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We study the problem of finding a regression ellipse to fit a given family of data points
.xi ; yi /, where 1 � i � n, i.e., an ellipse which matches these data points “as well as
possible”. Since each ellipse can be uniquely specified by an equation of the form

ax2 C bxy C cy2 C dx C ey C f D 0; where 4ac � b2 D 1;

Die bestmögliche Schätzung von Systemparametern aus Messungen ist eine in vie-
len Anwendungssituationen auftretende Fragestellung. Erfüllen die zu schätzenden
Parameter Nebenbedingungen, treten sie also als Elemente einer nichtlinearen Man-
nigfaltigkeit auf, so treffen bei dieser Fragestellung verschiedene Gebiete der Ma-
thematik zusammen: Optimierung, Differentialgeometrie, Statistik. Der vorliegende
Artikel zeigt am konkreten Beispiel der Bestimmung von Ausgleichsellipsen, wie sich
differentialgeometrische Ideen zur eleganten Lösung eines Parameterschätzproblems
nutzen lassen.
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Figure 1. Family of data points (left) and regression ellipse through these points (right).

we can choose as a criterion for the goodness of fit the quantity

nX
iD1

.ax2i C bxiyi C cy
2
i C dxi C eyi C f /

2: (1)

Thus we seek to minimize expression (1) amongst all arguments .a; b; c; d; e; f / in R6

subject to the constraint 4ac � b2 D 1. This problem can be solved using the method of
Lagrange multipliers (see [17, Vol. 2, problem (98.37)]); an example for the solution is
shown in Figure 1.

In this paper, we want to present an alternative solution which yields an elegant appli-
cation of a rather general approach to regression problems on manifolds. To present this
approach, let us summarize some key facts from regression analysis (cf. [5]). The simplest
regression problem takes the form of an overdetermined system Ax D b of linear equa-
tions, where x 2 Rm, b 2 Rn and A 2 Rn�m with n > m. We interpret x as a vector of
m parameters and the n scalar equations constituting the system as measurements which
are used to estimate the parameters. Since there are more measurements than parame-
ters and since measurement errors are unavoidable, we can only hope to solve the system
Ax D b in an approximate way, namely in the sense of minimizing kAx � bk with respect
to some norm on Rn. Now if this norm is Euclidean and if we choose another Euclidean
norm on Rm, then a vector x 2 Rm minimizes kAx � bk if and only if it satisfies the nor-
mal equation ATAx D AT b, where the transpose of A is taken with respect to the inner
products underlying the chosen norms. If A has rank m (which means that the measure-
ments contain enough information to estimate the parameters), then x is uniquely given by

x D .ATA/�1AT b: (2)
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Next we turn to nonlinear regression problems. Again, we seek a parameter vector
x 2 Rm which, ideally, satisfies an equation f .x/ D �, where � 2 Rn is a given vector
of measurement values and where the components of the function f WRm ! Rn are inter-
preted as measurements. We reduce such a nonlinear regression problem to a sequence of
linear regression problems as follows. Given an estimate x.0/ for the parameter vector in
question, we ask which update ıx should be chosen such that the new estimate x.0/ C ıx
satisfies the equation f .x/ D � as well as possible. If we assume that the original esti-
mate is not too bad, i.e., not too far away from the optimal choice for x, we can linearize
f about x.0/ and thus have to satisfy the approximate equations � � f .x.0/ C ıx/ �

f .x.0//C f 0.x.0// ıx. This amounts to solving the linear regression problem

Aıx D �; where A WD f 0.x.0// and � WD � � f .x.0//: (3)

The vector � is called the residual vector; it is the difference between the vector � of
actually obtained measurements and the vector f .x.0// of theoretically expected measure-
ments based on the assumption that x.0/ is the true parameter vector. Applying (2) to (3)
yields ıx D .ATA/�1AT � and then x.1/ WD x.0/ C ıx as an updated (and, as we hope,
improved) estimate for the true parameter vector x. This procedure needs to be iterated,
as in each step we slightly change the problem by linearizing about the currently best esti-
mate, ignoring higher-order terms. In typical situations, this iterative estimation scheme
converges fast, provided that the initial estimate is not too far off.

