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1 Introduction

We introduce a new invariant in Lie sphere geometry ([3, Chapter 3], [7], [19]) which is
analogous to the cross ratio of four points in projective ([30], [35, § 9.3], [37, Appendix A])
and hyperbolic geometries ([2, § 4.4], [32, III.5], [34, § I.5]). To avoid technicalities and
stay visual, we will work in two dimensions; luckily, all main features are already illu-
minated in this case. Our purpose is not to give an exhausting presentation (in fact, we are
hoping it is far from being possible now), but rather to draw attention to the new invariant
and its benefits to the various geometrical settings. There are several far-reaching general-
isations in higher dimensions and non-Euclidean metrics; see Section 5 for a discussion.

Das Doppelverhältnis von vier Punkten ist eine zentrale Invariante in der projektiven
und der hyperbolischen Geometrie. In der vorliegenden Arbeit wird der Begriff des
Doppelverhältnisses ausgedehnt auf vier Zyklen. Mit Zyklen ist dabei der Oberbegriff
von Kreisen, Geraden und Punkten gemeint. Zyklen bilden eine unter den Trans-
formationen der Möbius-Geometrie und der Lie’schen Kugelgeometrie geschlossene
Familie. Das erweiterte Doppelverhältnis ist nun invariant unter eben diesen Transfor-
mationen. Der Wert des Doppelverhältnisses gibt darüber hinaus Auskunft über die
Lage der Zyklen, etwa ob sie orthogonal, tangential oder invers zueinander liegen. Der
Autor lädt dazu ein, weitere Eigenschaften des Begriffs zu erforschen. Obwohl der
neue Begriff weitreichende Verallgemeinerungen zulässt, vermeidet der Autor allzu
technische Einzelheiten und stellt die Konzepte leserfreundlich und visuell in zwei Di-
mensionen dar. Er stellt zudem eine interaktive Version des Artikels zur Verfügung,
die als Jupyter-Notebook implementiert ist und es ermöglicht, konkrete Berechnungen
auf den Computer zu verlagern.

https://en.wikipedia.org/wiki/Lie_sphere_geometry
https://en.wikipedia.org/wiki/Cross-ratio
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In abstract framework, the new invariant can be considered in any projective space with
a bilinear pairing.

There is an interactive version of this paper implemented as a Jupyter notebook [29]
based on the MoebInv software package [28].

2 Preliminaries: Projective space of cycles

We introduce our topic following its historic development. This conforms to our hands-on
approach as an opposition to a start from the most general abstract construction.

Circles are the traditional subject of geometrical studies, and their numerous properties
were already widely presented in Euclid’s Elements. However, advances in their analytical
presentations is not a so distant history.

A straightforward parametrisation of a circle equation

x2
C y2

C 2gx C 2fy C c D 0 (1)

by a point .g; f; c/ in some subset of the three-dimensional Euclidean space R3 was used
in [32, Chapter II]. Abstractly, we can treat a point .x0; y0/ of a plane as the zero radius
circle with coefficients .g; f; c/ D .�x0;�y0; x

2
0 C y

2
0/.

It is more advantageous to use the equation

k.x2
C y2/ � 2lx � 2ny Cm D 0; (2)

which also includes straight lines for k D 0. This extension comes at a price: parameters
.k; l; n; m/ shall be treated as elements of the three-dimensional projective space PR3

rather than the Euclidean space R4 since (2) with .k; l; n; m/ and .k1; l1; n1; m1/ D

.�k; �l; �n; �m/ defines the same set of points for any � ¤ 0. This parametrisation is
known as tetracyclic/polyspheric coordinates, cf. [20, § 2.4.1], [4, § 20.7].

The next observation is that the linear structure ofPR3 is relevant for circles geometry.
For example, the traditional concept of pencil of circles [10, § 2.3] is nothing else but the
linear span in PR3, cf. [34, § I.1.c]. Therefore, it will be convenient to accept all points
.k; l; n; m/ 2 PR3 on equal ground even if they correspond to an empty set of solutions
.x; y/ in (2). The latter can be thought as “circles with imaginary radii”.

