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1 Discontinuous linear functionals

A theorem from elementary functional analysis states that a non-zero linear functional on
a normed linear space E is discontinuous precisely when its kernel is dense in E; see,
for instance, [3, Theorem 3.2 (a)]. In fact, if ' is a discontinuous linear functional on the
normed space E, then there exists a bounded sequence .qn/n2N of elements of E for
which j'.qn/j ! 1 as n!1 and, for every such sequence and an arbitrary p 2 E, the

Für ein beliebiges Polynom p auf dem Einheitsintervall garantiert ein Satz über dis-
kontinuierliche lineare Funktionale auf normierten linearen Räumen die Existenz von
Polynomen, deren Ableitungen an einem Endpunkt des Intervalls verschwinden und
die p gleichmäßig approximieren. Im vorliegenden Artikel wird die Frage behan-
delt, ob solche Approximationen auch unter der weiteren Bedingung möglich sind,
dass die approximierenden Polynome an äquidistanten Stützstellen mit p übereinstim-
men. Es stellt sich heraus, dass die Hermite-Interpolationspolynome das Gewünschte
leisten. Verlangt man hingegen, dass die Ableitung der Approximationspolynome im
Mittelpunkt des Intervalls verschwindet, so tritt das Runge-Phänomen auf den Plan. In
diesem Fall konvergieren die entsprechenden Hermite-Interpolationspolynome näm-
lich nicht, wenn p0

�
1
2

�
¤ 0 ist. Andererseits führt dann ein Wechsel von äquidistanten

Stützstellen zu Tschebyscheff-Stützstellen wieder zu Interpolationspolynomen, die p
gleichmäßig approximieren.

https://creativecommons.org/licenses/by/4.0/
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sequence .pn/n2N given by

pn D p �
'.p/

'.qn/
qn for all n 2 N (1)

satisfies pn 2 ker.'/ for all n 2 N and pn ! p as n!1; see, for example, the proof of
part (ii) of [7, Proposition 8.6]. Of course, if p 2 ker.'/, then pn D p for all n 2 N.

In the following, the relevant normed linear space will be the space P Œ0; 1� of polyno-
mials on the compact interval Œ0; 1�, endowed, as usual, with the supremum norm k � k1
given by kpk1 D sup¹jp.x/j W x 2 Œ0; 1�º for all p 2 P Œ0; 1�. Also, for arbitrary ˛ 2 Œ0; 1�,
the symbol '˛ will denote the point evaluation of the derivative at ˛ given by '˛.p/ D
p0.˛/ for all p 2 P Œ0; 1�. Here we shall focus on the cases ˛ D 0; 1

2
; 1. The functional

'0 is discontinuous since, for each n 2 N, the polynomial qn.x/ D .x � 1/n satisfies
kqnk1 D 1 and '0.qn/ D q0n.0/ D n.�1/

n�1. Consequently, for given p 2 P Œ0; 1�, equa-
tion (1) becomes

pn.x/ D p.x/ �
p0.0/

n.�1/n�1
.x � 1/n;

which entails that p0n.0/ D 0 for all n 2 N and pn ! p as n!1 uniformly on Œ0; 1�.
A similar result may be obtained for '1 by using qn.x/ D xn for all n 2 N, but the case
of '˛ for 0 < ˛ < 1 is perhaps less obvious and will be addressed later.

It seems natural to wonder if the approximation result of the preceding example may
be improved to accommodate certain conditions of interpolation type. For instance, given
an arbitrary p 2 P Œ0; 1� and a point ˛ 2 Œ0; 1�, the problem is to approximate p by
a sequence .pn/n2N of polynomials in the kernel of '˛ such that the condition of interpo-
lation pn

�
j
n

�
D p

�
j
n

�
holds for j D 0;1; : : : ;n. Such conditions are known from the theory

of Lagrange interpolation, but the additional stipulation p0n.˛/ D 0 indicates that actually
the more general theories of Hermite and Birkhoff interpolation are relevant here, as will
be detailed in Section 3. We will see that the formulas provided by these theories are quite
complicated and not really helpful for the convergence issues that we are interested in. We
therefore pursue a different approach which is remarkably more elementary.