Finally, we turn to a regression problem of the form f .p/D � in which the estimation
parameter p is not a vector in Rm, but an element of a manifold M . (In practical applica-
tions, M is typically an embedded submanifold of some Euclidean space so that we can
treat p as a vector subject to certain constraints.) In order to adapt the iterative scheme
described before, we assume that M is equipped with a Riemannian metric. We proceed
as before, with the following modifications.
• Given an estimate p (which is constrained to lie in a manifold M ), we only allow

updates ıp which are constrained to lie in the tangent space TpM of M at p, thereby
solving a linear regression problem using the linearization f 0.p/W TpM ! Rn of f
at p and using the Euclidean norm on TpM induced by the Riemannian metric on M .

• Once the update ıp 2 TpM is found, it does not make sense to replace the old esti-
mate p by the new estimate p C ıp, not even if M is an embedded submanifold. (In
this setting, p C ıp is a well-defined element of the ambient space, but not an element
of M .) Thus the simple linear update step x.0/ 7! x.0/ C ıx encountered before is
replaced by the nonlinear update step p 7! expp.ıp/, where expp is the exponential
function of the manifold M at p, defined by expp.v/ D 
.1/, where 
 is the unique
geodesic on M satisfying 
.0/ D p and P
.0/ D v. Intuitively, the update vector ıp is
wrapped around M to find a new estimate; this is shown in Figure 2.
To apply the regression algorithm just described to the problem of regression ellipses,

it will be convenient to write b D ˇ
p
2 and to change the normalization constant to the

value 2. Thus we seek the equation of the regression ellipse in the form

ax2 C
p
2ˇxy C cy2 C dx C ey C f D 0
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Figure 2. Nonlinear update step to improve a parameter estimate in an estimation problem on a Riemannian
manifold.

subject to the constraint

1 D 2ac � ˇ2 D Œa ˇ c�

240 0 1

0 �1 0

1 0 0

3524aˇ
c

35 :
Rotating the coordinate system by 45° about the axis spanned by the vector .1; 0; 1/T , i.e.,
introducing the new coordinates24xy

z

35 D T �1
24aˇ
c

35 ; where T WD

24 1=
p
2 0 1=

p
2

0 1 0

�1=
p
2 0 1=

p
2

35 ;
the equation 2ac � ˇ2 D 1 becomes x2 C y2 � z2 D �1, which is the equation of a two-
sheeted hyperboloid H . Thus we want to minimize the function

nX
iD1

�
x C z
p
2
� x2i C

p
2y � xiyi C

z � x
p
2
� y2i C dxi C eyi C f

�2
subject to the constraint x2C y2 � z2 D�1. This is a minimization problem on the mani-
fold M WD H � R3 D ¹.x; y; z; d; e; f / 2 R6 j x2 C y2 � z2 D �1º. In order to apply
the method described before, we need to equip M with a Riemannian metric. To do so,
we take the product metric of a Riemannian metric on H with the metric on R3 induced
by the standard Euclidean structure. As a Riemannian metric on H , however, we do not
use the metric induced by the canonical inner product on R3, but the one induced by the
Minkowski bilinear form

�

0@24v1v2
v3

35 ;
24w1w2
w3

351A WD v1w1 C v2w2 � v3w3;
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which makes H into a Riemannian manifold of constant curvature �1 isometric to the
hyperbolic plane. Let us describe the details. Writing p D .x; y; z/, we have

H D ¹.x; y; z/ 2 R3 j x2 C y2 � z2 D �1º

D ¹p 2 R3 j �.p; p/ D �1º:

If t 7! �.t/D .x.t/; y.t/; z.t// is a curve inH , then �.�.t/; �.t//��1 and consequently
�.�.t/; P�.t//� 0, which implies that the tangent space of H at a point p D .x; y; z/ 2 H
is given by

TpH D ¹v 2 R3 j �.p; v/ D 0º:

Now if p D .x; y; z/ 2 H and v D .v1; v2; v3/T 2 TpH , then x2 C y2 � z2 D �1 and
xv1 C yv2 � zv3 D 0, whence z ¤ 0 and v3 D .xv1 C yv2/=z. This implies that

