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Short note  Two proofs of Bondy’s theorem on induced
subsets and two related questions

H. A. ShahAli

Let A ={ay,...,a,} be asetof n elements, and let ¥ = {A,..., Ay} be a family of m
subsets of A. In the sequel, we will call a set of n elements an n-set, and we denote any
matrix M of order m x n as M = My x, = (a;;) with (i, j) € {1,....m} x {1,...,n}.
Also, in a matrix M, any column whose deletion makes all the new rows distinct is called
a solution. For A;, let v; be the incidence vector of A; defined by v; = (81, ..., 8in) with

0 ifaj ¢Ai,
8ij = .
1 1faj- € A,

for j = 1,...,n. Then My,%x, = (vy,..., vm)T is the incidence matrix of ¥ . Conversely,
any (0, 1)-matrix can be interpreted as an incidence matrix. Now suppose that m = n, and
{A1,...,Ap}is afamily ¥ of n distinct subsets of A.

A. Hajnal asked, in a private conversation with J. A. Bondy, the following question.

Is there necessarily an (n — 1)-set A’ C A such that the sets A; N A" are all distinct?

Bondy proved this in [3] affirmatively with a simple graph theoretical argument.

Bondy’s theorem. If ¥ = {A,..., An} is a family of n distinct subsets of an n-set A,
then there is an (n — 1)-set A’ C A such that the sets A; N A', where 1 < i < n, are all
distinct.

In other words, there is always an element a € A such that Ay ~ {a},..., A, ~ {a} (or
similarly A; U {a},..., A, U{a}) are yet distinct. The example A, A ~{a1},..., A ~{a,}
of n 4 1 subsets of A shows that # is the best bound for the cardinality of ¥ in general
(because A ~ {ar} = A~ {ar} ~ {ax} for every k).

B. Bollobés states in [2] three different proofs, I. Anderson expresses in [1] a graph
theoretical proof, and A. Winter gives in [4] a linear algebraic proof.

For some theorems, the contraposition is also nice and interesting, especially if the
proof of the contraposition is easier. Bondy’s theorem is of this kind. Bondy’s theorem
and its contraposition may be formulated by (0, 1)-incidence matrices. The main purpose
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of this article is to state the contraposition of Bondy’s theorem (as Theorem 1) and to
give a neat and purely combinatorial proof which is a straightforward consequence of the
simple Fact 1 below. Although a theorem and its contraposition are logically equivalent in
that a proof of one is sufficient to establish the truth of the other, in this article, we will also
give a matrix theoretical proof to Bondy’s theorem as Theorem 2, where we give priority
to determinants and minors to prove it, although this proof, in comparison to the proof of
Theorem 1, is a bit trickier, as it is based on Fact 2 below.

Fact 1. If a graph is on n vertices and has at least n edges, then it has at least one cycle.

Fact 2. The determinant of a square matrix vanishes only when its rows (or columns) are
linearly dependent. (If the rows or columns are not distinct, then the determinant vanishes;
this is a consequence of Fact 2, although it has also other proofs.)

Fact 1 is a well-known simple theorem in graph theory whose proof is an easy exercise,
and Fact 2 is one of the essential properties of determinants whose proof may be found in
any textbook on matrix theory or linear algebra.

Theorem 1. Let M be a square (0, 1)-matrix such that, after removing any column, there
are at least two equal rows, then there are at least two equal rows in M.

Proof (by graphs). Let M have n rows Ry, ..., R, and n columns Cy, ..., C,. Over-
looking any Cy, fork = 1,...,n, let ng), R Rf,k) be the same rows Ry, ..., R, unless
their k-th entry is overlooked. Now, for any k, there are i # j such that Rl(k) = R;k). Then
consider a graphon Ry, ..., R, (as n vertices) with n edges {Rl(k), Rj(.k)}, fork=1,...,n;
hence by Fact 1, there exists at least one cycle R;,, ..., R;,,, forsome 1 <i; <--- <ip, <n,
and we therefore simply observe that R;, = --- = R;,,. This completes the proof. ]

Theorem 2. If M is a (0, 1)-matrix of order n x n with all the rows distinct, then we
can substitute all entries of one proper column by 0 (or 1) such that the new rows are yet
distinct. Or equivalently, there is at least one column whose deletion makes all rows of the
new n x (n — 1) matrix yet distinct.

