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The unit digits of the decimal expansion of 2n for n 2 N are uniformly distributed over
¹2; 4; 6; 8º, so for each d 2 ¹2; 4; 6; 8º, the probability of the unit digit being d is 1=4 D
25%. However, the leading digits of 2n are not uniformly distributed. It turns out that 1
is the most likely digit to occur in the leading digit, and 9 is the least likely digit to occur.
In this note, we review the distribution of the leading digits of 2n, and introduce a method
of generating the least likely leading digits of 2n using the continued fraction of log10.2/.
Throughout the paper, the common log function log10 is denoted by log.x/.

1 Benford’s Law

In [1, 6], Benford and Newcomb observed that, for many extensive collections of real
numbers written in decimal expansion, their leading digits have a certain logarithmic dis-
tribution, and it is often referred to as Benford’s Law. Let us review in this section the
logarithmic distribution and examples of sequences of positive integers whose leading
digits have the logarithmic distribution.

Das bekannte Gesetz von Newcomb-Benford besagt, dass bei entsprechend verteilten
echten Zufallszahlen, aber auch bei vielen Zahlenfolgen, die Ziffer n mit der Wahr-
scheinlichkeit log10.1C 1=n/ als führende Ziffer auftaucht. Zahlen mit der Anfangs-
ziffer 1 treten demnach rund sechsmal häufiger auf als Zahlen mit der Anfangsziffer 9.
Analoges gilt für Blöcke von führenden Ziffern. Insbesondere ist es am unwahrschein-
lichsten, dass eine Zweierpotenz mit einem Block der Form 99 : : : 9 beginnt. Zum
Beispiel ist unter den ersten hundert Potenzen von 2 die Potenz 293 die einzige, bei der
die ersten beiden führenden Ziffern 99 sind. In der vorliegenden Arbeit wird gezeigt,
wie man solche Potenzen mit Hilfe der Kettenbruchentwicklung von log10 2 erhält.
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Given positive integers L and m � 10L�1, let `L.m/ denote the first L leading digits
of m as an integer in ¹d 2 Z W 10L�1 � d � 10L � 1º, and if m has less than L digits,
i.e., 1 �m< 10L�1, define `L.m/D 0. For example, `2.77/D `2.823543/D 82 2 Z and
`7.7

7/ D 0. Let ¹Anº be a sequence of positive integers. Given positive integers L and
d 2 ¹10L�1; : : : ; 10L � 1º, let P.L; d/.n/ denote the quotient 1

n #¹k � n W `L.Ak/ D dº,
and let P.L; d/1 denote the limit of P.L; d/.n/ as n!1 if it exists, which is a natural
way of defining the probability of the first L leading digits of An being d . The sequence
¹Anº is called a Benford sequence if P.1; d/1 D log.1C 1

d
/ for each d 2 ¹1; : : : ; 9º, and

indeed, the nine values of log.1C 1
d
/ do add up to 1. The sequence given by An D nŠ for

each n � 1 is a Benford sequence, but the sequences An D na for any positive integer a
are not Benford sequences; see [4, 5].

One of the simplest examples of Benford sequences is An D 2n for n � 1, and let us
demonstrate it below. Given a positive integer d 2 ¹1; 2; : : : ; 9º, if `1.2n/ D d and N
denotes the number of digits in the expansion of 2n, then d10N�1 � 2n < .d C 1/10N�1.
Thus,

log.d/C .N � 1/ � n log.2/ < log.d C 1/C .N � 1/
H) 0 � log.d/ � n log.2/ � .N � 1/ < log.d C 1/ � 1:

Thus, n log.2/� .N � 1/ is the fractional part of n log.2/, and it is known as the equidistri-
bution theorem [8, proof of Weyl’s Theorem, pp. 105–113] that the irrationality of log.2/
implies that the fractional part ¹n log.2/º of n log.2/ is uniformly distributed in the inter-
val Œ0; 1/. Therefore, the probability of n log.2/ � .N � 1/ falling in the sub-interval
Œlog.d/; log.d C 1// is equal to the length of the interval, which is log.d C 1/� log.d/D
log.1C 1

d
/. Nothing but the irrationality of log.2/ was used for calculating the probabil-

ity, and the argument easily extends to the proof of the fact that the sequence An D bn for
n � 1 is a Benford sequence if b is not a power of 10 since log.b/ is irrational for such
values of b.