�.v; v/ D v21 C v
2
2 � v

2
3 D v

2
1 C v

2
2 �

.xv1 C yv2/
2

z2

D
z2v21 C z

2v22 � .xv1 C yv2/
2

z2

D
.z2 � x2/v21 C .z

2 � y2/v22 � 2xyv1v2

z2

D
.y2 C 1/v21 C .x

2 C 1/v22 � 2xyv1v2

z2

D
v21 C v

2
2 C .yv1 � xv2/

2

z2

and hence that �.v; v/ > 0 whenever v ¤ 0. Thus � is positive definite on each tangent
space of H and therefore induces a Riemannian metric on H (which, as a matter of fact,
makes H isometric to the hyperbolic plane; cf. [14, 15]). With this metric, the unique
geodesic 
 originating at a point p with a unit velocity vector v is given by


.t/ WD cosh.t/p C sinh.t/v: (4)

Let us prove this claim! We show first that 
 is indeed a curve within H . Noting that
�.p; p/ D �1 because p 2 H , that �.p; v/ D 0 because v 2 TpH and that �.v; v/ D 1
because v has unit length, we find by bilinearity that �.
.t/; 
.t// D cosh.t/2�.p; p/C
2 sinh.t/ cosh.t/�.p; v/C sinh.t/2�.v; v/ D � cosh.t/2 C sinh.t/2 D �1, which implies
that 
.t/ 2 H for all t . Clearly, 
.0/ D p and P
.0/ D v. Finally, we have �.
.t/; v/ D 0
for all v 2 T
.t/H , which implies that R
.t/ D 
.t/ 2 .T
.t/H/? for all t and hence that
the acceleration vector R
 has no tangent component, revealing 
 to be a geodesic. The
reason why we equip H not with the metric induced by R3, but with the hyperbolic met-
ric, is exactly the existence of the explicit formula (4) for the geodesics on H . Since the
parameters .�x;�y;�z;�d;�e;�f / and .x; y; z; d; e; f / determine the same ellipse,
we may assume that z > 0 and hence z D

p
1C x2 C y2, which leaves only five esti-

mation parameters .x; y; d; e; f /. Thus the algorithm to determine the regression ellipse
through points .xi ; yi / (where 1 � i � n) can be succinctly formulated as follows.
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• Given an estimate .x; y; z; d; e; f / 2M , where z D
p
1C x2 C y2, write

p WD .x; y; z/ 2 H and q WD .d; e; f / 2 R3;

determine the residual vector � 2 Rn whose i -th entry is

�i WD �

�
x C z
p
2
� x2i C

p
2y � xiyi C

z � x
p
2
� y2i C dxi C eyi C f

�
and the matrix A 2 Rn�5 whose i -th row is�

.x2i � y
2
i /C .x

2
i C y

2
i / � x=z

p
2

;
p
2 � xiyi C

.x2i C y
2
i / � y=z
p
2

; xi ; yi ; 1

�
and let� WD .ATA/�1AT �. (Note that the i -th row of A consists of the partial deriva-
tives of the i -th measurement with respect to x, y, d , e and f .)

• Write � D .ıx; ıy; ıd; ıe; ıf / and let ız WD .x � ıx C y � ıy/=z. Moreover, write
ıp WD .ıx; ıy; ız/T and ıq WD .ıd; ıe; ıf /T and perform the update steps

pnew WD cosh.kıpk/ � p C sinh.kıpk/ �
ıp

kıpk
and qnew WD q C ıq;

where the norm k � k is the one on TpH so that

kıpk2 D
.ıx/2 C .ıy/2 C .y ıx � x ıy/2

z2
:

• Write pnew D .xnew; ynew; znew/ and qnew D .dnew; enew; fnew/ and replace the old esti-
mate .x; y; z; d; e; f / by the new estimate .xnew; ynew; znew; dnew; enew; fnew/.

Figure 3 shows an application of this algorithm. As an initial estimate p.0/, we choose
an ellipse passing through five of the given data points (shown in blue). The algorithm
then yields successively the estimates p.1/ (green), p.2/ (orange) and p.3/ (red). Note that
p.2/ and p.3/ can hardly be distinguished, which shows that the algorithm converges fast
to the regression ellipse through the given data points. The transition from an estimate
p.i/ to the next estimate p.iC1/ takes place along a geodesic on M ; this is shown on the
right-hand side of Figure 3. Note that, instead of thinking ofM as a manifold of sextuplets
.x; y; z; d; e; f / describing ellipses, we may think of M as a manifold whose points are
ellipses. This point of view is made tangible by viewing geodesics in M as time-varying
families of ellipses as shown in Figure 3.