For the case of equally spaced interpolation points, the following dichotomy will be
established. If ˛ is one of the endpoints 0 or 1, then, for arbitrary p 2 P Œ0; 1�, the sequence
of corresponding Hermite interpolation polynomials pn turns out to converge uniformly
to p, while, in the case of the midpoint ˛ D 1

2
, this sequence even fails to be bounded for

every choice of p for which p0
�
1
2

�
¤ 0. By contrast, it will also be shown that convergence

occurs even in the midpoint case ˛ D 1
2

provided that equally spaced interpolation points
are replaced by Chebyshev nodes of the first kind.

2 A workhorse lemma

The key is an analysis of the node polynomials sn 2 P Œ0; 1� defined by

sn.x/ D

nY
jD0

�
x �

j

n

�
for all x 2 Œ0; 1�:
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In the textbook [11], Trefethen discusses the historical context and the importance of node
polynomials [11, equation (5.4)] in interpolation. For example, node polynomials allow for
the alternative and advantageous Lagrange interpolation formula that is presented in [11,
equation (5.9)]. In addition, they lead to a simple expression for the error that arises when
applying Lagrange interpolation to approximate a function; see, for instance, the Polyno-
mial Interpolation Error Theorem [4, Theorem 4.3]. Node polynomials also play a natural
role in Hermite interpolation theory; see [9] or [4, Section 4.6], for example.

Evidently, the degree of the node polynomial sn is nC 1. We gather some facts about
these polynomials in the following lemma which will turn out to be the workhorse for
establishing our main theorems connected to Hermite interpolation.

Lemma 1. For arbitrary n 2 N, the following assertions hold:

(i) sn
�
k
n

�
D 0 for k D 0; 1; : : : ; n;

(ii) s0n.0/ D .�1/
n nŠ
nn

;

(iii) s0n.1/ D
nŠ
nn

;

(iv) jsn.x/j � nŠ
4nnC1

for all x 2 Œ0; 1�;

(v) s0n
�
1
2

�
D

.�1/n=2. n2 /Š .
n
2 /Š

nn
for even n 2 N;

(vi)
ˇ̌
sn
�
1
2n

�ˇ̌
D

.2n/Š

.2n/nC1�2n�nŠ
.

Proof. Assertion (i) is an immediate consequence of the definition of sn. For part (ii), an
application of the product rule to

sn.x/ D

nY
jD0

�
x �

j

n

�
D x

nY
jD1

�
x �

j

n

�
yields

s0n.x/ D

nY
jD1

�
x �

j

n

�
C x

 
nY

jD1

�
x �

j

n

�!0
:

Thus,

s0n.0/ D

nY
jD1

�
�
j

n

�
D .�1/n

nŠ

nn
:

Similarly, for assertion (iii), we have

s0n.1/ D

n�1Y
jD0

�
1 �

j

n

�
D

n�1Y
jD0

�
n � j

n

�
D
nŠ

nn
:

For part (iv), letN D
®
j
n
W j D 0; 1; : : : ; n

¯
, and note that, by (i), it suffices to consider

a point x 2 Œ0; 1� n N . For such x, we order the elements of N as a list .x0; x1; : : : ; xn/
such that

jx � x0j � jx � x1j � � � � � jx � xnjI
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in particular, the point x lies between x0 and x1. It follows that

jsn.x/j D jx � x0jjx � x1j

nY
jD2

jx � xj j �
1

4n2

nY
jD2

jx � xj j �
1

4n2
�
2

n
�
3

n
� � �
n

n
;

which establishes estimate (iv).
Proceeding to assertion (v), for even n 2 N, the product rule applied to the formula

sn.x/ D

�
x �

1

2

� nY
jD0
j¤n=2

�
x �

j

n

�

leads to

s0n.x/ D

nY
jD0
j¤n=2

�
x �

j

n

�
C

�
x �

1

2

� nY
jD0
j¤n=2

�
x �

j

n

�!0
:

