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“Es ist in der That bewundernswürdig, dass eine so einfache Figur, wie das Dreieck,
so unerschöpflich an Eigenschaften ist.” (A. L. Crelle [1, p. 176])

It is known since at least a century that the medians of any triangle form the sides of
another triangle, i.e., satisfy the triangle inequalities (Eucl. I.20). For a picture, see [3],
and for many properties of this triangle and its iterates, see [4]. It was also recognized that
most other triangle centers, for example the incenter, do not always possess Cevians with
this property (see Figure 3, case 2 , and [2]). We therefore make the following definition.

Definition. We say that a point P is Ceva-triangular for a triangle ABC if its Cevians
u; v;w (through A;B;C respectively) satisfy the triangle inequalities.

1 Singularities

We can guess from a first plot of the set of these points in Figure 1 (top) that our set has
interesting singular points at the vertices A;B;C and also at the vertices U; V;W of what
we call the Gaussian extension of ABC (Gauss, Werke, vol. IV, p. 396).

Die Schwerlinien eines jeden Dreiecks erfüllen die Dreiecksungleichung. Man kann
also aus den Schwerlinien selber wieder ein Dreieck konstruieren. Im Gegensatz dazu
lässt sich aus den Winkelhalbierenden oder den Höhen eines Dreiecks nicht in jedem
Fall ein Dreieck bilden. Bei einem gegebenen Dreieck ABC fragt man sich nun, für
welche Punkte P die Ecktransversalen durch P die Dreiecksungleichung erfüllen. Die
Menge M dieser Punkte enthält also sicher den Schwerpunkt des Dreiecks. Darüber
hinaus hat sie Singularitäten in den Ecken der Gaußschen Erweiterung des Dreiecks
ABC . Bei der Untersuchung der Menge M taucht dann ganz überraschend gleich
mehrfach der goldene Schnitt auf.
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Figure 1. First plot (top), explanation (bottom)

First, we rotate the point P on an (infinitely) small circle around C (Figure 1, bottom).
Then the Cevians through A and B behave like u � b and v � a, while the third Cevian
is w D hc

sin' . Thus the triangle inequality is satisfied if

jb � aj �
hc

sin'
� b C a i.e., if arcsin

hc

b C a
� ' � arcsin

hc

jb � aj
: (1)

Thus there is always a pair of “forbidden” sectors with ' < arcsin hc
bCa

. A second pair of
forbidden sectors with ' > arcsin hc

jb�aj
only exists for hc < jb � aj.

Secondly, even if a Cevian w0 tends to infinity, the triangle inequality can still be sat-
isfied if, at the same time, a second Cevian, say, v0, also tends to infinity with the same
speed. This happens in the vicinity of a “Gauss” point like U . Let thus a point P 0 rotate
on another (infinitely) small circle around U . We see from two similar triangles above and
below CP 0 that

CP 0

" sin 
D
w0

hc
and, for "! 0, w0 �

c � hc

" sin 
and similarly v0 �

b � hb

" sin�
:

Since c � hc D b � hb (area of the parallelogram ABUC ), we have

w0 D v0 if  D �; (2)
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Figure 2. Topology of singular points for various positions of C (left): two pairs of forbidden sectors at C (red),
at A (blue), at B (green). The celebrated equilateral triangle (right)

i.e., if P 0 approaches U along the angle bisector. A similar picture, where w0 tends to
infinity on the other side of AB , gives a second solution on the outer bisector, i.e., perpen-
dicular to UP 0.

Figure 2 (left) indicates the various regions of the position of C for which the inequal-
ities

ha

jb � cj
< 1 (blue);

hb

jc � aj
< 1 (green); and

hc

ja � bj
< 1 (red)

are satisfied. Figure 2 (right) and Figure 3 show “forbidden” regions for P at four triangles
with continuously increasing complexity.

