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1 Introduction

In 2020, Zhang [8] proved the following remarkable result.

Theorem 1 (Zhang, 2020 [8]). Each even integer greater than 30 is the sum of a composite
number c and a prime p such that p − c.

Naturally, this raises the question as to whether or not this same property holds for odd
integers greater than some fixed value. However, Zhang’s techniques from [8] can only be
directly applied to odd integers so as to obtain the following inequivalent result: every odd
integer greater than 23 can be represented in the form pC qC c, where p and q are prime
and c is a composite number such that p, q, and c are pairwise coprime. Furthermore, it
appears that the only research, apart from our current note, currently citing Zhang’s work
in [8] is due to Alzer and Kwong [1], who did not introduce any results on or related to the
expression of integers in the form p C c in the manner we have previously indicated. We
succeed, as below, in proving that Zhang’s result also holds for odd integers.

Die additive Zahlentheorie ist innerhalb der Zahlentheorie ein wichtiges und umfang-
reiches Gebiet. Die Zerlegung oder Partition natürlicher Zahlen nach bestimmten Re-
geln oder Bedingungen ist innerhalb und ausserhalb der Zahlentheorie allgegenwärtig
und bildet ein Hauptthema der additiven Zahlentheorie. Im Jahr 2020 bewies Zhang
durch Verfeinerung der Rosser-Schoenfeld-Ungleichung das folgende bemerkenswerte
Resultat: Jede gerade ganze Zahl grösser als 30 kann als Summe einer zusammenge-
setzten Zahl c und einer Primzahl p, die c nicht teilt, ausgedrückt werden. Der Autor
der vorliegenden Arbeit verbessert die Ergebnisse von Zhang, indem er nachweist, dass
jede ganze Zahl grösser als 30, unabhängig von ihrer Parität, in der Form p C c für
eine zusammengesetzte Zahl c und eine Primzahl p ausgedrückt werden kann, so dass
p − c gilt.
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There are many reasons as to the mathematical interest in the expression of integers as
p C c in the manner previously specified. In this regard, we may appeal to the importance
of the discipline of additive number theory as a main subject within number theory. Addi-
tive number theory broadly refers to the study as to how integers may be expressed with
sums of integers from a given set or sets, with reference to Nathanson’s classic texts on
additive number theory [4, 5]. Letting P denote the set of prime numbers and letting P C

denote the complement of this set within N�2, the evaluation of

¹p C c W p 2 P ; c 2 P C ; p − cº (1)

is a natural problem in additive number theory, in view of the foregoing considerations
concerning Zhang’s article [8]. Problems in additive number theory often concern the eval-
uation of sets of integers of the form

AC B D ¹aC b W a 2 A; b 2 Bº; (2)

and this is indicative of how the problem of evaluating (1) is natural as a variant, relative
to (2), in view of the additional condition that p − c.

The interest in the evaluation of (1) may be considered in relation to one of the most
famous unsolved problems in mathematics, namely, the Goldbach conjecture. In view of
the notation in (1) and (2), the Goldbach conjecture may be reformulated so as to state that

¹p1 C p2 W p1; p2 2 Pº (3)

equals 2N�2. The integer set in (1) seems like a natural variant of (3), and since Zhang [8]
has shown that 2N�16 is contained in (1), this leads us to consider something of a variant
of the Goldbach conjecture for odd integers, as in the problem of expressing odd integers
in the form indicated in (1).

Let !.n/ denote the number of distinct prime factors of n. Let �.n/ denote the prime-
counting function giving the number of primes less than or equal to n. Zhang, in 2020 [8],
proved that

2�.n/ > �.2n/C !.2n/

for n � 59, improving upon Rosser and Schoenfeld’s inequality whereby 2�.n/ > �.2n/
for n > 2 (see [7]), recalling Landau’s 1909 conjecture [3] that the inequality

�.2n/ � 2�.n/

holds for all n � 2. As in Zhang’s work, we are to apply Dusart’s inequalities whereby

n

logn � 1
< �.n/ <

n

logn � 1:1

for n � 60184 (see [2]), together with the inequality proved by Robin [6] whereby

