Short note Teildreiecke und Kreise

Peter Thurnheer

Die Schwerlinien in einem Dreieck unterteilen dieses in sechs Teildreiecke mit einer gemeinsamen Ecke im Schwerpunkt. Die Umkreismittelpunkte dieser sechs Teildreiecke liegen auf einem Kreis, dem van Lamoen Kreis, benannt nach seinem holländischen Entdecker [5] (Abbildung 1). Mehrere Beweise, geometrische, rechnerische – alle aufwändig – wurden für diese Aussage gegeben [1–4, 6, 7]. Die Aussage des Satzes an sich erlaubt unmittelbar keine Verallgemeinerung. Es gilt nämlich genauer:

Verbindet man einen Punkt G im Innern eines Dreiecks mit den Ecken, so entstehen sechs Teildreiecke mit gemeinsamer Ecke G. Die Umkreismittelpunkte dieser sechs Teildreiecke liegen auf einem Kreis, dann (F. van Lamoen) und nur dann (A. Myakishev, P. Woo [8]), wenn G der Schwerpunkt oder der Höhenschnittpunkt des Dreiecks ist. (Ist G der Höhenschnittpunkt, so fallen je zwei der Umkreismittelpunkte zusammen.)

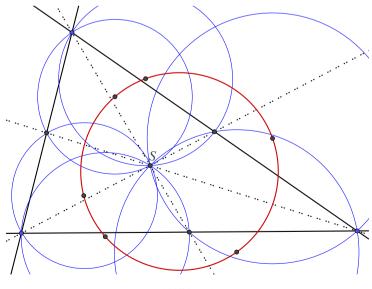
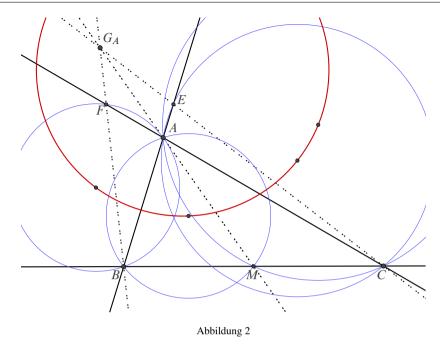


Abbildung 1

P. Thurnheer 188



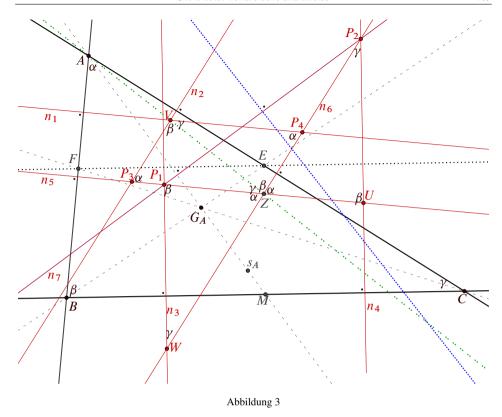
Im Folgenden wird eine Aussage analog zu derjenigen von van Lamoen bewiesen. Sie betrifft vier andere, durch die Schwerlinien erzeugte Teildreiecke, kann dann aber wesentlich verallgemeinert werden. Wir gehen nun stets aus von einem Dreieck mit Ecken A, B, C, Gegenseiten a, b, c, Winkeln α, β, γ und Schwerlinien s_A, s_B, s_C .

Sei G_A irgend ein Punkt auf der Schwerlinie s_A oder ihrer Verlängerung, nicht aber auf einer Dreiecksseite. Die Schnittpunkte der Geraden G_AA , G_AB , G_AC mit den Seiten a, b, c oder ihren Verlängerungen seien M, E, F. Dann nennen wir die vier Dreiecke ABM, AMC, ABE, ACF A-Dreiecke (Abbildung 2).

Satz. Die folgenden Aussagen gelten:

- (a) Für jeden zulässigen Punkt G_A auf der Schwerlinie s_A liegen die Umkreismittelpunkte der vier A-Dreiecke auf einem Kreis einem A-Kreis (Abbildung 2).
- (b) Der geometrische Ort aller A-Kreismittelpunkte, die man erhält, wenn sich G_A auf s_A bewegt ist eine (punktierte) Gerade die A-Gerade des Dreiecks parallel zur Schwerlinie s_A .
- (c) Die A-Gerade, die B-Gerade und die C-Gerade eines Dreiecks gehen durch einen Punkt.

Beweis. (a) (Abbildung 3; für einen Punkt G_A ausserhalb des Ausgangsdreiecks verläuft die Argumentation gleich). Wir definieren die Umkreismittelpunkte P_1 , P_2 , P_3 , P_4 der A-Dreiecke durch jeweils zwei der Mittelnormalen (Seitensymmetralen) n_j , $j=1,2,\ldots,6$, der entsprechenden Teildreiecksseiten. Von den drei möglichen wählen wir die Mittelnormalen derjenigen zwei Teildreiecksseiten, welche auf den Seiten des Ausgangsdreiecks

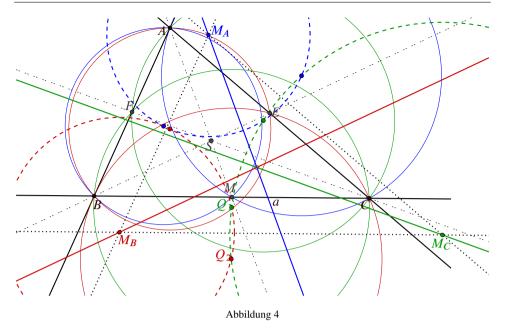


oder deren Verlängerungen liegen, da dreimal zwei derselben parallel sind und zwei dieser Mittelnormalen, n_5 und n_6 , in zwei verschiedenen Teildreiecken auftreten, was die Argumentation vereinfacht.