There is a rather extensive literature on the determination of regression ellipses (see,
e.g., [1, 8–11, 19, 20]), and the optimization criterion used in the above example is not the
only possible one. A more geometrically (rather than algebraically) motivated criterion for
the goodness of fit is the sum of the squared distances from the given data points to the
sought ellipse, and we want to show how our approach (which is concerned with model-
ing the parameter space rather than specifying the quantity to be minimized) can be used
with this criterion as well. If a point Q on a given ellipse aX2 C bXY C cY 2 C dX C
eY C f D 0 has minimal distance to a given point P , then the vector

��!
PQ is perpen-
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Figure 3. Iterative determination of the regression ellipse (left) and “points” (i.e., ellipses) on the geodesic joining
the initial estimate and the resulting updated estimate (right).

P

Q

P

Q1 Q2

Figure 4. Left: Best approximation Q to a given point P on a given ellipse. Center: Point P with two best
approximations Q1 and Q2. Right: area (red) of those points which admit four normal lines to the ellipse.

dicular to the tangent to the ellipse at Q; this can be easily seen by geometric reasoning
or by applying the method of Lagrange multipliers. (See Figure 4. Note that such a best
approximation is not necessarily uniquely determined. This is related to Apollonius’ prob-
lem of determining the number of normal lines from a given point to a given ellipse;
cf. [16, (98.9)].)

Applying this observation with any of the data points P D .xi ; yi / and writing Q D
.ui ; vi / for the best approximation of P on the ellipse aX2 C bXY C cY 2 C dX C
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eY C f D 0, we find that

0 D .ui � xi /.bui C 2cvi C e/ � .vi � yi /.2aui C bvi C d/

D bu2i C .2c � 2a/uivi � bv
2
i C .�bxi C 2ayi C e/ui

C .�2cxi C byi � d/vi C .dyi � exi /: (5)

Moreover, since .ui ; vi / is a point on the ellipse, we have

au2i C buivi C cv
2
i C dui C evi C f D 0: (6)

Rewriting equations (5) and (6) in terms of .x; y; z/ instead of .a; b; c/ results in the
equations

0 D
x C z
p
2
u2i C

p
2yuivi C

z � x
p
2
v2i C dui C evi C f (7)

and
0 D
p
2yu2i � 2

p
2xuivi �

p
2yv2i

C
�
�
p
2yxi C

p
2.x C z/yi C e

�
ui

C
�
�
p
2.z � x/xi C

p
2yyi � d

�
vi C .dyi � exi /: (8)

We treat (7) and (8) as equations defining ui and vi implicitly as functions of the param-
eters x; y; d; e; f , with z given by the equation z D

p
1C x2 C y2. Taking derivatives

with respect to each parameter p 2 ¹x; y; d; e; f º and using the relations @z=@x D x=z
and @z=@y D y=z, we obtain five pairs of equations of the form

"
P11 P12

P21 P22

#26664
@ui

@p

@vi

@p

37775 D
"
P ?1

P ?2

#

from which the partial derivatives @ui=@p and @vi=@p can be obtained. (The exact expres-
sions for the various parameters are deferred to an appendix.) These partial derivatives are
then used analogously as before to iteratively improve estimates for the coefficients of the
regression ellipse, this time using

Pn
iD1..ui � xi /

2 C .vi � yi /
2/ as the criterion for the

goodness of fit. To test this algorithm, we choose an example reported in [9], namely that
of finding the regression ellipse through the following data points.

x 1 2 5 7 9 3 6 8
y 7 6 8 7 5 7 2 4

In [9], it is reported that 71 iteration steps were required to find the “best ellipse” with
respect to the chosen criterion of best fit in the geometric sense. The algorithm presented
here performs very favorably in this example; the best fit is reached after about 10 itera-
tions, as is shown in Figure 5.