!.n/ � 1:38403
logn

log logn
(4)

for n � 3.
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2 Main result

To begin with, we claim that the inequality

2n

log.n/ � 1
�

2nC 1

log.2nC 1/ � 1:1
�
1:38403 log.2nC 1/

log.log.2nC 1//
(5)

holds for n � 60184. Writing c D 1:1, by rewriting the left-hand side of (5) as

2cn � 2nC 2n log.n/ � 2n log.2nC 1/C log.n/ � 1
.log.n/ � 1/.c � log.2nC 1//

;

we see that this is greater than

�2cnC 2n � 2n log.n/C 2n log.2n/ � log.n/
log.n/ log.2nC 1/

; (6)

and that (6) is equivalent to

�2cnC 2nC 2n log.2/ � log.n/
log.n/ log.2nC 1/

;

which is greater than
1:18629n

log.n/ log.2nC 1/
�

1

log.2nC 1/
; (7)

and (7) is greater than
1:18629n

log.n2/ log.n2/
� 1 >

0:29n

log2 n
� 1;

We claim that
0:29n

log2.n/
� 1 >

0:25n

log2.n/

within the specified range. This is equivalent to

0:04n > log2.n/ (8)

holding in the specified range. Rewriting n D e
p

y , the inequality in (8) is equivalent to
0:04e

p
y > y. Rewriting y D z2, by the Maclaurin series for the exponential function, we

have 0:04ez >0:04
�
1C z C z2

2
C

z3

6

�
, and we may find that 0:04

�
1C z C z2

2
C

z3

6

�
> z2

holds in the appropriate range by numerically computing the roots of the left-hand side of
0:04

�
1C z C z2

2
C

z3

6

�
� z2 > 0. The right-hand side of (5) is less than

2 log.2nC 1/
log.log.2nC 1//

<
2 log.n2/

log.log.n//
< 4 log.n/;

and we can show that
n

4 log2.n/
> 4 log.n/
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in much the same way that we had proved (8). So, since the left-hand side of (5) is greater
than n

4 log2.n/
and since 4 log.n/ is greater than the right-hand side of (5), we find that (5)

holds.
The inequality in (5) allows us to prove that the inequality

2�.n/ � �.2nC 1/ > !.2nC 1/ (9)

holds for n � 60184, in the following way. According to Dusart’s inequalities, we have
that

2�.n/ � �.2nC 1/ >
2n

log.n/ � 1
�

2nC 1

log.2nC 1/ � 1:1
for n � 60184. So, by (5), we have that

2�.n/ � �.2nC 1/ >
1:38403 log.2nC 1/

log.log.2nC 1//

for n � 60184. So, Robin’s inequality in (4) for odd arguments then gives us the desired
inequality in (9). So we may proceed to check that the inequality 2�.n/ � �.2nC 1/ >
!.2nC 1/ holds for all integers n � 59, by checking the finite number of cases for 59 �
n < 60184.

Now, mimicking notation from [8], let kn D k denote the number of primes that are
coprime to 2nC 1 and less than or equal to n. Then

k D

´
�.n/ � !.2nC 1/ if 2nC 1 is composite, and
�.n/ if 2nC 1 is prime

for n � 1 (cf. [8]). To show this, one may argue that either 2nC 1 is a prime, in which
case k D �.n/, by definition, and if 2nC 1 is not a prime, then its least factor is greater
than or equal to 3, and hence all of its prime factors are at most n.

Our proof of the following result is largely based on extending Zhang’s proof of The-
orem 1 [8].

Theorem 2. Each integer greater than or equal to 119 is the sum of a composite number
c and a prime p such that p − c (cf. [8]).

Proof. We have shown that

�.n/ � �.2nC 1/ > !.2nC 1/ � �.n/

holds for all integers n � 59. So we have that

�.2nC 1/ � �.n/ < �.n/ � !.2nC 1/ (10)

for all integers n � 59. So both (10) and the inequality

�.2nC 1/ � �.n/ < �.n/

hold for all integers n � 59. So, letting kn D k be as above, we have that

�.2nC 1/ � �.n/ < k (11)
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for all integers n � 59. Recall that k D kn denotes the number of primes that are coprime
to 2nC 1 and less than or equal to n. Adopting notation from Zhang [8], we let these k
primes be denoted with q1, q2, : : :, qk . We see that the family

¹2nC 1 � qi W i D 1; 2; : : : ; kº

consists of k distinct numbers. We claim that the implication

k > �.2nC 1/ � �.n/ H) 9i 2 ¹1; 2; : : : ; kº; 2nC 1 � qi is composite (12)

holds true. This is equivalent to the statement that

k � �.2nC 1/ � �.n/ _ 9i 2 ¹1; 2; : : : ; kº; 2nC 1 � qi is composite:

By way of contradiction, suppose that

�.2nC 1/ � �.n/ < k ^ 8i 2 ¹1; 2; : : : ; kº; 2nC 1 � qi is prime:

By definition, we have that qi � n for all i . So 2nC 1� qi � nC 1. However, this would
imply that there would exist k distinct primes in ŒnC 1;2nC 1/, contradicting the assump-
tion that �.2nC 1/ � �.n/ < k. So we have shown that the implication displayed in (12)
holds true. However, we have shown that (11) holds true for integers n � 59. So, from the
conditional statement shown in (12), we can conclude that, for n � 59, there is a prime qi

such that 2nC 1� qi is composite and such that qi is coprime to 2nC 1. So, for every odd
integer m greater than or equal to 119, the integer m may be written as p C c for a prime
p and a composite c, and furthermore, we have that p does not divide c since qi cannot
divide 2nC 1 � qi .