It is also appropriate to consider .0; 0; 0; 1/ as a representative of the point C1 at
infinity, which complements R2 to the Riemann sphere. Following [37], we call circles
(with real and imaginary radii), straight lines and points (including C1) on a plane by
joint name cycles. Correspondingly, the space PR3 representing them – the cycles space.

Sometimes, we need to consider cycles with an orientation. This can be used, for
example, to distinguish “inner” and “outer” tangency of cycles [12, 26, 28]. Furthermore,
oriented cycles and their tangency relations are the starting point for the Lie sphere geo-
metry. It is easy to encode cycles’ orientations through polyspheric coordinates: cycles
.k; l; n;m/ and .k0; l 0; n0; m0/ have the opposite orientations if

.k; l; n;m/ D .�k0; �l 0; �n0; �m0/ for some negative �;

https://github.com/vvkisil/Cycles-cross-ratio-Invitation
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and two points .k; l; n;m/ and .k0; l 0; n0;m0/ are considered as representatives of the same
oriented cycle if

.k; l; n;m/ D .�k0; �l 0; �n0; �m0/ for a positive �:

An algebraic consideration often benefits from the introduction of complex numbers.
For example, we can re-write (2) as�

�1 z
��L �m

k �L

��
z

1

�
D kzz � Lz � Lz Cm

D k.x2
C y2/ � 2lx � 2ny Cm; (3)

where z D x C iy and L D l C in. We call Fillmore–Springer–Cnops construction (or
FSCc for short) the association of the matrix

C D

�
L �m

k �L

�
to a cycle with coefficients .k; l; n;m/, cf. [8], [9, § 4.1], [11].

A reader may expect a more straightforward realisation of the quadratic form (2),
cf. [34, § I.1], [36, Theorem 9.2.11]:�

z 1
�� k �L

�L m

��
z

1

�
D kzz � Lz � Lz Cm: (4)

However, FSCc will show its benefits in the next section. Meanwhile, we note that a point z
corresponding to the zero radius cycle with the centre z is represented by the matrix

Z D

�
z �zz

1 �z

�
D
1

2

�
z z

1 1

��
1 �z

1 �z

�
for .k; l; n;m/ D .1; x; y; x2

C y2/; (5)

where detZ D 0. Also, the point at infinity can be represented by a zero radius cycle

C1 D

�
0 �1

0 0

�
for .k; l; n;m/ D .0; 0; 0; 1/: (6)

More generally,

det
�
L �m

k �L

�
D �k2r2

for k ¤ 0 and the cycle’s radius r .

3 Fractional linear transformations and the invariant product

In the spirit of the Erlangen programme of Felix Klein (greatly influenced by Sophus Lie),
a consideration of cycle geometry is based on a group of transformations preserving this
family [23, 24]. Let

M D

�
˛ ˇ

 ı

�

https://en.wikipedia.org/wiki/Erlangen_program


V. V. Kisil 4

be an invertible 2 � 2 complex matrix. Then the fractional linear transformation (FLT for
short) of the extended complex plane PC D C [ ¹1º is defined by�

˛ ˇ

 ı

�
W z 7!

˛z C ˇ

z C ı
: (7)

It will be convenient to introduce the notation M for the matrix�
˛ ˇ

 ı

�
with complex conjugated entries of M . For a cycle C , the matrix C corresponds to the
reflection of C in the real axis y D 0. Also, due to special structure of FSCc matrix, we
easily check that

CC D CC D � det.C /I or C � C�1 projectively if det.C / ¤ 0: (8)

If a cycle C is composed from a non-empty set of points in .x; y/ 2 R2 satisfying (2),
then their images under transformation (7) form again a cycle C1 with notable link to
FSCc.

Lemma 1. Transformation (7) maps a cycle

C D

�
L �m

k �L

�
into a cycle C1 D

�
L1 �m1

k1 �L1

�
such that C1 DMCM�1.

Clearly, the map C ! MCM�1 is meaningful for any cycle, including imaginary
ones; thus we regard it as FLT action on the cycle space. For the matrix form (4), the above
identity C1 D MCM�1 needs to be replaced by the matrix congruence C1 D M �CM ,
cf. [34, § II.6.e], [36, Theorem 9.2.13]. This difference is significant in view of the follow-
ing definition.

