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1 Introduction

E. E. Moise [8, p. 415] observed that the existence of an area function in an absolute plane
such that the area of a triangle depends only on its base and its altitude is equivalent with
the existence of a rectangle in that plane. This result, with continuity being taken as one of
the axioms of absolute geometry, was re-proved in [13].

A like-minded result can be inferred from O. Bottema’s analysis in [2] of the ratios
in which the intersection point G of the medians of a triangle divides a given median. By
means of computations in the hyperbolic plane, Bottema showed that, while it is possible
for G to divide one median in the ratio 1 W 2 (which is the case in Euclidean geometry), it
cannot divide two medians in that 1 W 2 ratio. One can thus conclude that, if there exists

Die euklidische Natur einer Ebene kann inzidenzgeometrisch in der Formulierung des
klassischen Parallelenaxioms ausgedrückt werden, oder aber metrisch durch die For-
derung der Existenz eines Rechtecks. Die inzidenzgeometrische Form ist, wie Max
Dehn 1900 bewiesen hat, stärker als die metrische Form, die im vorliegenden Beitrag
mit R bezeichnet wird. Der Autor zeigt nun die Gleichwertigkeit von R mit zwei Aus-
sagen, nämlich „es gibt zwei nicht-kongruente Dreiecke gleichen Flächeninhalts“ und
„es gibt ein Dreieck, dessen Seitenhalbierenden sich im Verhältnis 1 W 2 schneiden“.
Die absolute Geometrie bezüglich der die Gleichwertigkeit der ersten Aussage gilt, ist
diejenige der nicht-elliptischen metrischen Ebenen, in denen jedes Punktepaar einen
Mittelpunkt hat, und für die zweite Aussage die der metrischen Ebenen, die eingehend
von Friedrich Bachmann in seinem Buch Aufbau der Geometrie aus dem Spiegelungs-
begriff untersucht wurden.
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a triangle in an absolute plane in which the point of intersection of two medians divide
each median in the ratio 1 W 2, then there exists a rectangle in that plane.

Our aim in this note is to prove these two results under the weakest imaginable assump-
tions regarding the “absolute plane”.

In the case of the first result, we need to first elucidate what we mean by “area”. While
the notion of area can be made precise in Hilbert’s plane absolute geometry A (the model
of which will be referred to as Hilbert planes), whose axioms are the plane axioms of
groups I, II, and III of Hilbert’s Grundlagen der Geometrie (Foundations of Geometry) [5],
as shown in [3], we will be looking for an even more general setting. We will be interested
only in the area equality of two triangles with a common side, as we aim to show that, even
if there exist two non-congruent triangles sharing a side and having congruent altitudes to
that common side that have the same area, then there must exist a rectangle. Two triangles
ABC and AB 0C in a Hilbert plane with Euclidean metric (that is, a Hilbert plane in which
there is a rectangle) have the same area if and only if the altitude from B to AC and the
altitude from B 0 to AC are congruent. In the case with non-Euclidean metric (that is, if
there is no rectangle in the Hilbert plane), triangles ABC and AB 0C have the same area
if and only if the sum of the angles is the same in both triangles (see [3] for more on area
in the case of a non-Euclidean metric).

While in the form stated above the area equality of two triangles needs free mobility
and order for its very expression, we can express this fact in a different manner in both the
Euclidean and the non-Euclidean setting.

We start with the difficult case, expressing the notion of area equality in the case of
a non-Euclidean metric. Given a triangle ABC , let U denote the midpoint of BC , let
V denote the midpoint of AC , and let W denote the midpoint of AB . Let R denote the
reflection of V in U , and let Q denote the reflection of V in W . Since 1VCU � 1RBU
and 1VAW � 1QBW , the angle 1QBR represents the sum of the angles of triangle ABC
(Figure 1). Since BR � BQ � VC , and VC is constant, given that A and C are fixed
points, the isosceles triangle BQR has its two congruent sides of fixed length, and the
angle between two sides is congruent to the sum of the angles of triangle ABC . The sum
of the angles of triangles ABC and AB 0C are thus the same if and only if QR � Q0R0,
where by Q0 and R0 we have denoted the points obtained in the manner Q and R were,
this time starting with triangle AB 0C .

