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Short note The Milne-Thomson formula for the
harmonic conjugate and its associated
holomorphic function

Raymond Mortini

Abstract. In this note, we justify the formula by Milne-Thomson giving a direct
determination of the holomorphic function from its real part on disks.

The goal of this note is to justify a very nice formula given by Milne-Thomson in [3] (see
also [4, p. 132], [1, p. 21], [2] and [6, p. 144] e.g.) on the construction of the holomorphic
function (modulo a purely imaginary additive constant) whose real part is a given harmonic
function in an open disk. This formula, given in item (3) below (and always appreciated
by my students), was just stated in these books/papers, but without an explanation of how
to interpret u. z

2
;�i z

2
/ in case u.x; y/ is harmonic in the real variables x; y. Here we

close this gap, hoping that this formula finally finds its way into the curriculum of every
introductory course in complex analysis.

Proposition 1. Let D be the disk ¹� 2 C W j�j < rº or D D C. Suppose that uWD! R is
harmonic, and for � D x C iy 2 D with x; y 2 R, let QD WD ¹.x; y/ 2 R2 W x C iy 2 Dº

and Qu.x; y/ WD u.x C iy/. The following assertions hold.

(1) There is f 2 H.D/ with Ref D u.

(2) Qu.x; y/ can be extended to a function

U W

´
B ! C;

.z; w/ 7! U.z;w/

holomorphic in a neighborhood B of the origin in C2 containing QD (when QD is
viewed as a subset of C2). The extension is understood in the sense that U.x;y/D
Qu.x; y/ for .x; y/ 2 QD \ B D QD. In case r <1, B contains rp

2
B2, where B2 is

the unit ball in C2, and B D C2 if D D C.

(3) f .z/C f .0/ D 2U. z
2
;�i z

2
/ for z 2 D.

In other words, we may formally replace the real arguments x;y of u by z
2
;�i z

2
to directly

obtain f (modulo a constant).
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Proof. (1) This is well known (see e.g. [5, Theorem 12.42]). The idea is that the C 1-
function h WD ux � iuy satisfies the Cauchy–Riemann equations due to uxx C uyy D 0.
Hence h is holomorphic and admits a primitive f .z/ WD

R z

0
h.�/d�, say f D aC ib. Now

h D f 0 D fx D ax C ibx D ax � iay :

Consequently, ux D ax and uy D ay . We conclude that u.x; y/ D a.x; y/C r , r 2 R.
Now we define v by v WD b.

(2) Let f 2H.D/ satisfy Ref D u inD. In particular, f .z/ D
P1

nD0 anz
n for some

an 2 C, the series converging locally uniformly. Thus, for .x; y/ 2 QD,

2 Qu.x; y/ D

1X
nD0

an.x C iy/
n
C

1X
nD0

an.x � iy/
n:

Now, for .z; w/ 2 C2, put

2U.z; w/ WD

1X
nD0

an.z C iw/
n
C

1X
nD0

an.z � iw/
n:

These series converge absolutely for those .z;w/ 2C2 satisfying jz˙ iwj< r (if r <1/,
or in C2 if D D C, to the function

F.z;w/ WD f .z C iw/C f .z C iw/:

Hence U is holomorphic in

B WD ¹.z; w/ 2 C2
W jz ˙ iwj < rº:

Note that if
p
jzj2 C jwj2 < rp

2
, then by Cauchy–Schwarz,

jz ˙ iwj � jzj C jwj �
p
2.jzj2 C jwj2/ <

p
2
r
p
2
D r;

implying that rp
2
B2 � B . Also, if .x; y/ 2 QD � C2, then jx ˙ iyj < r , hence .x; y/ 2 B .

(3) First we note that, for z 2 D, we have . z
2
;�i z

2
/ 2 B sincerˇ̌̌z

2

ˇ̌̌2
C

ˇ̌̌
�iz

2

ˇ̌̌2
D

r
jzj2

2
<

r
p
2
:

Hence, by the mere definition of U , we get

2U
�z
2
;�i

z

2

�
D f .z/C a0 D f .z/C f .0/:

Shifting the center of the disk yields the following (somewhat surprising) formula (3),
stated in [6] without a proof.
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Proposition 2. Let a 2 C, and letD be the disk ¹� 2 C W j� � aj < rº orD D C. Suppose
that uWD ! R is harmonic, and for � D x C iy 2 D with x; y 2 R, let

QD WD ¹.x; y/ 2 R2
W x C iy 2 Dº and Qu.x; y/ WD u.x C iy/:

The following assertions hold.

(1) There is f 2 H.D/ with Ref D u.

(2) Qu.x; y/ can be extended to a function

U W

´
B ! C;

.z; w/ 7! U.z;w/

holomorphic in a neighborhood B of the point .Re a; Im a/ in C2 containing QD.

(3) f .z/C f .a/ D 2U
�

zCa
2
; z�a

2i

�
for z 2 D.

(4) A harmonic conjugate v of u (that is a function for which uC iv is holomorphic
in D) is given by

v.z/ D 2 ImU
�z C a

2
;
z � a

2i

�
:

(5) The set of all holomorphic functions h in D with Re h D u is given by

h.z/ D 2U
�z C a

2
;
z � a

2i

�
� ˛ C i�;

where ˛ D u.a/ D U.Re a; Im a/ and � 2 R.

Proof. The proof of (1)–(3) works as in the case a D 0. For f .z/ D
P1

nD0 an.z � a/
n,

just take

B WD ¹.z; w/ 2 C2
W jz C iw � aj < rº \ ¹.z; w/ 2 C2

W jz � iw � aj < rº;

which is a neighborhood of .Re a; Im a/ 2 C2, and for .z; w/ 2 B ,

2U.z; w/ WD

1X
nD0

an.z C iw � a/
n
C

1X
nD0

an.z � iw � a/
n:

Note that if z is close to a, then zCa
2

is close to Rea and z�a
2i

close to Ima. Moreover,
if .x; y/ 2 QD � C2, then .x; y/ 2 B , too.

For (4), it suffices to take the imaginary part of f D uC iv. Note that with v any other
function of the form v C ˇ with ˇ 2 R is a harmonic conjugate to u, too.

Assertion (5) immediately follows from (4).
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