The above examples suggest that the presented approach works quite well, and it
would certainly be worth the effort to systematically compare its performance (as to rate of
convergence, robustness or other criteria) with that of other methods. Moreover, if regres-
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Figure 5. Iterative determination of the ellipse of geometric best fit in the chosen example, with an ellipse through
five of the given data points (blue) taken as initial estimate.

sion ellipses are sought for real-world data for which statistical information is available,
it would also be of interest to assess the statistical qualities of the parameter estimates
obtained with our approach; this leads up to interesting questions concerning the interplay
between differential geometry and statistics (cf. [2–4,7,12,13,18]). However, these issues
are beyond the scope of the present paper, which has no higher ambition than to convey
how, in a concrete example, geometric ideas can be applied to solve a parameter estimation
problem.

The approach presented here requires no deep knowledge of differential geometry, but
the grasp of some key concepts (manifold, Riemannian metric, geodesic, direct product of
Riemannian manifolds) and the geometric intuition to apply these concepts in a concrete
setting. This seems to be the typical way differential geometric ideas enter into engineer-
ing disciplines such as robotics, satellite control or image processing. The ever-growing
importance of the concept of a differentiable manifold stands in contrast to its subtlety; it
is still a didactical challenge to introduce this concept to novices not well-versed in mod-
ern topology and differential calculus. The fact that the concept of a manifold is on the
one hand quite natural and geometrically appealing, on the other hand quite subtle and not
so easy to define precisely, was felt early on in the development of differential geometry.
Even in the second edition of his textbook [6], Elie Cartan, one of the masters of the field
and an important contributor to the theory, desisted from giving a clear-cut general defini-
tion and preferred discussing examples: “La notion générale de variété est assez difficile
à definir avec précision.” We feel that examples such as the one presented here do not just
serve the purpose of applying differential geometric methods, but can also help to motivate
and introduce the relevant concepts and hence are of some didactical value.
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Appendix

In this appendix, we list the formulas required to implement the proposed algorithm to
determine the ellipse of geometric best fit associated with a given set of data points. The
partial derivatives with respect to x are determined by

X11 D ui .x C z/C viy C .d=
p
2/;

X12 D uiy C vi .z � x/C .e=
p
2/;

X21 D 2uiy � 2vix � xiy C yi .x C z/C .e=
p
2/;

X22 D �2uix � 2viy � xi .z � x/C yiy � .d=
p
2/;

X?1 D
�
v2i .z � x/ � u

2
i .z C x/

�
=.2z/;

X?2 D 2uivi C
�
xivi .x � z/ � uiyi .x C z/

�
=z:

The partial derivatives with respect to y are determined by

Y11 D ui .x C z/C viy C .d=
p
2/;

Y12 D uiy C vi .z � x/C .e=
p
2/;

Y21 D 2uiy � 2vix � xiy C yi .x C z/C .e=
p
2/;

Y22 D �2uix � 2viy � xi .z � x/C yiy � .d=
p
2/;

Y ?1 D �uivi � .u
2
i C v

2
i /y=.2z/;

Y ?2 D �u
2
i C v

2
i C xiui � yivi C .xivi � yiui /y=z:

The partial derivatives with respect to d are determined by

D11 D ui .x C z/C viy C .d=
p
2/;

D12 D uiy C vi .z � x/C .e=
p
2/;

D21 D 2uiy � 2vix � xiy C yi .x C z/C .e=
p
2/;

D22 D �2uix � 2viy � xi .z � x/C yiy � .d=
p
2/;

D?
1 D �ui=

p
2;

D?
2 D .vi � yi /=

p
2:

The partial derivatives with respect to e are determined by

E11 D ui .x C z/C viy C .d=
p
2/;

E12 D uiy C vi .z � x/C .e=
p
2/;

E21 D 2uiy � 2vix � xiy C yi .x C z/C .e=
p
2/;

E22 D �2uix � 2viy � xi .z � x/C yiy � .d=
p
2/;

E?1 D �vi=
p
2;

E?2 D .xi � ui /=
p
2:
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The partial derivatives with respect to f are determined by

F11 D ui .x C z/C viy C .d=
p
2/;

F12 D uiy C vi .z � x/C .e=
p
2/;

F21 D 2uiy � 2vix � xiy C yi .x C z/C .e=
p
2/;

F22 D �2uix � 2viy � xi .z � x/C yiy � .d=
p
2/;

F ?1 D �1=
p
2;

F ?2 D 0:

Funding. Financial support by the Klaus Tschira Foundation for this work is gratefully
acknowledged.

