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Short note An inequality for the ratio of polynomials

Horst Alzer

Abstract. We show that the classical Chebyshev inequality for sums can be applied
to obtain an inequality for the ratio of polynomials.

A classical result in the Theory of Inequalities is the following Chebyshev inequality for
sums.

Let pk � 0 (k D 0; 1; : : : ; n). If the sequences .uk/0�k�n and .vk/0�k�n are both decreas-
ing or increasing, then
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If pk > 0 (k D 0; 1; : : : ; n), then the sign of equality holds if and only if u0 D � � � D un or
v0 D � � � D vn.

Inequality (1) is named after the Russian mathematician Pafnutii L. Chebyshev (1821–
1894), who published an integral version of (1) in 1882. Interesting historical comments
on (1) were recently given by Besenyei [1], who also provided a mechanical interpretation
of Chebyshev’s inequality due to Picard. Detailed information about the life and work of
Chebyshev is given in a paper by Butzer and Jongmans [2].

An elegant proof of (1) can be found in the monograph “Inequalities” by Hardy, Little-
wood and Pólya [4, Section 2.17]. Let
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Moreover, we have the following identity which was given by Djoković [3] for the case of
equal weights:
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where Pk D
Pk
iD0 pi . Since .uk/0�k�n and .vk/0�k�n are monotonic in the same sense,

we conclude from (3) and (4) that Sn � 0, and if pk > 0 (k D 0; 1; : : : ; n), then equality
holds if and only if u0 D � � � D un or v0 D � � � D vn.

The aim of this note is to show that an application of Chebyshev’s inequality leads to
an inequality for the ratio of polynomials which we could not locate in the literature.

Theorem. Let r , s and n be integers with 0 � r < s � n. For all polynomials
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with
ak > 0 .k D 0; : : : ; n/; bk � 0 .k D 0; : : : ; n � 1/; bn > 0;
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and all real numbers x, y with 0 < x � y, we have

xs�r
P .s/.x/

P .r/.x/
� ys�r

Q.s/.y/

Q.r/.y/
: (5)

The sign of equality holds in (5) if and only if
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Proof. We define
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Since

u0 D � � � D us�1 D 0 < uk <
k C 1 � r

k C 1 � s
uk D ukC1 .s � k � n � 1/

and
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D vkC1 .0 � k � n � 1/;

we conclude that .uk/0�k�n and .vk/0�k�n are increasing sequences. An application
of (1) gives
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D xrP .r/.x/ � ysQ.s/.y/: (7)

This leads to (5).
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Next, we discuss the cases of equality. From (7), we obtain that equality holds in (5)
if and only if Sn D 0, where Sn is defined in (2).

First, we assume that Sn D 0. Using p0 D � � � D pr�1 D 0, we conclude from (3) that
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Since

pk > 0 .r � k � n/ and .ui � uj /.vi � vj / � 0 .r � i; j � n/;

we obtain
Sn �
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prpn.ur � un/.vr � vn/:

We have vr � vn. If vr < vn, then

.ur � un/.vr � vn/ D �
.n � r/Š

.n � s/Š
.vr � vn/ > 0;

which implies Sn > 0, a contradiction. Thus,
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Using 0 < x � y gives
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:

Since .bk=ak/0�k�n is increasing, we obtain
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so that (9) yields x D y.
Conversely, if (6) holds, then vr D vn. Since .vk/0�k�n is increasing, we conclude that

vr D vrC1 D � � � D vn so that (8) yields Sn D 0. This means that equality holds in (5).

The following example offers a combinatorial inequality involving the product and the
ratio of binomial coefficients. Let r , s and n be integers with 0 � r < s � n, and let ˛, ˇ
be real numbers with ˛; ˇ � 2n � 1. We set
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Then the assumptions of the theorem are satisfied so that we obtain, for all real numbers
x, y with 0 < x � y,
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Equality holds if and only if r D n � 1, s D n, ˛ D ˇ D 2n � 1 and x D y.
As an immediate consequence of the theorem, we obtain the following inequality.
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Corollary. Let r , s and n be integers with 0 � r < s � n, and let c > 0 be a real number.
For all polynomials

P.x/ D

nX
kD0

akx
k with a0 � a1 � � � � � an > 0

and for all x 2 .0; c�, we have
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�
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; (10)

where .k/m D
Qm�1
jD0 .k � j /. The upper bound is sharp.

Remarks. (i) Inequality (10) extends and refines a result of Soble [6] (see also [5, p. 123]),
who presented an upper bound for xP 0.x/=P.x/ on .0; a�, where 0 < a � 1=e.

(ii) A detailed collection of inequalities for polynomials can be found in Milovanović
et al. [5, Chapter 2].
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