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1 Introduction

Let ABC and A0B 0C 0 be two triangles with areas � and �0, respectively. Let their sides
be a; b; c and a0; b0; c0, respectively, and let R be the circumradius of triangle ABC . The
aim of this paper is to establish links between the following three remarkable inequalities
for triangles.
• Bottema–Kooi–Schoenberg (BKS) inequality [4, 15]: for any x; y; z 2 R, it holds

.x C y C z/2R2 > yza2
C zxb2

C xyc2: (BKS)

• Oppenheim (O) inequality: for any x; y; z 2 R with x C y > 0, y C z > 0, z C x > 0

and xy C yz C zx > 0, it holds

xa2
C yb2

C zc2 > 4�
p

xy C yz C zx: (O)

• Neuberg–Pedoe (NP) inequality: for two triangles ABC and A0B 0C 0, it holds

a2.�a02
C b02

C c02/C b2.a02
� b02

C c02/C c2.a02
C b02

� c02/ > 16��0: (NP)

In der Dreiecksgeometrie sind die Ungleichungen von Bottema-Kooi-Schoenberg und
Oppenheim und die Ungleichung von Neuberg-Pedoe für zwei Dreiecke wohlbekannt.
Weniger bekannt ist, dass sie alle zueinander äquivalent sind. In der vorliegenden
Arbeit werden die Brücken zwischen den drei Ungleichungen gebaut. Anschliessend
beleuchten die Autoren den Zusammenhang mit der Ungleichung von Kooi sowie mit
weiteren Ungleichungen.

https://creativecommons.org/licenses/by/4.0/
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Remark 1. I. J. Schoenberg (1903–1990), the inventor of splines, proved in [15] for n

points A1; : : : ; An that lie on a sphere of radius R in Rn and t1; : : : ; tn 2 R the general
inequality

2R2

 
nX

iD1

ti

!2

>
nX

i;j D1

ti tj jAi Aj j
2:

We will emphasize the algebraic character of the inequalities. The next section is
needed for what we set out to do.

2 The polar moment of inertia inequality

We use the following theorem.

Theorem 1 (see [1, Corollary 2.4] and [13] for the general case). Let t1; : : : ; tn 2 R and
z1; : : : ; zn 2 C, n > 2. Then we haveˇ̌̌̌

ˇ
nX

iD1

ti zi

ˇ̌̌̌
ˇ
2

D

 
nX

iD1

ti

!
nX

iD1

ti jzi j
2
�

X
16i<j 6n

ti tj jzi � zj j
2:

Remark 2. The case n D 2 with t1 D t2 D 1 is the parallelogram law of Pappus [14],

jz1 C z2j
2
C jz1 � z2j

2
D 2jz1j

2
C 2jz2j

2:

An obvious corollary is the following theorem.

Theorem 2. Let t1; : : : ; tn 2 R and z1; : : : ; zn 2 C, n > 2. Then 
nX

iD1

ti

!
nX

iD1

ti jzi j
2 >

X
16i<j 6n

ti tj jzi � zj j
2;

with equality if, and only if,
Pn

iD1 ti zi D 0.

A consequence of this result is the polar moment of inertia inequality of Klamkin.

Theorem 3 (see Klamkin [3]). Let A1; : : : ;An be points in the plane and let t1; : : : ; tn 2R.
Then, for any point M in the plane, we have 

nX
iD1

ti

!
nX

iD1

ti jMAi j
2 >

X
16i<j 6n

ti tj jAi Aj j
2; (1)

with equality if, and only if, M coincides with the centroid of the set of weighted points
¹Ai ; tiº, i D 1; : : : ; n, that is,

Pn
iD1 ti zi D 0.

Proof. Let m;a1; : : : ; an be complex numbers corresponding to the points M;A1; : : : ;An.
We put zi D ai �m and obtain Klamkin’s inequality from Theorem 2.
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3 The main results

We start by proving the Bottema–Kooi–Schoenberg inequality (BKS).

Theorem 4 (Bottema–Kooi–Schoenberg inequality (BKS)). For any triangle ABC and
any x; y; z 2 R, it holds

R2.x C y C z/2 > yza2
C zxb2

C xyc2:

Proof. We put M D O in Klamkin’s inequality (1), where O is the circumcenter of the
triangle, A1 D A, A2 D B , A3 D C and t1 D x, t2 D y, t3 D z. Hence inequality (BKS)
follows.