Thus,

s0n

�
1

2

�
D

n
2�1Y
jD0

�
1

2
�
j

n

� nY
jD n

2C1

�
1

2
�
j

n

�

D
1

nn

n
2�1Y
jD0

�
n

2
� j

� nY
jD n

2C1

�
n

2
� j

�

D
1

nn
�
n

2

�
n

2
� 1

�
� � � 1 � .�1/.�2/ � � �

�
�
n

2

�
D
.�1/n=2

nn
�

�
n

2

�
Š

�
n

2

�
Š

Finally, for arbitrary n 2 N,ˇ̌̌̌
sn

�
1

2n

�ˇ̌̌̌
D

nY
jD0

ˇ̌̌̌
1

2n
�
j

n

ˇ̌̌̌
D

nY
jD0

ˇ̌̌̌
1 � 2j

2n

ˇ̌̌̌
D
1 � 3 � 5 � � � .2n � 1/

.2n/nC1

D
1 � 3 � 5 � � � .2n � 1/ � 2 � 4 � 6 � � � 2n

.2n/nC1 � 2n � nŠ
D

.2n/Š

.2n/nC1 � 2n � nŠ
;

which establishes assertion (vi) and completes the proof.

3 Hermite interpolation polynomials

The following theorem is in the spirit of formula (1) and is an immediate consequence of
assertions (i), (ii), and (iv) of Lemma 1. It provides simple formulas for polynomials pn
that agree with a given polynomial p at equally spaced points in the interval Œ0; 1�, have
derivatives that vanish at 0, and uniformly approximate p.
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Theorem 2. For arbitrary p 2 P Œ0; 1� and n 2 N, the polynomial pn given by

pn.x/ D p.x/ �
p0.0/

s0n.0/
sn.x/ D p.x/ � .�1/

np0.0/
nn

nŠ
sn.x/ for all x 2 Œ0; 1�

satisfies

(i) p0n.0/ D 0;

(ii) pn
�
k
n

�
D p

�
k
n

�
for k D 0; 1; : : : ; n;

(iii) kpn � pk1 � jp0.0/j=.4n/.
In particular, kpn � pk1 ! 0 as n!1.

We emphasize that no particular knowledge of the theory of interpolation polynomials
is needed to establish Theorem 2, but it is gratifying to have a closer look at the connection.

Given an arbitrary function f on Œ0; 1� and intermediate points 0 D x0 < x1 < � � � <
xnD 1, there exists a unique polynomial h of degree at most nC 1 for which h0.0/D 0 and
h.xk/ D f .xk/ for k D 0; 1; : : : ; n. This polynomial is called the Hermite interpolation
polynomial for the given setting and may be computed by the formula

h.x/ D f .0/C x2
nX
kD1

f .xk/ � f .0/

x2
k

nY
jD1
j¤k

x � xj

xk � xj
for all x 2 Œ0; 1�: (2)

Indeed, it is evident that formula (2) defines a polynomial of degree at most nC 1 with the
desired properties. Furthermore, it is easily seen that there is at most one polynomial of this
type since, by Rolle’s theorem, the derivative of the difference of two such polynomials
has at least n C 1 zeros and hence must be the zero function which, in turn, forces the
difference to be identically zero.

To sketch the historical background and to explain our choice of terminology, we recall,
for instance, from [1, Section 3.6] or [10, Section 14.1] that, in the classical theory of Her-
mite interpolation, one considers a collection of nodes x0 < x1 < � � �< xn and pairs of real
numbers .f0;k ; f1;k/ for k D 0; 1; : : : ; n. In this setting, there exists a unique polynomial h
of degree at most 2nC 1 for which h.xk/D f0;k and h0.xk/D f1;k for kD 0;1; : : : ;n. The
polynomial h is sometimes referred to as the classical Hermite interpolation polynomial,
and it is well known how to compute it.

