Short note The Garfunkel–Bankoff inequality and the Finsler–Hadwiger inequality

Wei-Dong Jiang

Abstract. In this note, we give improvements of the Garfunkel–Bankoff inequality and the Finsler–Hadwiger inequality in a triangle.

In a triangle with angles A, B, C, the sides are a, b, c, and S is the area of the triangle. The semi-perimeter, circumradius and inradius are denoted by s, R and r, respectively. In [3], Garfunkel proposed the following inequality as an open problem:

$$\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 2 - 8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.$$
 (1)

This was first proved by Bankoff in [1], and is known as the Garfunkel–Bankoff inequality. It has received considerable attention from researchers in the field of geometrical inequalities and has motivated a number of papers providing various generalizations and analogues; see, e.g., [8] and the references therein.

In [4], the celebrated Finsler–Hadwiger inequality [7]

$$a^2 + b^2 + c^2 \ge 4\sqrt{3}S + \mathcal{Q},$$

where $\mathcal{Q} = (a-b)^2 + (b-c)^2 + (c-a)^2$, was improved to

$$a^{2} + b^{2} + c^{2} \ge 4\sqrt{4 - \frac{2r}{R}}S + \mathcal{Q}.$$
 (2)

In this note, we give a sharpened version of (1), and an improvement of (2). The proof of the theorems relies on the bound

$$s^{2} \leq 2R^{2} + 10Rr - r^{2} + 2(R - 2r)\sqrt{R(R - 2r)},$$
(3)

which is described in [2, Section 5.10] as "the fundamental inequality of a triangle".

Theorem 1. In a triangle with angles A, B, C, the inequality

$$\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 2 - 8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} + \frac{r^2(R-2r)}{4R^2(R-r)}.$$
 (4)

holds, with equality if and only if the triangle is equilateral.

Proof. Using the well-known identities

$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{r}{4R}$$

and

$$\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} = \frac{(4R+r)^2}{s^2} - 2$$

(4) is equivalent to

$$s^{2} \leq \frac{4R^{2}(4R+r)^{2}(R-r)}{16R^{3}-24R^{2}r+9Rr^{2}-2r^{3}}.$$
(5)

By (3), it is sufficient to prove

$$2R^{2} + 10Rr - r^{2} + 2(R - 2r)\sqrt{R(R - 2r)} \le \frac{4R^{2}(4R + r)^{2}(R - r)}{16R^{3} - 24R^{2}r + 9Rr^{2} - 2r^{3}}.$$
 (6)

Putting $t = \frac{r}{R}$, we have $0 < t \le \frac{1}{2}$, and (6) is equivalent to

$$2 + 10t - t^{2} + 2(1 - 2t)\sqrt{1 - 2t} \le \frac{4(4 + t)^{2}(1 - t)}{16 - 24t + 9t^{2} - 2t^{3}}.$$

This is true since

$$\left[\frac{4(4+t)^2(1-t)}{16-24t+9t^2-2t^3} - (2+10t-t^2)\right]^2 - [2(1-2t)\sqrt{1-2t}]^2$$
$$= \frac{t^4(4t^6+12t^5-47t^4+36t^3+504t^2-512t+128)}{(2t^3-9t^2+24t-16)^2}$$
$$= \frac{t^4(t^2-4t+8)(t+4)^2(1-2t)^2}{(2t^3-9t^2+24t-16)^2} \ge 0,$$

which is obviously correct for $0 < t \le \frac{1}{2}$.

By Euler's inequality $R \ge 2r$, (4) is stronger than (1), and equivalent if and only if the triangle is equilateral.

As an application of (5), we show that (2) can be improved to the following.

Theorem 2. In a triangle with sides a, b, c, the inequality

$$a^{2} + b^{2} + c^{2} \ge 4\sqrt{4 - \frac{2r}{R} + \frac{r^{2}(R - 2r)}{4R^{2}(R - r)}}S + Q.$$
 (7)

holds, with equality if and only if the triangle is equilateral.

Proof. Indeed, using the well-known identities $ab + bc + ca = s^2 + 4Rr + r^2$, S = rs, we get

$$a^{2} + b^{2} + c^{2} - [(a - b)^{2} + (b - c)^{2} + (c - a)^{2}] = 4r(4R + r).$$

Then (7) is equivalent to (5).

Kooi's inequality

$$s^2 \le \frac{R(4R+r)^2}{2(2R-r)}$$

is equivalent to the Garfunkel–Bankoff inequality (1) and to the refinement of the Finsler–Hadwiger inequality (2). Its geometric interpretation is $OM^2 \ge 0$, where O is the circumcenter and M is the Mittenpunkt of the triangle (see [6]). It can be derived directly from the fundamental triangle inequality (3), without using parameter t (see [5]).

In [6], M. Lukarevski and D.S. Marinescu gave a refinement of Kooi's inequality, namely

$$s^{2} \leq \frac{R(4R+r)^{2}}{2(2R-r)} - \frac{r^{2}(R-2r)}{4R}.$$
(8)

We point out that (5) is stronger than (8), since $R \ge 2r$ and

$$\frac{R(4R+r)^2}{2(2R-r)} - \frac{r^2(R-2r)}{4R} - \frac{4R^2(4R+r)^2(R-r)}{16R^3 - 24R^2r + 9Rr^2 - 2r^3}$$
$$= \frac{r^3(R-2r)(4R-r)(20R^2 - 5Rr + 2r^2)}{4R(2R-r)(16R^3 - 24R^2r + 9Rr^2 - 2r^3)} \ge 0.$$

Acknowledgments. The author is thankful to editors and anonymous referees for their valuable comments on the original version of this paper.

References

- [1] L. Bankoff, Solution of Problem 825. Crux Math. 10 (1984), no. 5, 168
- [2] O. Bottema, R. Ž. Djordjević, R. R. Janić, D. S. Mitrinović, and P. M. Vasić, *Geometric inequalities*. Wolters-Noordhoff Publishing, Groningen, 1969
- [3] J. Garfunkel, Problem 825. Crux Math. 9 (1983), no. 3, 79
- [4] M. Lukarevski, Problem 11938. The American Mathematical Monthly 123 (2016), no. 9
- [5] M. Lukarevski, A simple proof of Kooi's inequality. Math. Mag. 93 (2020), no. 3, 225
- [6] M. Lukarevski and D. S. Marinescu, A refinement of the Kooi's inequality, Mittenpunkt and applications. J. Math. Inequal. 13 (2019), no. 3, 827–832
- [7] P. Von Finsler and H. Hadwiger, Einige Relationen im Dreieck. Comment. Math. Helv. 10 (1937), no. 1, 316–326
- [8] S. Wu and L. Debnath, Parametrized Garfunkel–Bankoff inequality and improved Finsler–Hadwiger inequality. Appl. Math. Lett. 23 (2010), no. 3, 331–336

Wei-Dong Jiang Department of Information Engineering Weihai Vocational College Weihai City 264210, ShanDong province, P. R. China jackjwd@163.com