Proof (by matrices). First, let det(M) # 0. Consider the number of 1’s in each row of M,
and let the number of 1’s in the i-th row be minimal (such a row may not be unique; it
is even possible that all the rows have the same number of 1°s). Then we fix this i, and
expand det(M) by the i-th row, and we get

n
det(M) = Z(—])H_jaij M;;,
j=1

where M;; is the (i, j)-th minor (or the minor of M corresponding to the entry a;;); i.e. it
is the determinant of the (n — 1) x (n — 1) submatrix formed from M by deleting the
i-th row and the j-th column. Now, for some j, we have a;; M;; # 0 because otherwise
aijM;; =0forall j € {1,...,n}, and then det(M ) = 0, which is not this case. And from
aijM;; # 0, we achieve a;; = 1 and M;; # 0O; therefore, all rows of the matrix under the
minor M;; are distinct; otherwise, M;; = 0, which is a contradiction! Now, denote by N
the n x (n — 1) submatrix derived from M by deleting the j-th column of M then this
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i-th row of N is also different from any other k-th row of N, forall k € {1,...,n} ~{i},
because if, for i # k, the i-th row and k-th row in N were equal, hence we would have
either ag; = 1, which means in this case that both the i-th and k-th rows in M would be
equal, which is a contradiction since all the rows of M are distinct; or ag; = 0, which
would mean that the number of 1’s in the k-th row would be less than the number of 1’s in
the i-th row in M, which was minimal: a contradiction! Hence, deleting this j-th column
of M makes all the new rows distinct, too.

Next, let det(M) = 0. Then, by Fact 2, the columns of M are linearly dependent; i.e.
there are scalars kyq, .. ., k,, not all zero, without loss of generality say k,, # 0, such that

kiCi+--+k,C, =0 or kiCi+--+kp1Ch1 = —k,C,,

where Cq, ..., C, are all the columns of M. Overlooking the column C,, consider, in the
reduced n x (n — 1) matrix, any two rows R and R, for s # ¢ as follows:

{Rs = (F1s o Tne1)s

R[ = (ri,...,r;l_l);

then
kiri 4+ -+ knoirp—1 = —kura,
kiri 4+ kn—1r)_y = —knr).
Now if Ry = Ry, thenr, =r,, and we get (r1,...,rp—1,74) = (r{,....7,_y.7,), acontra-

diction (since each two rows in M are different)! Therefore, overlooking the n-th column
(and in fact every j-th column C; with k; # 0) makes all the new rows distinct; in other
words, any C; with k; # 0 is a solution. This completes the proof. |

Corollary. Let M = My,x, be a (0, 1)-matrix with all rows distinct; then there exists one
permutation of the columns of M such that if N is the matrix M under this permutation,
then for any k € {1,...,n — 1}, all rows of the submatrix Nk +1)xk are distinct, too. Here
N = Nyxn = (bl-j)f”jzl, and Ngey1yxk = (bij) with (i, j) € {1,...,k + 1} x {1,...,k}.

Proof. This is an obvious and direct conclusion of Bondy’s theorem. ]

We conclude this article with the following two examples, two questions, and one small
application.

Examples, Questions, Application

Bondy’s theorem ensures the existence of at least one column whose deletion makes all
the new rows distinct (i.e. at least one solution exists).

Example 1. One case of the minimal number (= 1) of solutions (up to equivalency) holds,
for example, for the following matrix:

0 foralli =j €{2,...,n},

Mysn = (a;))? ., witha;; =
mxn = (aij)i j=1 o {1 otherwise,

such that the first column is the only solution.
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Example 2. One case of the maximal number (= n) of solutions (up to equivalency) holds,
for instance, for the identity matrix /,, such that any one of the n columns is one solution.

Question 1. Are there other examples of (0, 1)-matrices M, x, (up to equivalency) for the
above minimal and maximal cases?

Question 2. Could one find some examples or all of the (0, 1)-matrices My,x, such that,
for any integer k with 1 < k < n, there exist exactly k solutions (up to equivalency)?

Application. This is only one small application of Theorem 1 to determinants: let M be
any square (0, 1)-matrix with the mentioned property in Theorem 1; then det(M) = 0.
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