Using the above principle on the fractional parts of the integer multiples of an irra-
tional number, we find that the probability P.2; d/1 is equal to log.1C 1

d
/, where d 2

¹10; 11; : : : ; 99º, and in general, we have

P.L; d/1 D log
�
1C

1

d

�
; (1)

where d 2 ¹10L�1; : : : ; 10L � 1º; see [4]. If a sequence ¹Anº has the distribution (1) for
each L and d , it is called a strong Benford sequence, and hence, the sequence given by
An D b

n for n � 1 is a strong Benford sequence. For simplicity, we focus on the example
An D 2

n for n � 1 for the remainder of this work.
According to the probability (1), the digit of 9 is the most unlikely leading digit of

2n with probability log.10=9/ � 4:6%. For the first two leading digits of 2n, the block
99 is the most unlikely one with probability log.100=99/ � 0:4%, and in general, the
block of L digits 99 : : : 9 is the most unlikely one with probability log.10L=.10L � 1// �
10�L log.e/� 0:43� 10�L for larger values of L. We asked ourselves if there is a method
of finding a positive integer n for which the first block of L leading digits of 2n is the most
unlikely one; of course, we want a method that is more effective than trying all consecutive
powers of 2. In this note, we present an answer using the continued fraction of log.2/.
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2 Continued fractions

Diophantine approximation [3] is a subject in number theory that concerns the question of
how to effectively approximate an irrational number ˇ using a sequence of distinct rational
numbers pk=qk in lowest terms, and the effectiveness is typically measured by a positive
real number s independent of k such thatˇ̌̌

ˇ �
pk

qk

ˇ̌̌
<
C

qs
k

for all k � 1, where C is a positive constant independent of k. It is the celebrated result of
Roth [7] that if ˇ is an irrational algebraic number, i.e., an irrational zero of a polynomial
with integer coefficients, then s � 2. Thus, s D 2 is the best effectiveness we can hope for
an irrational algebraic number. For all irrational real numbers ˇ, there is a standard method
of constructing a sequence of distinct rational numbers with s D 2 and C D 1. It is called
the continued fraction of ˇ, and let us review the construction and the theory below, which
are available in the standard textbooks of elementary number theory such as [2].

Given a positive real number ˇ0, let a0 be the integer part of ˇ0, and let ˇ1 be
the reciprocal of the fractional part of ˇ0, i.e., ˇ1 D 1=.ˇ0 � a0/ if ˇ0 � a0 ¤ 0. If
ˇ0 � a0 D 0, define ˇ1 D 0. Recursively define ak to be the integer part of ˇk , and ˇkC1
to be the reciprocal of the fractional part of ˇk , i.e., ˇkC1 D 1=.ˇk � ak/ for all k � 0
if ˇk � ak ¤ 0; if ˇk � ak D 0, define ˇkC1 D 0. For example, if ˇ0 D 55=89, then
.a0; a1; : : : ; a9/ D .0; 1; 1; : : : ; 1; 2/, and ak D 0 for all k � 10. If we unfold the recip-
rocals of the fractional parts, we can write 55=89 as in (2), and the integers ak are visible
in that expansion. The integers ak for k � 1 are called the partial denominators of this
fraction:

55

89
D

1

1C
1

� � � C
1

1C
1

2

;
1C
p
5

2
D 1C

1

1C
1

1C
1

1C
1

1C � � �

;

log.2/ D
1

3C
1

3C
1

9C
1

2C � � �

:

(2)

In general, ˇ0 is rational if and only if the sequence ¹akº terminates with 0, and ¹akº
is periodic with non-zero period if and only if ˇ0 is a zero of an irreducible quadratic
polynomial with integer coefficients; see the example of the golden ratio in (2). Thus, for
transcendental numbers such as log.2/, the sequence ¹akº is not periodic; see the expan-
sion of log.2/ in (2).

Let ˇ0 be a real number, let a0 be the integer part of ˇ0, and let ak for k � 1 be the
partial denominators of ˇ0. Given a positive integer n, the rational number pn=qn in lowest
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terms is called the nth convergent of ˇ0 if the integer part b0 and the partial denominators
bk of pn=qn coincide with ak for k D 0; : : : ; n, and bk D 0 for all k > n. For example,
the second convergent of log.2/ is the fraction 1

3C1=3
D

3
10

, and the third convergent is 28
93

.
If k is odd, the kth convergent is called an odd convergent of ˇ0.