Theorem 5. For any triangle ABC and any x; y; z; x0; y0; z0 2 R, inequality (BKS),

R2.x C y C z/2 > yza2
C zxb2

C xyc2;

is equivalent to the inequality

.x0a2
C y0b2

C z0c2/2 > 16�2.x0y0
C y0z0

C z0x0/: ( NO)

Proof. ( NO)) (BKS): In inequality ( NO), we put x0 WD x=a2, y0 WD y=b2, z0 WD z=c2, and
we obtain

a2b2c2.x C y C z/2 > 16�2.yza2
C zxb2

C xyc2/:

By abc D 4�R, we get inequality (BKS).
(BKS)) ( NO): Now (BKS) turns to ( NO) by setting x WD x0a2, y WD y0b2, z WD z0c2 in

(BKS). We obtain

R2.x0a2
C y0b2

C z0c2/2 > a2b2c2.x0y0
C y0z0

C z0x0/:

Again with abc D 4�R, the conclusion follows.

As a consequence of inequality (BKS), we obtain the following theorem.

Theorem 6. Let x; y; z 2 R with x C y > 0 and xy C yz C zx > 0. Then

xa2
C yb2

C zc2 > 0:

Proof. From x C y > 0 and xy C yz C zx > 0, it follows that z > � xy
xCy

. Hence

xa2
C yb2

C zc2 > xa2
C yb2

�
xyc2

x C y
D

x.x C y/a2 C y.x C y/b2 � xyc2

x C y
> 0:

The last inequality x.xC y/a2C y.xC y/b2 � xyc2 > 0 is obtained when we put x WD y,
y WD x, z WD �x � y in inequality (BKS).

A straightforward consequence of the last result is the following theorem.

Theorem 7. Bottema–Kooi–Schoenberg inequality (BKS) and Oppenheim inequality (O)
are equivalent for x C y > 0, y C z > 0, z C x > 0 and xy C yz C zx > 0.
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Proof. (BKS)) (O): By Theorem 5, from (BKS), inequality ( NO) follows. If x C y > 0,
yC z > 0, zC x > 0 and xyC yzC zx > 0, then it is clear that the Oppenheim inequality
(O) follows from ( NO).

(O)) (BKS): This is obvious.

It remains to show the equivalence of Oppenheim inequality (O) and Neuberg–Pedoe
inequality (NP).

Theorem 8. Let x; y; z 2 R with xy C yz C zx > 0 and let x C y > 0. Then

xa2
C yb2

C zc2 > 4�
p

xy C yz C zx:

Proof. The proof follows from Theorem 4, Theorem 5 and Theorem 6.

Lemma 1. Let x; y; z 2 R be such that x C y > 0, y C z > 0, z C x > 0. Then
p

x C y,
p

y C z,
p

z C x are sides of a triangle if, and only if, xy C yz C zx > 0.

Proof. Let a D
p

y C z, b D
p

z C x, c D
p

x C y be the sides of a triangle. Then, by
the equivalent form of Heron’s formula,

16�2
D 2

X
a2b2

�

X
a4

D 2
X

.y C z/.z C x/ �
X

.y C z/2

D 4.xy C yz C zx/:

Hence xy C yz C zx > 0.
Now let xy C yz C zx > 0. We put u D

p
x C y, v D

p
y C z, w D

p
z C x. Then

4.xy C yz C zx/ D
X

.y C z/.z C x/ �
X

.y C z/2

D 2
X

u2v2
�

X
u4

D .uC v C w/.�uC v C w/.u � v C w/.uC v � w/ > 0:

Let U D �uC v C w, V D u � v C w, W D uC v � w. The product

.�uC v C w/.u � v C w/.uC v � w/

is positive when either all three factors U , V , W are positive, in which case u, v, w

are sides of a triangle, or two factors are negative and one is positive. The last case is
impossible because if, for example, U < 0, V < 0, then 2w D U C V < 0, and that is
a contradiction.

Remark 3. From the proof above, we see that a triangle with sides
p

x C y,
p

y C z,
p

z C x has area � D
p

xy C yz C zx=2.