Definition 2. For two cycles C and C1, define the cycles product by

hC;C1i D � tr.CC 1/; (9)

where tr denotes the trace of a matrix.
We call two cycles C and C1 orthogonal if hC;C1i D 0.

It is easy to find the explicit expression of the cycle product (9):

hC;C1i D km1 C k1m � 2l l1 � 2nn1; (10)

and observe that it is linear in coefficients of the cycle C (and C1 as well). On the other
hand, it is the initial definition (9) which allows us to use the invariance of trace under
matrix similarity to conclude the following.



Cycles cross ratio: An invitation 5

Corollary 3. The cycles product is invariant under the transformation C 7! MCM�1.
Therefore, FLT (7) preserves orthogonality of cycles.

The cycle product is a rather recent addition to the cycle geometry, see independent
works [8], [9, § 4.1], [11], [21, § 4.2]. Interestingly, expression (9) essentially repeats the
GNS-construction in C �-algebras [1] which is older by half a century at least.

Example 4 ([24, Chapter 6], [26], [27]). The cycles product and cycles orthogonality
encode a great amount of geometrical characteristics. For example, for cycles represented
by non-empty sets of points in R2, we note the following.

(i) A cycle is a straight line if it is orthogonal, hC;C1i D 0, to the zero radius cycle
at infinity C1, (6).

(ii) A cycle Z represents a point if Z is self-orthogonal (isotropic): hZ; Zi D 0.
More generally, (8) implies hC;C i D 2 det.C /.

(iii) A cycle C passes a point Z if they are orthogonal, hC;Zi D 0.
(iv) A cycle C represents a line in Lobachevsky geometry [35, Chapter 12] if it is

orthogonal, hC;CRi D 0, to the real line cycle

CR D

�
i 0

0 i

�
:

(v) Two cycles are orthogonal as subsets of a plane (i.e. they have perpendicular tan-
gents at an intersection point) if they are orthogonal in the sense of Definition 2.

(vi) Two cycles C and C1 are tangent (i.e. have a unique point in common) if

hC;C1i
2
D hC;C ihC1; C1i:

(vii) Inversive distance [10, § 5.8] � of two (non-isotropic) cycles is defined by the
formula

� D
hC;C1ip

hC;C ihC1; C1i
: (11)

In particular, the above discussed orthogonality corresponds to � D 0 and the
tangency to � D ˙1. For intersecting cycles, � is the cosine of the intersecting
angle.

(viii) A generalisation of Steiner power d.C; C1/ of two cycles is defined as, cf. [12,
§ 1.1],

d.C; C1/ D hC;C1i C
p
hC;C ihC1; C1i; (12)

where both cycles C and C1 are scaled to have k D 1 and k1 D 1. Geometric-
ally, the generalised Steiner power for spheres provides the square of tangential
distance.

Remark 5. The cycles product is indefinite; see [13] for an account of the theory with
some refreshing differences to the more familiar situation of inner product spaces. One
illustration is the presence of self-orthogonal non-zero vectors; see Example 4 (ii) above.
Another noteworthy observation is that the product (10) has the Lorentzian signature .1; 3/
and R4 with this product is isomorphic to Minkowski space-time [21, § 4.2].
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4 Cycles cross ratio

Due to the projective nature of the cycles space (i.e. matrices C and �C correspond to
the same cycle), a non-zero value of the cycle product (9) is not directly meaningful. Of
course, this does not affect the cycles orthogonality. A partial remedy in other cases is
possible through various normalisations [24, § 5.2]. Usually, they are specified by either
of the following conditions.

(i) k D 1, which is convenient for metric properties of cycles. It brings us back to the
initial equation (1) and is not possible for straight lines.

(ii) hC;C i D ˙1, which was suggested in [21, § 4.2] and is useful, say, for tangency
but is not possible for points.

Recall that the projective ambiguity is elegantly balanced in the cross ratio of four
points ([2, § 4.4], [32, III.5], [34, § I.5]):

.z1; z2I z3; z4/ D
z1 � z3

z1 � z4

W
z2 � z3

z2 � z4

: (13)

We use this classical pattern in the following definition.