In the case of the Euclidean metric, the area equality of triangle ABC and ABC 0

amounts to the congruence of the altitudes from C and C 0.
We thus need a geometry in which we can express segment congruence, and in which

any pair of points has a unique midpoint.
The congruence core of plane absolute geometry was investigated in a series of papers

by J. Hjelmslev [6, 7] and reached a particularly simple form in the axiomatics presented
by F. Bachmann [1] for structures called metric planes. Although this is arguably the most
important achievement in distance geometry since Euclid, the notion of a metric plane is
not part of the active vocabulary of present-day mathematicians. It is for this reason that
we will introduce them here, for the reader’s convenience.

It will turn out that our theorems can be expressed and proved in the theory of non-
elliptic metric planes in which every segment has a midpoint. Why “non-elliptic”? Metric
planes are called elliptic if there are three line reflections in them whose composition is the
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Figure 1. bQBR represents the sum of the angles of triangle ABC .

identity. Since this amounts to the existence of points which have several perpendiculars to
a given line and the uniqueness of midpoints is no longer given, the basis for our reduction
of the area problem to one about reflections vanishes. It also makes sense in the medians
problem to restrict our attention to the non-elliptic case.

2 Metric planes

Metric planes, as presented in [1] (for different axiomatization, see [9, 10]), are defined in
the language of groups. The idea behind the axiomatization is to focus on line reflections
and on their properties when composed with other line reflections. One notices that if a
and b are line reflections, and if ab D ba, then the lines defined by the reflections a and b
must be perpendicular, and conversely. Since perpendicular lines intersect, and the com-
position of the reflections in them amounts to the reflection in their point of intersection,
we can choose to refer to the product ab, in case ab D ba, as to a point reflection. Another
familiar geometric notion, that of point-line incidence, can now be expressed in the lan-
guage of line reflections. The point P determined by the point reflection ab, where a and b
denote line reflections with ab D ba, is said to be incident with the line determined by the
line reflection g if Pg D gP .

The axiom system consists of a fundamental assumption, that G be a group (written
multiplicatively) generated by an invariant set S of involutory elements, as well as five
axioms (see below). The elements of S will be denoted by lowercase Latin letters, and
will be referred to as line reflections (or simply lines). Involutory products of two elements
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in S will be denoted by uppercase Latin letters, and will be referred to as point reflections
(or simply points). For any two elements ˛ and ˇ in G, ˛ j ˇ denotes the fact that ˛ � ˇ is
involutory. The notation ˛1; : : : ; ˛n j ˇ1; : : : ; ˇm stands for the conjunction of all ˛i j ǰ

with i 2 ¹1; : : : ; nº and j 2 ¹1; : : : ; mº. The relation P j g (or g j P ) may be read as
“point P is incident with line g”, and g j h as “line g is orthogonal to line h”. The axioms
for metric planes can be stated as follows.

A1. For all points P and Q, there is a line g such that P;Q j g.

A2. If, for points P andQ and lines g and h, we have P;Q j g; h, then P DQ or g D h.

A3. If the lines a, b, and c and the point P are such that a; b; c j P , then there is a line d
such that abc D d .

A4. If the lines a; b; c; g are such that a; b; c j g, then there is a line d such that abc D d .

A5. There are lines g; h; j such that g j h, but none of j j g, j j h, or j j gh holds.

By A1 and A2, there is a unique line joining two distinct points P and Q. We will
denote it by hP;Qi. It is, in general, not true that a midpoint exists for every pair of points.
In this context, we say thatM is a midpoint forA andB ifAM DB . Here we have denoted
by ˛ˇ the element ˇ�1˛ˇ (so AB denotes the reflection of A in B , P g the reflection of
P in g, and gP the reflection of g in P ). Nor is it in general true that a midpoint, should
it exist, is unique. In fact, to ensure uniqueness (see [1, pp. 53–54]), it is necessary and
sufficient to assume that the metric plane is not elliptic. This means that it satisfies the
following axiom (here 1 stands for the neutral element of G).