Sei Z der Umkreismittelpunkt des Ausgangsdreiecks ABC. Als Erstes stellt man fest, dass der Schnittpunkt V der Normalen n_1 und n_2 – er ist der Umkreismittelpunkt des Dreiecks AEF – auf der Geraden AZ liegt: Aus |BM|/|MC|=1 folgt mit dem Satz von Ceva, dass die Gerade EF parallel zur Dreiecksseite a ist. Also gehen die Dreiecke ABC und AEF – und damit ihre Umkreismittelpunkte Z respektive V – durch eine Streckung mit Zentrum A auseinander hervor. Weiter schneidet irgend eine Normale zur Seite b – zum Beispiel n_6 durch Z – die Gerade AZ unter dem Winkel β , denn der Winkel $\triangleleft AZC$ wird von n_6 halbiert und ist als Zentriwinkel im Umkreis des Ausgangsdreiecks zum Peripheriewinkel β doppelt so gross wie dieser (Eukl. III. 20). Aufgrund dieser Feststellung oder weil ihre Schenkel paarweise senkrecht stehen, sind in der Figur gleich bezeichnete Winkel gleich gross. Da Z auf der Mittelparallelen der Normalen n_3 und n_4 liegt, folgt, dass die Dreiecke ZUP_2 und ZP_1W kongruent sind, wie offensichtlich auch die Dreiecke ZP_4V und ZVP_3 und dass alle vier ähnlich sind zum Ausgangsdreieck ABC. Damit gilt

$$|ZP_1|/|ZP_4| = |ZP_2|/|ZP_3|, \quad |ZP_1| \cdot |ZP_3| = |ZP_2| \cdot |ZP_4|.$$

P. Thurnheer 190



Da der Punkt Z offensichtlich weder zwischen P_1 und P_3 noch zwischen P_2 und P_4 liegen kann, folgt die Behauptung mit dem Sekantensatz (Eukl. III. 36).

- (b) Die Aussage folgt unmittelbar aus der Tatsache, dass alle A-Kreise durch die Umkreismittelpunkte P_1 , P_2 der durch s_A erzeugten Teildreiecke gehen, ihre Mittelpunkte somit auf der Mittelnormalen der Strecke P_1P_2 liegen, welche ihrerseits senkrecht steht zur Schwerlinie s_A .
- (c) (Abbildung 4). Sei S der Schwerpunkt des Ausgangsdreiecks. Wir betrachten die Situation $G_A = G_B = G_C = S$. Der Mittelpunkt des entsprechenden A-, B- respektive C-Kreises sei M_A , M_B , respektive M_C . In dieser Situation sind die Dreiecke BCE und BCF sowohl B- als auch C-Dreiecke. Ihre Umkreismittelpunkte Q_1, Q_2 liegen damit sowohl auf dem B- als auch auf dem C-Kreis und ausserdem auf der Mittelnormalen der Seite a, da diese beiden Dreiecken gemeinsam ist. Die Mittelnormale der Strecke Q_1Q_2 ist damit die Gerade M_BM_C und parallel zu a. Das bedeutet, die Seiten des Dreiecks $M_AM_BM_C$ sind parallel zu den Seiten a, b, c des Ausgangsdreiecks. Da die A-Gerade des Dreiecks durch M_A geht und parallel ist zu s_A , ist sie damit eine Schwerlinie des Dreiecks $M_AM_BM_C$. Die A-, B-, C-Geraden sind die Schwerlinien des Dreiecks $M_AM_BM_C$. Sie schneiden sich somit in seinem Schwerpunkt.

Dank. Vielmals danken möchte ich dem Referenten und Professor Norbert Hungerbühler (ETH Zürich) für ihre zahlreichen Hinweise zur Verbesserung dieses Textes und ihre hilfreichen Kommentare, sowie Frau Dr. Valentina Georgoulas für das erneut so fein gelungene Übertragen von Text und Abbildungen ins LATEX Format.

Literatur

- [1] J.-L. Ayme, Le cercle de van Lamoen; http://jl.ayme.pagesperso-orange.fr/
- [2] D. Gouveia Mota Jr., Lamoen Circle Synthetic proof, Message Hyacinthos #11095 du 14/03/200.
- [3] D. Grinberg, The Lamoen circle; http://de.geocities.com/darij_grinberg/
- [4] N. M. Ha, Another proof of van Lamoen's theorem and its converse, Forum Geom. 5 (2005), 127–132.
- [5] F. van Lamoen, Problem 10830, Amer. Math. Monthly 107 (2000), 863–863.
- [6] F. van Lamoen, Solution to Problem 10830. Amer. Math. Monthly 109 (2002), 396–397.
- [7] K. Y. Li, Conclyclic problems, Math. Excalibur 6 (2001), no. 1, 1-2; https://www.math.ust.hk/excalibur/
- [8] A. Myakishev und P. Y. Woo, On the circumcenters of cevasix configurations, Forum Geom. 3 (2003), 57–63.

Peter Thurnheer Entlisbergstrasse 29 CH-8038 Zürich tpeter@retired.ethz.ch