(K),
which proves (2).
To deal with case (3), consider the triangles A; AA, and By BB,, where A1 = ¢(n1),

Az = ¢(01), By = ¢(n2) and B, = ¢(6,). By Proposition 7, LA1AAy=/LBBB, = /2.
Note that 6; < 1, and n; < 6,. Since A1, A, By, B> € bd(K) N ¥, we get that

A1, Az, B1, B, € bd(K).
Then (3) and Lemma 2 imply

length(y) + d(¢(n1), ¢(n2)) = d(A, A1) + d(B, B1) + length(y) + d(¢(n1), ¢(12))
> d(A, A1) + d(B, By) + per(K)
> d(A, Ay) + per(co(K U {B}))
> per(co(co(K U {B}) U {A4}))
= per(co(KA U {4, B})) = per(K),
which proves (2). 5
Finally, let us consider case (4). In this case, we have [4, B] C bd(K), A, = B and
A = B,. Let us consider the quadrangle AA; BB, where A1 = ¢(n1) and By = ¢(12).
By Proposition 7, we Llave /A AB = /B1BA = 7/2. Since A1, By € bd(K) Ny, we
get that A1, By € bd(K).

We denote by y3 a part of bd([?) between A; and A such that K C co(ys U {4, B})
(see Figure 8). It is clear that

bd(K) = y3 U[A4, A;] U [B, Bi] U [4, B].

Al Bl

A B

Figure 8. Illustration to case (4) in the proof of Proposition 8.
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Note that per(]?) — length(ys) is the length of the curve (bd(]?) \ y3) U {41, By}, con-
necting the points A; and B;. Hence, per(K) — length(ys) > d(A1, B1) > d(A, B), and
we get
length(y) + d(¢(m). ¢(n2)) = d(A. Ay) + d(B. By) + length(y) + d(¢(m1). ¢(12))
> per(K) + d(A, Ay) + d(B, By)
> length(ys) + d(A, B) + d(A, A1) + d(B, By)
= per(K).

Hence, we have proved (2) for all possible cases. The proposition is proved. ]

Remark 4. We see from the above proof that the equality

length(y) + d(¢(11), ¢(n2)) = per(K)

is fulfilled if and only if ¢([a, b]) U [4, B] is a convex curve (that coincides with bd(K))
and the quadrangle AA; B; B, where A1 = ¢(11) and A, = ¢(61), is a rectangle (in par-
ticular, A; = A and B; = B). Consequently, since per(IZ ) = per(K) implies K = K, the
equality
length(y) 4 d(¢(11), ¢(112)) = per(K)

is fulfilled if and only if ¢([a, b]) U [4, B] = bd(K).

Since diam(K) > d(¢(11), ¢(172)), then Proposition 8 and Remark 4 imply the follow-
ing corollary.

Corollary 2. If a curve y has shortest length among all curves whose convex hulls cover
a given compact convex figure K, then the following inequality holds:

length(y) + diam(K) > per(K).

Moreover, the equality in this inequality is fulfilled if and only if y is convex, bd(K) =
y U [A, B] and diam(K) = d(A, B), where A and B are the endpoints of the curve y.

4 Proof of Theorem 1

Let us fix a convex figure K C R2. By Proposition 5, there is a curve yo of minimal length
among all curves y satisfying the condition X C co(y). By Corollary 2, we get

length(y) + diam(K) > length(yy) + diam(K) > per(K)

for any curve y such that K C co(y), which proves (1). We have the equality in (1) if
and only if length(y) = length(yo) (hence, we may assume that y = y, without loss of
generality), y is convex, y U [4, B] = bd(K) and diam(K) = d(A, B), where A and B are
the endpoints of the curve y. Therefore, we obtain just convex figures K and corresponding
curves y exactly as in Example 1.
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