Theorem 9. Let x; y; z 2 R be such that xy C yz C zx > 0. Then

xa2
C yb2

C zc2 > 4�
p

xy C yz C zx

for any triangle ABC if, and only if, x C y > 0, y C z > 0, z C x > 0.
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Proof. If x C y > 0, y C z > 0, z C x > 0, then the inequality is the Oppenheim inequal-
ity (O). Let the inequality hold for all triangles ABC and let b D c D 1, aD 2", " 2 .0; 1/.
Then the inequality becomes

x � 4"2
C y C z > 4"

p
1 � "2

p
xy C yz C zx:

Letting " ! 0, we see that y C z > 0. Similarly, z C x > 0, x C y > 0. The case of
equality is excluded since if, for example, x C y D 0, then xy C yz C zx D �x2 6 0,
a contradiction. Hence x C y > 0, y C z > 0, z C x > 0.

Theorem 10. Oppenheim inequality (O) and Neuberg–Pedoe inequality (NP) are equiva-
lent.

Proof. (O)) (NP): In the Oppenheim inequality (O), we put

x D �a02
C b02

C c02; y D a02
� b02

C c02; z D a02
C b02

� c02

and use the equivalent form of Heron’s formula.
(NP)) (O): We use Lemma 1 and put a0 D

p
y C z, b0 D

p
z C x, c0 D

p
x C y for

the sides of the triangle. Then, from (NP) and Remark 3,

2.xa2
C yb2

C zc2/ > 16�
p

xy C yz C zx=2

follows, which is the Oppenheim inequality (O).

4 Relation to Kooi’s and other inequalities

The interested readers may wonder if the familiar Kooi inequality (see [9, 11])

s2 6
R.4RC r/2

2.2R � r/
; (2)

with s the semiperimeter, r the inradius of the triangle, and inequality (BKS) are related.
Indeed, they are, and we can derive Kooi’s inequality from (BKS). We put x D a.s � a/,
y D b.s � b/, z D c.s � c/ in (BKS) and use the identities

P
a.s � a/D 2r.4RC r/ andP

a.s � b/.s � c/ D 2rs.2R � r/ which follow from the well-known relations

a2
C b2

C c2
D 2.s2

� 4Rr � r2/ and ab C bc C ca D s2
C 4Rr C r2:

Kooi’s inequality (2) has many applications in triangle geometry. It implies the impor-
tant Gerretsen inequality (see [6])

s2 6 4R2
C 4Rr C 3r2; (3)

which, for example, can be used for a short proof of the inequality OH > OI , where O ,
H and I are the circumcenter, orthocenter and the incenter of the triangle. That inequality
is crucial in the proof of a conjectured inequality for the altitudes of the excentral triangle;
see [16].
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Remark 4. The referee brought to our attention the famous article by Euler [2], where the
master computed the distances between the four classical triangle centers. The Gerretsen
inequality is then a simple corollary of

HI 2
D 4R2

C 4Rr C 3r2
� s2:

In addition, the referee gave the equality

OH 2
�OI 2

� 2HI 2
D 2Rr � 4r2 > 0;

which follows from the equation OH 2 D 9R2 C 8Rr C 2r2 � 2s2 and Euler’s formula
OI 2 D R2 � 2Rr . As a consequence, we have OH > OI .

Gerretsen’s inequality (3) implies the celebrated Finsler–Hadwiger inequality (see [12,
17])

a2
C b2

C c2 > 4�
p

3C .a � b/2
C .b � c/2

C .c � a/2: (4)

Kooi’s inequality (2) is actually equivalent to the sharper version of the Finsler–Hadwiger
inequality by Euler’s R > 2r (see [11]),

a2
C b2

C c2 > 4�

r
3C

R � 2r

R
C .a � b/2

C .b � c/2
C .c � a/2:

Even stronger inequalities than Kooi’s and Gerretsen’s can be derived from the fundamen-
tal triangle inequality (see [10])

2R2
C 10Rr � r2

� 2.R � 2r/
p

R.R � 2r/

6 s2 6 2R2
C 10Rr � r2

C 2.R � 2r/
p

R.R � 2r/:

For the end, we note the curiosity that the seemingly weaker Weitzenböck inequality
(see [18])

a2
C b2

C c2 > 4
p

3�;

which follows from the Oppenheim inequality (O) for xD yD zD 1, is actually equivalent
to the Finsler–Hadwiger inequality (4) [7,8]. For the excentral and circummidarc triangles
used in the derivations, see [5].

To conclude, the Bottema–Kooi–Schoenberg inequality and its two avatars – the Op-
penheim and Neuberg–Pedoe inequalities – put their stamp on everything.

Acknowledgments. This paper greatly benefited from the comments and suggestions by
the anonymous referee. The authors are grateful to him for making the paper more read-
able.
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