While the classical theory does not apply to the interpolation problem of the present
paper, it is covered by a more general interpolation formula due to Spitzbart [9]. In fact,
[9, Theorem 1] provides a polynomial h of a suitable degree for which h.j /.xk/ D fj;k
for j D 0; 1; : : : ; ˛.k/ and k D 0; 1; : : : ; n with given integers ˛.k/ � 0 and real num-
bers fj;k . As one might expect, the formula for this generalized Hermite interpolation
polynomial h is a bit cumbersome, but it can be shown that it reduces to (2) in our case of
interest and also to the classical formula from [10] in the case ˛.k/D 1 for k D 0;1; : : : ; n.
It therefore seems justified to call all the polynomials from [9, Theorem 1] Hermite inter-
polation polynomials as, for instance, in [8]. Of course, one may also refer to them as
Birkhoff–Hermite polynomials, but what is not needed here is the more sophisticated the-
ory of Birkhoff interpolation for the case when fj;k is missing for at least one pair .j; k/
with j < ˛.k/; see [6, 8].
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Now, if in the setting of Theorem 2, the degree of p is bounded by n C 1, then so
is the degree of pn. This means that pn is the Hermite interpolation polynomial for all
sufficiently large n. We conclude that an arbitrary polynomial is the uniform limit on Œ0; 1�
of its Hermite interpolation polynomials for point evaluation of the derivative at the origin
provided that equally spaced intermediate points are chosen as the interpolation points.
It seems to be a daunting task to derive this remarkable convergence result directly from
representation formula (2).

The preceding results canonically transfer to an interval of the form Œ0; a� for arbitrary
a > 0. Specifically, given a polynomial Qp on Œ0; a� and the nodes 0 D x0 < x1 < � � � <

xn D 1, we define p.x/ D Qp.ax/ for all x 2 Œ0; 1� and consider the Hermite polynomials
hn and Qhn corresponding to the conditions h0n.0/ D Qh

0
n.0/ D 0, hn.xk/ D p.xk/, and

Qhn.axk/D Qp.axk/ for k D 0; 1; : : : ; n. From the definition and also from formula (2), it is
then immediate that hn.x/D Qhn.ax/ for all x 2 Œ0;1�. It turns out that a similar relationship
holds for the polynomials suggested by Theorem 2.

Indeed, let sn and Qsn denote the node polynomials for

.x0; x1; : : : ; xn/ and .ax0; ax1; : : : ; a xn/;

respectively. Then, clearly, Qsn.ax/ D anC1sn.x/ for all x 2 Œ0; 1�, and therefore, Qs0n.0/ D
ans0n.0/. Moreover, the polynomials pn and Qpn given by

pn.x/ D p.x/ �
p0.0/

s0n.0/
sn.x/ and Qpn.ax/ D Qp.ax/ �

Qp0.0/

Qs0n.0/
Qsn.ax/

for all x 2 Œ0; 1� satisfy

Qpn.ax/ D p.x/ �
p0.0/=a

ans0n.0/
anC1sn.x/ D pn.x/ for all x 2 Œ0; 1�:

In particular, the supremum norm of Qpn � Qp over Œ0; a� coincides with that of pn � p over
Œ0; 1�. Thus the conclusion of Theorem 2 remains valid for polynomials on Œ0; a�.

In view of Lemma 1 (iii), we obtain the following counterpart of Theorem 2.

Theorem 3. For arbitrary p 2 P Œ0; 1� and n 2 N, the polynomial pn given by

pn.x/ D p.x/ �
p0.1/

s0n.1/
sn.x/

D p.x/ � p0.1/
nn

nŠ
sn.x/ for all x 2 Œ0; 1�

satisfies

(i) p0n.1/ D 0;

(ii) pn
�
k
n

�
D p

�
k
n

�
for k D 0; 1; : : : ; n;

(iii) kpn � pk1 � jp0.1/j=.4n/.
In particular, kpn � pk1 ! 0 as n!1.