2 Asymptotes

The triangle with the sides u; v;w collapses to a line if its area, given by Heron’s formula,
is zero. For A D .0; 0/, B D .1; 0/, C D .c1; c2/, it is elementary, but slightly tedious, to
compute the lengths of u; v; w as a function of the coordinates .x; y/ of P . Hence, with
s ´ 1

2
.uC v C w/, the boundary of the set of the Ceva-triangular points is given by the

equation

0 D 16s.s � u/.s � v/.s � w/ D .u2 C v2 C w2/2 � 2.u4 C v4 C w4/:

It turns out that this expression is a polynomial f .x; y/ of degree 12. We now want to
compute the asymptotes of the curve f .x; y/ D 0. To this end, we plug in the equation
of an asymptote y D px C q in f .x; y/, which yields a polynomial f .x; px C q/ of
degree 12. In this expression, we drop all terms of degree 10 or less. The remaining terms
are A0.p; q/x12 C A1.p; q/x11. One finds p; q as solution of the system A0.p; q/ D 0,
A1.p; q/ D 0. The system is also of degree 12. For the vertical asymptote x D r , we
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Figure 3. Triangles with 1, 2, and 3 double “forbidden” sectors; little tracts indicate the asymptotic directions (1)
and (2). A D .�1; 0/, B D .1; 0/, 1 : C D .�1:7; 1:1/, 2 : C D .�1:4; 0:7/, 3 : C D .�2:5; 0:6/

proceed analogously: put f .r; y/ D 0 and solve A1.r/ D 0. A computer algebra system
yields explicit expressions for p, q and r . It turns out that a vertical asymptote exists if c1,
the endpoint of the altitude in C , divides the side c in the golden ratio (proportio divina).
The square root of 5 is also present in the case of an oblique asymptote. This suggests
that a geometric interpretation of the asymptotes is possible, involving the golden ratio.
Indeed, we have the following proposition.
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Figure 4. Directions of the asymptotes based on the golden section (Proposition 1, black dotted); corrected asymp-
totes from Proposition 2 (pink)

Proposition 1. If the sides of the triangle ABC are divided according to the golden sec-
tion (from left or right), then the connections of these points with the opposite vertices
indicate the directions of the six asymptotes for P !1 (Figure 4).

Proof. We normalize AB to 1 (Figure 5 (a)) and choose for G the right “golden” point.
Then, using the “golden” number ˆ D .

p
5C 1/=2,

Thales: u D ˆ2w; Thales: v D ˆw H) v C w D .ˆC 1/w D ˆ2w D u: (3)

For the second golden point, u and v exchange their roles.

We remark that the line through the golden point on c which is closer to A and the
golden point on a which is closer to B passes through U and is parallel to the line
through A and golden point on a which is closer to C . Hence this line is also parallel
to an asymptote. The same holds, mutatis mutandis, if we go cyclically around the triangle
and if we replace the closer golden point by the more distant golden point.

Proposition 2. The asymptote parallel to CG is obtained from the line CG (in the case
where G is the right golden point on AB) by a parallel move to the left of distance

m D
ˆ cot.' � ˇ/C 1

ˆ
cot.' C ˛/

ˆ2 cot.' � ˇ/ �ˆ cot.' C ˛/ � cot'
; (4)

where ' is †CGA (Figure 5 (b)). All six asymptotes are obtained by applying the six
permutations of the vertices of ABC (see the pink lines in Figure 4).
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Figure 5. Proof for the correcting shift

Proof. If P is at infinity, we have u D v C w from Proposition 1. We then move P from
infinity to a position far outside at distance 1

"
from our triangle and at an unknown dis-

tance ı from CG. Then u; v; w will vary by du; dv; dw. In order to preserve u D v C w,
we require that du D dv C dw. Since

†BDA D ' � ˇ and †AEB D †ACG D � � ˛ � ';

from narrow similar triangles and using cot.� � ˛ � '/ D � cot.' C ˛/, we have

du D �" � u � .ıa � ı/ � cot.' � ˇ/;
dv D " � v � .ıb C ı/ � cot.' C ˛/;
dw D " � w � ı � cot';

from which (4) follows by solving for ı, using ıa D 1
ˆ
� sin', ıb D 1

ˆ2
� sin', inserting (3)

and m D ı
sin' .
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