Definition 6. A cycles cross ratio of four cycles C1, C2, C3 and C4 is

hC1; C2IC3; C4i D
hC1; C3i

hC1; C4i
W
hC2; C3i

hC2; C4i
(14)

assuming hC1; C4ihC2; C3i ¤ 0. If hC1; C4ihC2; C3i D 0 but hC1; C3ihC2; C4i ¤ 0, we
put hC1; C2IC3; C4i D 1. The cycles cross ratio is generally undefined in the remaining
case of an indeterminacy 0

0
.

Note that some additional geometrical reasons may help to resolve the last situation;
see the consideration of orthogonality/tangency with zero radius cycle in Example 9.

As an initial justification of the definition, we list the following properties.

Proposition 7.
(i) The cycles cross ratio is a well-defined FLT-invariant of quadruples of cycles.

(ii) The cycles cross ratio of four zero radius cycles is the squared modulus of the
cross ratio for the respective points:

hZ1; Z2IZ3; Z4i D j.z1; z2I z3; z4/j
2: (15)

(iii) There is the cancellation formula

hC1; C IC3; C4ihC;C2IC3; C4i D hC1; C2IC3; C4i: (16)

Proof. The first statement follows from Corollary 3 and the construction of the cycles
cross ratio. To show the second statement, we derive from (5) and (10) that

hZi ; Zj i D jzi � zj j
2

if we use representations of zero radius cyclesZi andZj by coefficients with ki D kj D 1.
This implies (15). A demonstration of (16) is straightforward.
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To demonstrate that there is more than just a formal similarity between the two, we
briefly list some applications. First, we rephrase Example 4 (vii) in new terms.

Example 8. The capacitance cap.C; C1/ of two cycles ([17, § 5.1], [18, Definition 3])
coincides with the following cycles cross product:

cap.C; C1/ D hC;C1IC1; C i D �
2;

where � is the inversive distance (11). Thereafter, FLT-invariance of the cycles cross ratio
implies that the intersection angle of cycles is FLT-invariant. In particular, cycles are

(i) orthogonal if hC;C1IC1; C i D 0,
(ii) tangent if hC;C1IC1; C i D ˙1, and
(iii) disjoint if jhC;C1IC1; C ij > 1.

Relation (i) is merely a consequence of the first-order orthogonality relation hC;C1i D 0,
which is fundamental to conformal and incidence geometries, cf. Example 4 (i)–(v). Mean-
while, the tangency condition (ii) is genuinely quadratic and shall be equally significant in
Lie spheres geometry, the Steiner’s porism [17,18], and other questions formulated purely
in terms of cycles’ tangency.

Example 9. If a non-zero radius cycle passes a zero radius cycle (point), their cross
ratio has an indeterminacy 0

0
. Geometrically, their relation can be seen in either ways:

as orthogonality or tangency. Therefore, the indeterminacy of the cycle cross ratio can be
geometrically resolved differently either to 0 (indicates orthogonality) or 1 (corresponds
to tangency). More specifically (see the supporting symbolic computations in the note-
book [29]):
• Orthogonality. Consider a cycleZt with a fixed centre and a variable squared radius t .

Take a generic cycle C orthogonal to Zt . To resolve an indeterminacy 0
0

, we use
l’Hospital’s rule at the point t D 0, which corresponds to Zt becoming a zero radius
cycle. This produces hC;Zt IZt ; C ijtD0 D 0.

• Tangency. For a zero radius cycle Z and passing it cycle C , consider a generic cycle
Ct D .1 � t / � Z C t � C , t 2 Œ0; 1�, from the pencil (linearly) spanned by Z and C .
Since Ct touches C , Example 8 (ii) implies that hCt ; C I C; Ct i D 1 for t > 0 and
Ct coincides with Z for t D 0. Thus, we can extend the value 1 to ŒZ; C IC; Z� by
continuity.

The last technique makes the cycles cross ratio meaningful for Lie spheres geometry,
which extends FLT by non-point Lie transformations, when a non-zero radius cycle is
sent to a zero radius one.

