Short note The equation x/y + y/z + z/x = 4 revisited

Nguyen Xuan Tho

Abstract. We give an elementary argument to the fact that the equation x/y + y/z + z/x = 4 has no positive integer solutions.

Quoting from Spierpiński's classical book 250 Problems in Elementary Number Theory [3, page 80], "we do not know whether the equation

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 4\tag{1}$$

has positive integer solutions $x, y, z^{"}$. Erik Dofs [2] showed that the equation $a^3 + b^3 + c^3 = nabc$ has no *integer* solutions for n = 4 and many other values of n. By letting $x = a^2b, y = b^2c, z = c^2a$, equation (1) transforms into $a^3 + b^3 + c^3 = 4abc$. Hence equation (1) has no integer (positive integer) solutions. For the general equation x/y + y/z + z/x = n, elliptic curves are the natural setting; see [1]. So an elementary argument for Spierpiński's remark is desirable. In this note, we provide such an argument.

Theorem 1. There do not exist positive integers x, y, z satisfying

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 4.$$
 (2)

We need the following lemma.

Lemma 1. Let n be an odd positive integer such that every prime divisor p of n is equivalent to 1 (mod 4). Then there exist integers A, B such that $n = A^2 + B^2$.

Proof. This is the special case of the Sum of Two Squares Theorem. For a proof, see Silverman [4, Theorem 25.1, page 196].

For an odd prime number p, $(\cdot | p)$ denotes the Legendre symbol. Note that (-1|p) = 1 if and only if $p \equiv 1 \pmod{4}$. We are now ready to prove Theorem 1. Assume that there exist positive integers x, y, z satisfying (2). If $xy - z^2 = 0$, $yz - x^2 = 0$, and $zx - y^2 = 0$, then $xyz = x^3 = y^3 = z^3$ so that x = y = z. Hence (2) is impossible. So at least one of $xy - z^2$, $yz - x^2$, $zx - y^2$ is nonzero. We can assume that $xz - y^2 \neq 0$. From (2), we have x/y + y/z = 4 - z/x. Hence 4x - z > 0 and

$$\left(\frac{x}{y} - \frac{y}{z}\right)^2 = \left(4 - \frac{z}{x}\right)^2 - 4\frac{x}{z}.$$

Thus

$$\left(\frac{x(xz-y^2)}{y}\right)^2 = z\left(-4x^3 + z(z-4x)^2\right).$$
(3)

Let a = -x and b = z. Then a < 0, b > 0, and 4a + b = z - 4x < 0. From (3), we have $b(4a^3 + b(4a + b)^2)$ is a rational square, hence an integral square. Let $d = \text{gcd}(b, 4a^3 + b(4a + b)^2)$. Then $d \mid 4$. Therefore, $d \in \{1, 2, 4\}$.

Case 1: d = 1. Then $b = s^2$ and $4a^3 + b(4a + b)^2 = t^2$, where $s, t \in \mathbb{Z}^+, 2 \nmid t, 2 \nmid s$, and gcd(s, t) = 1. Assume that p is a prime divisor of 4a + b. Then p is odd. We have $t^2 \equiv 4a^3 \pmod{p}$. Therefore,

$$0 \equiv a^{2}(4a+b) \equiv t^{2} + (as)^{2} \pmod{p}.$$
 (4)

Since gcd(a, b) = 1 and $p \mid 4a + b$, we have $p \nmid a$ and $p \nmid b$. Hence $p \nmid t$ and $p \nmid as$. Thus, from (4), we have (-1|p) = 1. Hence $p \equiv 1 \pmod{4}$. This holds for every prime divisor of 4a + b. Since 4a + b < 0, by Lemma 1, we have $-(4a + b) = A^2 + B^2$, where $A, B \in \mathbb{Z}$. Therefore, $-(4a + s^2) = A^2 + B^2$. Since $2 \nmid s$, we have

$$-1 \equiv -(4a + s^2) \equiv A^2 + B^2 \pmod{4},$$

which is impossible since $A^2 + B^2 \equiv 0, 1, 2 \pmod{4}$.

Case 2: d = 2. Then $b = 2s^2$ and $4a^3 + b(4a + b)^2 = 2t^2$, where $s, t \in \mathbb{Z}^+$, and gcd(s,t) = 1. Since 2 | b, we have $2 \nmid a$. Since $t^2 = 2a^3 + 4s^2(2a + s^2)^2$, we have 2 | t. So $4 | t^2$. Thus $4 | 2a^3$, which is impossible since $2 \nmid a$.

Case 3: d = 4. Then $b = 4s^2$ and $4a^3 + b(4a + b)^2 = 4t^2$, where $s, t \in \mathbb{Z}^+$, gcd(s, t) = 1. We have

$$a^3 + 16s^2(a+s^2)^2 = t^2.$$
 (5)

Since $2 \mid b$, we have $2 \nmid a$. From (5), we have $2 \nmid t$. Reducing (5) mod 8 gives $a \equiv 1 \pmod{8}$. Since $a + s^2 = (4a + b)/4$, we have $a + s^2 < 0$. Let $a + s^2 = -2^r h$, where $r, h \in \mathbb{Z}_{\geq 0}$ and $2 \nmid h$. Assume that p is a prime divisor of h. Then p is odd. From (5), we have $a^3 \equiv t^2 \pmod{p}$. Therefore,

$$0 \equiv a^{2}(a+s^{2}) \equiv t^{2} + (as)^{2} \pmod{p}.$$
(6)

Since $p \mid a + s^2$, $b = 4s^2$, and gcd(a, b) = 1, we have $p \nmid a$ and $p \nmid s$. From (6), we also have $p \nmid t$, hence (-1|p) = 1. Therefore, $p \equiv 1 \pmod{4}$. This holds for every prime divisor of *h*. By Lemma 1, we have $h = A^2 + B^2$, where $A, B \in \mathbb{Z}$.

• $2 \mid s$. Since $a \equiv 1 \pmod{8}$, we have $a + s^2 \equiv 1 \pmod{4}$. Since $a + s^2 = -2^r h$, we have r = 0 and $h \equiv -1 \pmod{4}$. Therefore,

$$-1 \equiv h \equiv A^2 + B^2 \pmod{4},$$

which is impossible since $A^2 + B^2 \equiv 0, 1, 2 \pmod{4}$.

• $2 \nmid s$. Since $a \equiv 1 \pmod{8}$, we have $a + s^2 \equiv 2 \pmod{8}$. Since $a + s^2 = -2^r h$, we have r = 1 and $h \equiv -1 \pmod{4}$. Therefore,

$$-1 \equiv h \equiv A^2 + B^2 \pmod{4}$$

which is impossible since $A^2 + B^2 \equiv 0, 1, 2 \pmod{4}$.

References

- [1] A. Bremner and R. K. Guy, Two more representation problems. *Proc. Edinburgh Math. Soc. (2)* 40 (1997), no. 1, 1–17
- [2] E. Dofs, Solutions of $x^3 + y^3 + z^3 = nxyz$. Acta Arith. **73** (1995), no. 3, 201–213
- [3] W. Sierpiński, 250 problems in elementary number theory. Modern Anal. Computat. Meth. Sci. Math. 26, American Elsevier Publishing, New York, 1970
- [4] J. H. Silverman, A friendly introduction to number theory. 4th edn., Pearson, London, 2012

Nguyen Xuan Tho Hanoi University of Science and Technology 1, Dai Co Viet, Hanoi, Vietnam tho.nguyenxuan1@hust.edu.vn