The following is well known in the theory of continued fractions [2, Chapter 13.4],
and according to Roth’s result [7], it shows that the continued fraction achieves the best
approximation in general.

Theorem 1. If pn=qn is the nth convergent to an irrational number ˇ0, thenˇ̌̌
ˇ0 �

pn

qn

ˇ̌̌
<

1

qnC1qn
<

1

q2n
:

Moreover, if n is odd, then 0 < pn
qn
� ˇ0 <

1
qnC1qn

< 1

q2n
.

For example, if ˇ0 D log.2/, then the third convergent is 28
93

, and 28
93
� log.2/ �

0:000045, which is less than 1=932 � 0:00012. Just using a two-digit denominator, we
could obtain the accuracy up to the 4th decimal place!

3 The unlikely leading digits

Our task is to find an effective method of finding a positive integer n for which the first
block of L leading digits of 2n is 99 : : : 9, and the following theorem is one answer.

Theorem 2. Let n � 3 be the denominator of an odd convergent of the continued fraction
of log.2/, and let L be the smallest non-negative integer > log.n=3/ � 1. Then the first L
leading digits of 2n are all 9.

For example, the rational number 1838395
6107016

is the 13th convergent of log.2/, and

log
6107016

3
� 1 � 5:3 H) L D 6:

The computer calculation shows that 26107016 D 9999996 : : : 36, and it verifies the theo-
rem. The first convergent of log.2/ is 1=3, so n D 3 is the smallest value that applies for
the theorem. If nD 3, then LD 0, and the theorem is vacuously true. The third convergent
is 28=93. So L D 1 > log.93=3/ � 1 � 0:49, and 293 D 9903 : : : 92, which verifies the
theorem.

Proof of Theorem 2. Given a positive integer n, the real number n log.2/ is not an integer,
and hence, there is a unique integer M such that M � 1 < n log.2/ < M , i.e., 10M�1 <
2n < 10M . Since 10M is the smallest positive integer with M C 1 digits, the inequality
implies that 2n hasM digits, and hence,M D dn log.2/e is the number of digits of 2n. Let
Nn WD dn log.2/e and ˇn WD Nn � n log.2/.

Lemma 3. Let n be the positive integer defined in Theorem 2. Then ˇn < 1=n.

Proof. Let m=n be the odd convergent defined in Theorem 2. Then, by Theorem 1,

0 <
m

n
� log.2/ <

1

n2
H) 0 < m � n log.2/ <

1

n
< 1:
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If 
 WD m � n log.2/, then m D n log.2/C 
 , where 0 < 
 < 1, and hence, we find m D
dn log.2/e. Thus, ˇn D m � n log.2/ < 1=n.

Let n be an integer defined in Theorem 2, and let r be the length of the maximal
block of repeated digits of 9 in the leading digits of 2n, e.g., r D 2 if n D 93 since 293 D
990 : : : 792. Suppose that r � log.n=3/� 1; since r � 0, this can happen only when n� 30.
Notice that Nn > n log.2/ > r since Nn D r implies 2n D 99 : : : 99, whose RHS is an odd
integer. Then

2n < 9

Nn�1X
kDNn�r

10k C 9 � 10Nn�r�1 D 10Nn
�
1 �

1

10rC1

�
< 10n log.2/Cˇn

�
1 �

1

10rC1

�
� 2n10ˇn

�
1 �

1

10log.n=3/

�
H) 1 < 10ˇn

�
1 �

1

10log.n=3/

�
D 10ˇn

�
1 �

1

n=3

�
< 101=n

�
1 �

1

n=3

�
: (3)

The function f .x/ D 101=x.1 � 3=x/ is increasing for x > 0, and

f .x/ D
�
10
�
1 �

1

x=3

�x�1=x
D

�
10
�
1 �

1

x=3

��x=3�.�3/�1=x
! .10e�3/0 D 1 as x !1:

Thus, 101=n.1� 1
n=3
/ < 1, but this contradicts the above inequality (3). Therefore, we have

r > log.n=3/ � 1. Since r � L, we prove Theorem 2.
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