Short note Three collinear triangle centres

Peter Thurnheer

1 Introduction

A centre line is a line containing at least three triangle centres. The most prominent one, the Euler line $[1,2]$ $[1,2]$, carries the centroid G, the orthocentre, the circumcentre and the centre of the Feuerbach circle of a triangle as well as at least four more triangle centres. Hundreds of centre lines are listed in [\[3\]](#page-4-2).

2 Three collinear triangle centres

We will show that the following three triangle centres also are collinear, i.e. that they lie on a centre line.

- (1) *The centroid* G*.*
- (2) *The van Lamoen circle centre* L ([\[4\]](#page-4-3), Figure [1](#page-1-0) left). The three medians divide a triangle in six sub-triangles with a common vertex in the centroid G . The circumcentres of these six triangles lie on a circle, the van Lamoen circle with centre L.
- (3) *The* A*-*B*-*C*-line intersection* W ([\[5\]](#page-4-4), Figure [1](#page-1-0) right). In a triangle with vertices A, B, C and corresponding medians s_A , s_B , s_C , let m_A and m_1 be the perpendicular bisectors of the triangle side BC (with midpoint M_A) and of the A-median AM_A (with midpoint M_1) respectively, and let N_1 be the intersection of these two lines. Definition: The A-line is the line parallel to the A-median s_A through the point N_1 . In exactly the analogous way, the B - and the C -line are defined. In [\[5\]](#page-4-4), it was shown that these three lines intersect at a point, the $A-B-C$ -line intersection W .

Remark (On the properties of the A-, B- and C-line (Figure [2\)](#page-2-0)). In a triangle as in (3) above, let G_A be any point different from A on the A-median s_A or its prolongation, and let E, F be the intersections of the lines $G_A C$, $G_A B$ with the triangle sides AB, AC respectively or their prolongations. In [\[5\]](#page-4-4), it was shown that, for every such point G_A , the circumcentres of the four triangles ABM_A , $AM_A C$, AEC , ABF lie on a circle, an Acircle. Since all A-circles pass through the circumcentres P_1 , P_2 of the first two triangles, the locus of the A-circle centres is the (punctured) perpendicular bisector of the line seg-

Figure 1

ment P_1P_2 . But this is the A-line defined in (3) above since, obviously, it is parallel to s_A and since the points P_1 , P_2 lie on the perpendicular bisector m_1 as well as on the perpendicular bisectors m_2 , m_3 of the line segment BM_A and $M_A C$ respectively, of which the line m_A is the centre line, such that the midpoint of the line segment delimited by P_1 , P_2 is the point N_1 .

The A-line is the locus of the A-circle centres when G_A moves on the median s_A .

Of course, the B- and the C-line have the exactly analogous properties.

Theorem. *The centroid* G*, the van Lamoen circle centre* L *and the* A*-*B*-*C*-line intersection W* in this order lie on a line, and $|WL|$: $|LG| = 2$: 1 *holds.*

Remarks. (a) The theorem was found using GeoGebra. We give the original proof by elementary geometry. The assertions can be proved by means of the barycentric coordinates, calculated meanwhile by Peter Moses [\(moparmatic@gmail.com\)](mailto:moparmatic@gmail.com), of the three points G, L and W. They can be found in [\[3\]](#page-4-2), where these points are named $X(2)$, $X(1153)$, $X(46893)$ and where many other properties of the points are given.

(b) According to [\[3\]](#page-4-2) (see $X(1153)$), the van Lamoen circle centre $L = X(1153)$ lies on the line through the centroid $G = X(2)$ and the point $X(187)$ (Schoute centre). This means that it is already known that the line through the points G, L, W is a centre line. It is a centre line carrying at least four triangle centres.

Figure 2

3 Proof

In Figure [3,](#page-3-0) besides the circumcentres P_1 , P_2 , we consider further the circumcentres R_1 , R_2 of the triangles BM_AG and GM_AC . These are points on the van Lamoen circle. The perpendicular bisector v of the line segment they delimit hence passes through the centre L. The points R_1, R_2 lie on the perpendicular bisector m_4 of the line segment GM_A (with midpoint M_2) which is perpendicular to s_A . So the lines s_A , v and the A-line are parallel. The points R_1 , R_2 , just as the points P_1 , P_2 , also lie on the perpendicular bisectors m_2 and m_3 of the line segments BM_A and $M_A C$ respectively. The midpoint N_2 of the line segment they delimit hence lies also on the perpendicular bisector m_A just as the point N_1 . So the right triangles $M_A N_2 M_2$ and $M_A N_1 M_1$ are similar. For the distances $|M_1N_1|$ and $|M_2N_2|$ of the line v and the A-line from the line s_A respectively, we find

$$
\frac{|M_1N_1|}{|M_2N_2|} = \frac{|M_1M_A|}{|M_2M_A|} = 3
$$

Figure 3

since we have $|M_1 M_A| = \frac{1}{2} |AM_A|$ and $|M_2 M_A| = \frac{1}{6} |AM_A|$. So we have found a line v passing through the point L and which by a central dilation with centre G and factor 3 is mapped to the A -line. In the same way, we can find another line w passing through L and which by the same central dilation is mapped to the B -line. In particular, for the intersections of the corresponding lines, we have the following statement.

A central dilation with centre in the centroid G *and factor* 3 *maps the van Lamoen circle centre* L *to the* A*-*B*-*C*-line intersection* W *.*

This was to be proved.

Acknowledgements. I would like to thank the referee for his helpful remarks, especially for the one which allowed a simplification of the proof. I would like to thank also Professor Norbert Hungerbühler (ETH Zürich) because this text, like some others, would not have been written without his encouragement.

References

- [1] H. S. M. Coxeter and S. L. Greitzer, *Geometry revisited*. New Math. Libr. 19, Random House, New York, 1967
- [2] L. Euler, Solutio facilis problematum quorundam geometricorum difficillimorum. *Novi Comment. Acad. Sci. Imper. Petropolit.* 11 (1767), 103—123 (E325)
- [3] C. Kimberling, Encyclopedia of Triangle Centers ETC. https:[//faculty.evansville.edu/ck6/encyclopedia/etc.](https://faculty.evansville.edu/ck6/encyclopedia/etc.html) [html](https://faculty.evansville.edu/ck6/encyclopedia/etc.html)
- [4] F. von Lamoen, Problems and Solutions: Problems: 10830. *Amer. Math. Monthly* 107 (2000), no. 9, 863
- [5] P. Thurnheer, Teildreiecke und Kreise. *Elem. Math.* 77 (2022), 187–191

Peter Thurnheer Entlisbergstrasse 29 8038 Zürich, Switzerland tpeter@retired.ethz.ch