So we have shown that the statement given in the theorem under consideration holds
for odd integers greater than or equal to 119. So the full statement of this theorem then
follows from Zhang’s result [8] reproduced as Theorem 1.

As a consequence, we have that each integer greater than or equal to 31 is the sum
of a composite number c and a prime p such that p − c (cf. [8]) since we may simply
check the finite cases for the integers among ¹118; 117; : : : ; 31º, and one may verify that
the integer partitions listed as follows satisfy the required conditions:

118 D 57C 61; 117 D 58C 59; 116 D 57C 59; 115 D 56C 59;

114 D 55C 59; 113 D 54C 59; 112 D 51C 61; 111 D 53C 58;

110 D 53C 57; 109 D 53C 56; 108 D 53C 55; 107 D 53C 54;

106 D 45C 61; 105 D 52C 53; 104 D 51C 53; 103 D 50C 53;

102 D 49C 53; 101 D 48C 53; 100 D 43C 57; 99 D 47C 52;

98 D 47C 51; 97 D 47C 50; 96 D 47C 49; 95 D 47C 48;

94 D 43C 51; 93 D 46C 47; 92 D 45C 47; 91 D 44C 47;

90 D 41C 49; 89 D 43C 46; 88 D 43C 45; 87 D 43C 44;

86 D 41C 45; 85 D 42C 43; 84 D 29C 55; 83 D 41C 42;
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82 D 39C 43; 81 D 40C 41; 80 D 39C 41; 79 D 38C 41;

78 D 35C 43; 77 D 37C 40; 76 D 37C 39; 75 D 37C 38;

74 D 33C 41; 73 D 36C 37; 72 D 35C 37; 71 D 34C 37;

70 D 33C 37; 69 D 32C 37; 68 D 29C 39; 67 D 31C 36;

66 D 31C 35; 65 D 31C 34; 64 D 31C 33; 63 D 31C 32;

62 D 29C 33; 61 D 30C 31; 60 D 11C 49; 59 D 29C 30;

58 D 27C 31; 57 D 28C 29; 56 D 27C 29; 55 D 26C 29;

54 D 25C 29; 53 D 24C 29; 52 D 21C 31; 51 D 23C 28;

50 D 23C 27; 49 D 23C 26; 48 D 23C 25; 47 D 23C 24;

46 D 19C 27; 45 D 22C 23; 44 D 21C 23; 43 D 20C 23;

42 D 17C 25; 41 D 19C 22; 40 D 19C 21; 39 D 19C 20;

38 D 17C 21; 37 D 18C 19; 36 D 11C 25; 35 D 17C 18;

34 D 15C 19; 33 D 16C 17; 32 D 15C 17; 31 D 14C 17:

We may verify that the integer 30 cannot be written in the manner indicated in the above
theorem. So 30 is the greatest integer that cannot be written as p C c for a composite c
and a prime p such that p − c.

3 Conclusion

Since additive number theory broadly refers to the discipline within number theory con-
cerning the partitioning/decomposition of integers using summands of a specified form,
this motivates the exploration of variants and generalizations of the problem of expressing
natural numbers in the form p C c for p 2 P and c 2 P C with p − c. For S � N, the set
S is said to be a basis of order h if each element of N may be expressed as the sum of
h members in S , and such additive bases form a main object of study in additive number
theory. This motivates the exploration of higher-order analogues of decompositions of the
form p C c that we have specified, i.e., with the use of additional terms. So we are led to
consider the exploration as to how the techniques due to Zhang [8] may be extended so as
to express integers in the form p1 C p2 C � � � C pi C c for fixed i and for primes pj and
a composite c such that the primes of the form pj and c satisfy certain divisibility condi-
tions, as in [8, Corollary 2]. Alternatively, how can we extend the techniques from [8] so
as to obtain results on expressing natural numbers in the form p C c1 C c2 for a prime p
and composites c1 and c2 satisfying certain divisibility conditions? More generally, how
can we express integers in the form

p1 C p2 C � � � C pi C c1 C c2 C � � � C cj

for fixed i and j and for primes p` and composites c` satisfying certain divisibility condi-
tions?
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