�P. For all lines a; b; c, we have abc ¤ 1.

An alternate requirement, which is equivalent to �P, is that, for any line g and any
point P not incident with g, there exists a unique line h incident with P and perpendicular
to g (if P j g, then the perpendicular through P to g is always unique, it is Pg). This
requirement is obviously false in the case of plane elliptic geometry, in which, for every
line, there is a point from which one can draw infinitely many perpendiculars to that line
(that there are infinitely many perpendiculars from a pole of a line to that line follows from
[1, Satz 20, § 6,12, p. 121], which states that there are no finite elliptic planes, so every line
must be incident with infinitely many points). Double elliptic geometry is already excluded
by the axioms for metric planes, as there is a unique line joining two distinct points in
metric planes.

Since the theorem we want to prove depends for the definition of the area equivalence
on the uniqueness of midpoints, we will be interested only in non-elliptic metric planes.
Since we also need the unrestricted existence of midpoints, we also assume the following
axiom.

M. For all points A;B , there exists a point M such that AM D B .

We will denote the midpointM of the segment defined by the pair .A;B/ by �.A;B/.
Metric planes can have a Euclidean metric, which means that there exists a rectangle.

R. There are lines a; b; c; d such that a; b j c; d and a ¤ b, c ¤ d .
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Figure 2. hB;C i�.B;C / j h�.A;B/; �.A;C /i.

Or they can have a non-Euclidean metric, which means that there is no rectangle.

�R. If the lines a; b; c; d are such that a; b j c; d , then a D b or c D d .

Let M denote the theory axiomatized by ¹A1–A5º and MC the theory axiomatized by
¹A1–A5º [ ¹�P;Mº.

The congruence of a pair of segments .P;Q/ and .R;S/ (denoted by .P;Q/� .R;S/)
can be defined, with M D �.P;R/ and U D QM , by the validity of one of

UR D S; U D S; and R − hU; Si ^ U hR;RhU;Sii D S:

We will make repeated use of the following result [1, Satz 2 of § 4,1, p. 57]), which
holds in M, and which will be used only in case A, B , and C are three non-collinear
points:

hB;C i�.B;C / j h�.A;B/; �.A;C /i: (2.1)

It states that the perpendicular bisector of side BC of the triangle ABC is perpendicular
to the midline that connects the midpoints of AB and AC (Figure 2).

3 Two non-congruent triangles sharing a side and having congruent
altitudes have the same area

The theorem we will prove states that, given MC, if two triangles with the same base and
congruent altitudes are not congruent but have the same area, then R must hold.

To even express this result, we must define, in the language of non-elliptic metric
planes with midpoints, what we mean by the phrase “triangles ABC and ABC 0 have the
same area”. Whenever we refer to a “triangle” we mean three non-collinear points.
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Definition 1. (i) In a metric plane with midpoints in which R holds, the triangles ABC
and ABC 0 are said to have the same area if and only if one of the midpoints of the point
pairs .C; C 0/ and .C hA;Bi; C 0/ lies on hA;Bi.

(ii) In a non-elliptic metric plane with midpoints in which �R holds, the triangles
ABC and ABC 0 are said to have the same area if and only if, with U the midpoint of
.B;C /, U 0 the midpoint of .B;C 0/, V the midpoint of .A;C /, V 0 the midpoint of .A;C 0/,
W the midpoint of .A; B/, R D V U , R0 D V 0U

0

, Q D V W , and Q0 D V 0W , we have
.Q;R/ � .Q0; R0/.

We also need to explain what “non-congruent triangles sharing a side and having con-
gruent altitudes” is supposed to mean.

Definition 2. We say that the triangles ABC and ABC 0 are non-congruent triangles and
have congruent altitudes if C ¤ C 0, C 0 ¤ C hA;Bi, and

�.C;X/ D �
�
�.C;C hA;Bi/; �.C 0; C 0hA;Bi/

�
and �.C;X/ ¤ �.A;B/

holds for X D C 0 or X D C 0hA;Bi.