Example 10. The Steiner power (12) can be written as

d.C; C1/ D hC;CR IC1; CRi C
p
hC;CR IC;CRi �

p
hC1; CR IC1; CRi; (17)

where CR is the real line and cycles C and C1 do not need to be normalised in any par-
ticular way. Thereafter, the Steiner power is an invariant of two cycles C and C1 under
Möbius transformations, since they fix the real line CR . The Möbius invariance is not so
obvious from expression (12).
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The next two applications will generalise the main features of the traditional cross
ratio. Recall the other name of the cross ratio – the anharmonic ratio. The origin of the
latter is as follows. Two points z1 and z2 on a line define a one-dimensional sphere with
the centre O D 1

2
.z1 C z2/, which can be taken as the origin. Two points c1 and c2 are

called harmonically conjugated (with respect to z1 and z2) if

c1 � c2 D �z1 � z2; cf. z1 z2c1 c2O

It is easy to check that, in this case,

.c1; c2I z1; z2/ D �1: (18)

Thus, the cross ratio can be viewed as a measure how far four points are from harmonic
conjugation, i.e. a measure of anharmonicity of a quadruple. To make a similar interpreta-
tion of the cycles cross ratio, recall that, for FSCc matrices of a cycle C1 and its reflection
C2 in a cycle C , we have C2 D CC 1C , cf. [24, § 6.5]. That is, the reflection in a cycle
C is the composition of FLT transform with FSCc matrix C and complex conjugation of
matrix entries. It is easy to obtain the following.

Proposition 11. If a cycle C1 is a reflection of C2 in a cycle C , then

hC1; C IC;C1i D hC2; C IC;C2i:

More generally, the reflection in a cycle preserves the inversive distance, cf. Example 8.

The above condition is necessary; we describe a sufficient one as a figure in the sense
of [26–28]. In short, a figure is an ensemble of cycles interrelated by cycles’ relations. For
the purpose of this paper, an FLT-invariant relation “to be orthogonal” between two cycles
is enough. Software implementations of these figures can be found in [29].

Figure 12.
(i) For two given cycles C and C1, construct the reflection C2 D CC 1C of C1 in C .
(ii) Take any cycle Co orthogonal to C and C1, see Illustration 1. All such cycles

make a pencil – one-dimensional subspace of the projective space of cycles. That
is because there are only two linear equations for orthogonality (10) to determine
four projective coordinates .ko; lo; no; mo/. By Proposition 11, Co is also ortho-
gonal to C2.

(iii) Define cycles by orthogonality to C , Co and itself (zero radius condition), that
is the intersection points of C and Co. Since self-orthogonality is a quadratic
condition, there are two solutions: Z1 and Z2.

(iv) The harmonic conjugation of C1 and C2 (their reflection in C ) implies, cf. (18),

hC1; C2IZ1; Z2i D 1: (19)

This is demonstrated by symbolic computation in [29].

As the final illustration, we introduce Möbius-invariant distance between cycles. Recall
that FLT with an SL2.R/matrix fixes the real line, and it is called a Möbius transformation
([23], [24, Chapter 1], [36, § 9.3]). The corresponding figure is as follows, see Illustra-
tion 2.
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Z2

Z1

Co

C2

C

C1

Illustration 1. Cycles cross ratio for two conjugated cycles

Z1

C

C2

Z2

C1

R

Illustration 2. Construction for Möbius invariant distance between two cycles

Figure 13.
(i) Let two distinct cycles C1 and C2 be given, and they are different from the real

line CR .
(ii) Define a cycle C to be orthogonal to C1, C2 and CR . It is specified by three linear

equations for homogeneous coordinates .k; l;n;m/. In generic position, a solution
is unique; however, it can be an imaginary cycle (with a negative square of the
radius).

(iii) Define cycles by orthogonality to C , CR and itself, that is the intersection points
of C and CR . In general position, there are two solutions which we denote by Z1

and Z2. For an imaginary cycle C , first coordinates of Z1 and Z2 are conjugated
complex numbers.
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(iv) Since the entire construction is completely determined by the given cycles C1 and
C2, we define the distance between two cycles by

d.C1; C2/ D
1

2
loghC1; C2IZ1; Z2i: (20)

From Möbius invariance of the real line and cycles cross ratio, our construction implies
the following.

Proposition 14.
(i) Distance (20) is Möbius invariant.

(ii) For zero radius cycles C1, C2, formula (20) coincides with the Lobachevsky met-
ric on the upper-half plane.

(iii) For any cycle C3 orthogonal to C , the (signed) distance is additive: d.C1; C3/D

d.C1; C2/C d.C2; C3/.

