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Short note The Garfunkel–Bankoff inequality and
the Finsler–Hadwiger inequality

Wei-Dong Jiang

Abstract. In this note, we give improvements of the Garfunkel–Bankoff inequality
and the Finsler–Hadwiger inequality in a triangle.

In a triangle with angles A; B; C , the sides are a; b; c, and S is the area of the triangle. The
semi-perimeter, circumradius and inradius are denoted by s; R and r , respectively. In [3],
Garfunkel proposed the following inequality as an open problem:
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This was first proved by Bankoff in [1], and is known as the Garfunkel–Bankoff inequal-
ity. It has received considerable attention from researchers in the field of geometrical
inequalities and has motivated a number of papers providing various generalizations and
analogues; see, e.g., [8] and the references therein.

In [4], the celebrated Finsler–Hadwiger inequality [7]
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where Q D .a � b/2 C .b � c/2 C .c � a/2, was improved to
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In this note, we give a sharpened version of (1), and an improvement of (2). The proof
of the theorems relies on the bound
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which is described in [2, Section 5.10] as “the fundamental inequality of a triangle”.

Theorem 1. In a triangle with angles A; B; C , the inequality
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holds, with equality if and only if the triangle is equilateral.
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Proof. Using the well-known identities
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(4) is equivalent to
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By (3), it is sufficient to prove
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Putting t D r
R

, we have 0 < t � 1
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, and (6) is equivalent to
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which is obviously correct for 0 < t � 1
2

.

By Euler’s inequality R � 2r , (4) is stronger than (1), and equivalent if and only if the
triangle is equilateral.

As an application of (5), we show that (2) can be improved to the following.

Theorem 2. In a triangle with sides a; b; c, the inequality
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holds, with equality if and only if the triangle is equilateral.

Proof. Indeed, using the well-known identities ab C bc C ca D s2 C 4Rr C r2, S D rs,
we get
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Then (7) is equivalent to (5).
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Kooi’s inequality
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is equivalent to the Garfunkel–Bankoff inequality (1) and to the refinement of the Finsler–
Hadwiger inequality (2). Its geometric interpretation is OM 2 � 0, where O is the circum-
center and M is the Mittenpunkt of the triangle (see [6]). It can be derived directly from
the fundamental triangle inequality (3), without using parameter t (see [5]).

In [6], M. Lukarevski and D. S. Marinescu gave a refinement of Kooi’s inequality,
namely
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We point out that (5) is stronger than (8), since R � 2r and
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