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Short note Wolstenholme’s theorem revisited

Arpan Kanrar

Abstract. We give an elementary proof that for primes p > 3 the numerator of the
reduced fraction 1C 1
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1
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1
p�1 is divisible by p2.

In 1862, J. Wolstenholme [5] proved that, for all primes p > 3, the numerator of the
reduced fraction of the harmonic sum
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is divisible by p2. In this note, we present an elementary proof based essentially on
Fermat’s little theorem and Lagrange’s theorem relating the number of roots of a poly-
nomial to its degree. Other proofs may be found in [3, p. 116], [2, p. 89] or [1, Lemma].

Theorem. If p is prime and p > 3, then
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Proof. One easily sees that the above integer is divisible by p by using symmetry:
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Hence, let
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.p � 1/Š

i.p � i/
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that we are to prove A is divisible by p. For that matter, we define
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Notice first that the ai are all distinct since, if 1 � i < j < p�1
2

and ai � aj , then
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gives a contradiction. Second, we have
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Thus, by Fermat’s little theorem, a
p�1

2
i � 1 .mod p/ since 8 j .p2 � 1/ for odd numbers.

Hence, f .ai / � 0 .mod p/ for all p�1
2

values. Finally, notice that the leading coefficient
of f is A, and its degree in ZŒx� is p�3

2
. Consequently, by Lagrange’s theorem [2, The-

orem 5.21], we deduce that p j A.

Remark. The same method of proof allows one to obtain Wilson’s theorem from Fermat’s
theorem by considering the polynomial g.x/´

Qp�1
iD1 .x � i/ � .xp�1 � 1/. We recom-

mend [4] for an even more elementary proof of both results above.
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