(iv) If centres of C1 and C2 are on the imaginary axis (therefore Z1 and Z2 are zero
and infinity), then d.C1; C2/ D log.m1=k1/ � log.k2=m2/.

Obviously, Proposition 14 (ii) is the consequence of (15), and (iii) follows from the
cancellation rule (16). On the other hand, the expression in (iv) can be obtained by a direct
computation, see [29]. Note that, in this case,mi=ki is the square tangential distance (also
known as the generalised Steiner power (12), (17)) from Z1 (the origin) to the cycle Ci .
Thus, for a zero radius Ci , it coincides with the usual distance between centres of Z1

and Ci , and Proposition 14 (iv) recreates the classical result [2, (7.2.6)].
Comparing constructions on Illustration 1–2 and formulae (19)–(20), we can say that

the invariant distance measures how far two cycles are from being reflections of each other
in the real line.

5 Discussion and generalisations

We presented some evidence that the cycles cross ratio extends to Lie spheres geometry
the concept of the cross ratio of four points. It is natural to expect that a majority of the
classic theory ([2, § 4.4], [30], [32, III.5], [34, § I.5], [35, § 9.3], [37, Appendix A]) admits
similar adaptation as well. However, we can expect even more than that.

One can lay down a general framework for the introduced invariant (14) in generic pro-
jective spaces as follows1. Let V be a vector space over an arbitrary field F with a bilinear
pairing h � ; � iW V � V ! F . Upon choosing any four points of the projective space on V ,
one may select arbitrary non-zero vectors, say c1, c2, c3, c4, representing these points.
Then the quotient

hc1; c3i

hc1; c4i
W
hc2; c3i

hc2; c4i
(21)

1I am grateful to an anonymous referee for pointing this out in his/her report.
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will in general be an element of F . Whenever this scalar is well defined, it obviously will
be an invariant under the natural action of the general orthogonal group GO.V; h � ; � i/ on
the point set of the underlying projective space. More generally, a sort of projective space
can be defined on a module V for a weaker structure than a field, say, algebras of dual
and double numbers [31]. In such cases, numerous divisors of zero prompt a projective
treatment ([6], [24, § 4.5]) of the new cross ratio (21). Another perspective direction to
research are discrete Möbius geometries [17, 18].

The geometric applications of the new invariant (14), (21) are expected much beyond
the currently presented situation of circles on a plane. Indeed, FSCc and cycles product
based on Clifford algebras works in spaces of higher dimensions and with non-degenerate
metrics of arbitrary signatures ([8], [9, § 4.1], [11], [24]). In a straightforward fashion,
cycles cross ratio (14) remains a geometric FLT-invariant in higher dimensions as well.

A more challenging situation occurs if we have a degenerate metric and cycles are
represented by parabolas [37] and respective FLT are based on dual numbers [5]. Besides
theoretical interest, such spaces are meaningful physical models [15, 16, 20, 37]. The dif-
ferential geometry loses its ground in the degenerate case and non-commutative/non-local
effects appear [24, § 7.2]. The presence of zero divisors among dual numbers prompts
a projective approach ([6], [24, § 4.5]) to the cross ratio of four dual numbers, which
replaces (13). Variational methods do not produce FLT-invariant family of geodesics in
the degenerate case; instead, geometry of cycles needs to be employed [22]. Our construc-
tion from Figure 13 shall be usable to define Möbius invariant distance between parabolic
cycles as well, cf. [24, § 9.5].

Last but not least, if we restrict the group of transformations from FLT to Möbius maps
(or any other subgroup of FLT which fixes a particular cycle), we will get a larger set of
invariants. In particular, the FSCc matrix (3) and the corresponding cycles product (9)
can use different number systems (complex, dual or double) independently from the geo-
metry of the plane ([23], [24, § 5.3], [25]). Therefore, there will be three different cycles
cross ratios (14) for each geometry of circles, parabolas and hyperbolas. This echoes the
existence of nine Cayley–Klein geometries ([14], [33], [37, Appendix A]).

Various aspects of the cycles cross ratio appear to be a wide and fruitful field for further
research.

Acknowledgements. I am grateful to an anonymous referee for a detailed report with
useful suggestions.
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