Here �.C;C hA;Bi/, �.C 0;C 0hA;Bi/ stand for the feet of the perpendiculars from C and
C 0 to hA;Bi.

With these explanations, we are ready to state our first theorem.

Theorem 1. The following holds in MC: if there exist two non-congruent triangles ABC
and ABC 0 which have congruent altitudes and the same area, then R holds.

Proof. Suppose ABC and ABC 0 are two non-congruent triangles which have congru-
ent altitudes and the same area. We know from [11, Theorem 3.2] that, with X D C 0

or X D C 0hA;Bi, we have hM;N i D hM 0; N 0i, where M , N , M 0, and N 0 are such that
M D �.A;C /,N D �.B;C /,M 0 D �.A;X/, andN 0 D �.B;X/ (Figure 3). Since ABX
and ABC have congruent altitudes,

�.C hA;Bi; X/ D �
�
�.C;C hA;Bi/; �.X;X hA;Bi/

�
; (3.1)

and since the triangles are not congruent, we have �.A; B/ ¤ �.C hA;Bi; X/. Since both
�.C; C hA;Bi/ and �.X; X hA;Bi/ are incident with hA; Bi, we deduce from (3.1) that
�.C hA;Bi; X/ is incident with hA;Bi. By (2.1), we have

hC;Xi�.C;X/ j h�.C;C hA;Bi/; �.X;C hA;Bi/i;

hC;Xi�.C;X/ j hM;M 0i;

hA;Bi�.A;B/ j hM 0; N 0i:

Since h�.C;C hA;Bi/;�.X;C hA;Bi/i D hA;Bi and hM;M 0i D hM 0;N 0i D hM;N i, axiom
R is now seen to be satisfied with a D hC;Xi�.C;X/, b D hA;Bi�.A;B/, c D hA;Bi,
and d D hM;M 0i.

That, if R holds, there exist two non-congruent triangles ABC and ABC 0 which have
congruent altitudes is trivial, so the axioms R and “there exist two non-congruent triangles
ABC and ABC 0 which have congruent altitudes and the same area” are equivalent with
respect to MC.
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Figure 3. Lines a, b, c, and d form a rectangle.

4 Two medians intersect in a point which divides each median
in the ratio 1 W 2

To express the fact that we are in the presence of a triangle with two medians intersecting
in a point that divides each median in the ratio 1 W 2, we do not need to know that every
segment has a midpoint, nor do we need to know that medians intersect in general. That
is so because the existence of a triangle with that property is used in a conditional, if-
then statement, for all we want to show is that the existence of such a triangle implies the
existence of a rectangle. We will simply state that, if we are presented with three vertices
of a triangle, with the midpoints for all sides, and with points on two medians witnessing
the division in the 1 W 2 ratio of each median by a common point, then we can construct the
vertices of a rectangle.

The base theory is now M. We know from [1, Satz 1 of § 4,1, p. 56]) that,

if CU D B and BV D A; then there exists a W such that CW D A: (�)
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Figure 4. Lines a, b, c, and d form a rectangle.

Theorem 2. The following holds in M: if A, B , and C are three non-collinear points,
AN D B , AM D C , BU D G, UG DM , C V D G, and V G D N , then R holds.

Proof. (Figure 4) Since GU D B and BN D A, there is, by (�), a point W such that
GW D A, which we denote by �.A;G/. By (2.1), we have

hA;Gi�.A;G/ j hN;U i; hA;Gi�.A;G/ j hM;V i:

Reflections in lines preserve line-orthogonality, and reflections in points, being the product
of two reflections in lines, also preserve line-orthogonality. We also have P j g! gP D g.
Since hG;GhN;U ii j hN;U i and UG DM , NG D V , and hG;GhN;U iiG D hG;GhN;U ii,
given that the reflection in G preserves orthogonality, we also have hG;GhN;U ii j hM;V i.
We now notice that R holds with

a D hN;U i; b D hM;V i; c D hG;GhN;U ii; and d D hA;Gi�.A;G/:
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