Approximation of polynomials by Hermite interpolation 119

4 Runge’s phenomenon

While the interpolation polynomials associated with the functionals '0 and '1 behave
very nicely, this is no longer true for '1=2. In fact, in this case, the polynomials exhibit the
behavior that has come to be known as Runge’s phenomenon (see [2, Section 4.3.4]). If
a polynomial p 2 P Œ0; 1� satisfies p0

�
1
2

�
D 0, then p 2 ker.'1=2/, so the approximation

of p by polynomials in ker.'1=2/ is trivial. We thus focus on polynomials p for which
p0
�
1
2

�
¤ 0. The following result shows that, in this case, Runge’s phenomenon always

occurs.

Theorem 4. Given a polynomial p 2 P Œ0; 1� and an even integer n 2 N, let

pn.x/ D p.x/ �
p0
�
1
2

�
s0n
�
1
2

� sn.x/ D p.x/ � p0
�
1
2

�
� nn

.�1/n=2
�
n
2

�
Š
�
n
2

�
Š
sn.x/ for all x 2 Œ0; 1�:

Then the following assertions hold:

(i) p0n
�
1
2

�
D 0;

(ii) pn
�
k
n

�
D p

�
k
n

�
for k D 0; 1; : : : ; n;

(iii) if p0
�
1
2

�
¤ 0, then

ˇ̌
pn
�
1
2n

�
� p

�
1
2n

�ˇ̌
>
ˇ̌
p0
�
1
2

�ˇ̌
�
n
2

for all n � 40.

In particular, if p0
�
1
2

�
¤ 0, then kp2k � pk1!1 and kp2kk1!1 as k!1 so that,

in the present setting, the Hermite interpolation polynomials for p fail to approximate p.

Proof. It is clear that claim (i) holds, and (ii) is an immediate consequence of part (i) of
Lemma 1. Turning to assertion (iii), the definition of pn and parts (v) and (vi) of Lemma 1
yield ˇ̌̌̌

pn

�
1

2n

�
� p

�
1

2n

�ˇ̌̌̌
D

ˇ̌̌̌
p0
�
1

2

�ˇ̌̌̌ ˇ̌
sn
�
1
2n

�ˇ̌ˇ̌
s0n
�
1
2

�ˇ̌
D

ˇ̌̌̌
p0
�
1

2

�ˇ̌̌̌
nn.2n/Š

.2n/nC1 � 2n � nŠ �
�
n
2

�
Š
�
n
2

�
Š

D

ˇ̌̌̌
p0
�
1

2

�ˇ̌̌̌
.2n/Š

2n � 22n � nŠ �
�
n
2

�
Š
�
n
2

�
Š

D

ˇ̌̌̌
p0
�
1

2

�ˇ̌̌̌
.nC 1/.nC 2/ � � � .2n/

2n � 22n �
�
n
2

�
Š
�
n
2

�
Š

>

ˇ̌̌̌
p0
�
1

2

�ˇ̌̌̌
nn

2n � 22n �
�
n
2

�
Š
�
n
2

�
Š

D

ˇ̌̌̌
p0
�
1

2

�ˇ̌̌̌�
kk

2kC1 �
p
k � kŠ

�2
;

where, because n is even, we substituted n D 2k for the appropriate k 2 N. The proof
will thus be complete once we establish that kk > 2kC1 � k � kŠ whenever k 2 N satisfies
k � 20.
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The base case for the inductive argument, namely that 2020 > 221 � 20 � 20Š, is easily
verified. So suppose that the inequality kk > 2kC1 � k � kŠ holds for some integer k � 20.
Then

.k C 1/kC1 D .k C 1/.k C 1/k D .k C 1/ � kk �

�
1C

1

k

�k
> 2kC1 � k � .k C 1/Š

�
1C

1

k

�k
D 2kC1 � .k C 1/ � .k C 1/Š �

k

k C 1
�

�
1C

1

k

�k
> 2kC2 � .k C 1/ � .k C 1/Š

because the increasing sequence .ek/1kD1 defined by ek D k
kC1

�
1C 1

k

�k satisfies ek > 2
for all k � 5. This completes the induction and hence the proof of the theorem.