References

[1] S. J. Ahn, W. Rauh, and B. Oberdorfer, Least squares fitting of circle and ellipse. In Mustererkennung 1998;
20. DAGM-Symposium, pp. 333–340, Springer, Berlin, 1998

[2] S. Amari, Information geometry and its applications. Appl. Math. Sci. 194, Springer, Tokyo, 2016

[3] S. Amari and H. Nagaoka, Methods of information geometry. Transl. Math. Monogr. 191, American Math-
ematical Society, Providence; Oxford University Press, Oxford, 2000

[4] N. Ay, J. Jost, H. V. Lê, and L. Schwachhöfer, Information geometry. Ergeb. Math. Grenzgeb. (3) 64,
Springer, Cham, 2017

[5] D. M. Bates and D. G. Watts, Nonlinear regression analysis and its applications. Wiley Ser. Probab. Math.
Stat. Appl. Probab. Stat., John Wiley & Sons, New York, 1988

[6] É. Cartan, Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris, 1946

[7] Y. Chikuse, Statistics on special manifolds. Lecture Notes in Stat. 174, Springer, New York, 2003

[8] A. W. Fitzgibbon, M. Pilu, and R. B. Fisher, Direct least squares fitting of ellipses. IEEE Trans. Pattern
Anal. Machine Intell. 21, no. 5, 476–480 (1999)

[9] W. Gander, G. H. Golub, and R. Strebel, Least-squares fitting of circles and ellipses. BIT 34 (1994), no. 4,
558–578

[10] W. Gander, G. H. Golub, and R. Strebel, Least-squares fitting of circles and ellipses. Bull. Belg. Math. Soc.
Simon Stevin Suppl., 63–84 (1996)

[11] R. Halír̆, J, Flusser: Numerically stable direct least squares fitting of ellipses, Proc. 6th Int. Conf. in Central
Europe on Computer Graphics and Visualization, Pilsen 1998

[12] V. Patrangenaru and L. Ellingson, Nonparametric statistics on manifolds and their applications to object
data analysis. CRC Press, Boca Raton, 2016

[13] X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math.
Imaging Vision 25 (2006), no. 1, 127–154

[14] A. Ramsay and R. D. Richtmyer, Introduction to hyperbolic geometry. Universitext, Springer, New York,
1995

[15] W. F. Reynolds, Hyperbolic geometry on a hyperboloid. Amer. Math. Monthly 100 (1993), no. 5, 442–455

[16] K. Spindler, Höhere Mathematik – Ein Begleiter durch das Studium, Verlag Harri Deutsch, Frankfurt am
Main, 2010



L. Naiwert and K. Spindler 112

[17] K. Spindler, Höhere Mathematik – Aufgaben und Lösungen. Vol. 1–3. Verlag Europa-Lehrmittel, Haan,
2021

[18] G. S. Watson, Statistics on spheres. Univ. Arkansas Lect. Notes Math. Sci. 6, John Wiley & Sons, New
York, 1983

[19] J. Yu, S. R. Kulkarni, and H. V. Poor, Robust fitting of ellipses and spheroids. In 2009 Conference Record
of the Forty-Third Asilomar Conference on Signals, Systems and Computers, pp. 94–98, IEEE Press, Pis-
cataway, 2010

[20] J. Yu, H. Zheng, S. R. Kulkarni, and H. V. Poor, Outlier elimination for robust ellipse and ellipsoid fitting. In
2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), pp. 33–36, IEEE Press, Piscataway, 2010

Lilija Naiwert
Kleinaustraße 20
65201 Wiesbaden, Germany
Lilija.Naiwert@googlemail.com

Karlheinz Spindler (corresponding author)
Hochschule RheinMain
Kurt-Schumacher-Ring 18
65197 Wiesbaden, Germany
Karlheinz.Spindler@hs-rm.de

mailto:Lilija.Naiwert@googlemail.com
mailto:Karlheinz.Spindler@hs-rm.de

	Appendix
	References