Theorem 4 stands in remarkable contrast to the excellent convergence properties of
the Lagrange interpolation polynomials corresponding to an analytic function; see [5, Sec-
tion 2.2.3].

5 Polynomials of Chebyshev type

In the classical theory of Lagrange interpolation, it is well known that certain interpolation
points that are not equally spaced mitigate Runge’s phenomenon. It turns out that this
approach also works nicely in the present setting of Hermite interpolation, as will be seen
next.

For n 2 N, the n-th Chebyshev polynomial of the first kind is defined by

Tn.x/ D cos.n arccos.x// for �1 � x � 1:

That this formula indeed produces a polynomial in x follows most easily from basic com-
plex analysis. For arbitrary real � , de Moivre’s formula confirms that

cos.n�/C i sin.n�/ D ein� D .ei� /n D .cos.�/C i sin.�//n:

Equating the real parts and applying the binomial theorem yields

cos.n�/ D
Œn=2�X
kD0

�
n

2k

�
i2k sin2k.�/ cosn�2k.�/

D

Œn=2�X
kD0

�
n

2k

�
.cos2.�/ � 1/k cosn�2k.�/:

With the choice � D arccos.x/, we conclude that

Tn.x/ D

Œn=2�X
kD0

�
n

2k

�
.x2 � 1/kxn�2k ;
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which implies that Tn is a polynomial of degree n. Moreover, by its trigonometric defini-
tion, Tn has the n zeros

xk D cos
�
2k � 1

2n
�

�
for k D 1; 2; : : : ; n

in the interval Œ�1; 1�, and these are called the Chebyshev nodes of the first kind (see
[2, Sections 4.4.1 and 4.4.2]). It is also clear that jTn.x/j � 1 for all x 2 Œ�1; 1� and that
T 0n.0/D 0 for even n, while T 0n.0/D˙n for odd n. The classical Chebyshev polynomials
are naturally defined on the interval Œ�1; 1�, but a shift to the unit interval is straightfor-
ward. Indeed, let

qn.x/ D Tn.2x � 1/ for all x 2 Œ0; 1�:

Then kqnk1 D 1 and q0n
�
1
2

�
D 0 for even n, while q0n

�
1
2

�
D ˙2n for odd n. The shifted

Chebyshev nodes are the roots of qn in Œ0; 1�, namely the numbers

Oxk D
1

2
C
1

2
xk D

1

2
C
1

2
cos
�
2k � 1

2n
�

�
for k D 1; 2; : : : ; n:

We are thus led to the following counterpoint to Theorem 4.

Theorem 5. For arbitrary p 2 P Œ0; 1� and an odd n 2 N, let

pn.x/ D p.x/ �
p0
�
1
2

�
q0n
�
1
2

�qn.x/ for all x 2 Œ0; 1�:

Then we have

(i) p0n
�
1
2

�
D 0;

(ii) pn. Oxk/ D p. Oxk/ for k D 0; 1; : : : ; n;

(iii) kpn � pk1 D jp0
�
1
2

�
j=.2n/.

In particular, kp2kC1 � pk1 ! 0 as k !1.

In the following graphics, the polynomial p defined by p.x/D x on Œ0; 1� is displayed
along with its associated standard Hermite polynomial p8 of Theorem 4 on the one hand,
and its associated Chebyshev-type polynomial p9 of Theorem 5 on the other hand.

We leave it to the interested reader to explore the fates of Theorems 4 and 5 in the case
of interpolation polynomials for which the derivative vanishes at ˛ for an arbitrary interior
point 0 < ˛ < 1.

Finally, it is natural to wonder about the extent to which each of our four theorems
remains valid for an arbitrary differentiable function replacing the polynomial p. Unfor-
tunately, our formulas produce a sequence of polynomials only when applied to a polyno-
mial p, so a different approach seems to be needed to handle the general case.
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