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Short note A ring-theoretic approach to the
double-sidedness of the matrix inverse

J. M. Almira and J. Ángel Cid

Abstract. We present an inductive proof of the double-sidedness of the matrix inverse
based on a property that holds true for associative rings with unity.

1 Introduction

Throughout the article, R will denote an associative ring (not necessarily commutative)
with unity 1. We say that a 2 R is right-invertible if there exists b 2 R such that a � b D 1,
and such b is called a right-inverse of a.

As usual, a 2 R is invertible if there exists b 2 R such that a � b D 1 D b � a and
a�1 WD b is the inverse of a. Finally, a 2 R is a left-divisor of zero if there exists x 2 R,
x ¤ 0, such that a � x D 0.

Although not explicitly stated in this way, a careful reading of the interesting note [10]
shows the following quite unexpected relation between the uniqueness of the right-inverse
and the existence of the inverse in a ring.

Main Lemma. If a 2 R is right-invertible, with right-inverse b 2 R, then the following
claims are equivalent.

(1) The right-inverse of a is unique.

(2) a is not a left-divisor of zero.

(3) a is invertible.

Proof. (1)) (2) If a � x D 0 for some x 2 R, then b C x is also a right-inverse of a
since

a � .b C x/ D a � b C a � x D 1C 0 D 1:

So, from (1), it follows that b D b C x, that is, x D 0.
(2)) (3) Let x D 1 � b � a 2 R. Then

a � x D a � .1 � b � a/ D a � a � .b � a/ D a � .a � b/ � a D a � 1 � a D 0;

and (2) implies x D 0, that is, b � a D 1.
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(3)) (1) Clearly, the existence of a�1 implies that a is left-cancelable, and in par-
ticular, if we assume that a � b D 1 D a � b0, then

a�1
� .a � b/ D a�1

� .a � b0/ H) .a�1
� a/ � b D .a�1

� a/ � b0 H) b D b0:

The standard example of a right-invertible element in a ring which is not left-invertible,
see for instance [1, Section 4], also shows that in general the right-inverse is not unique. If
all the right-invertible elements inR are in fact invertible, thenR is called Dedekind-finite.
Several interesting examples of Dedekind-finite rings can be found in [11].

It is well known thatMn.K/, the set of n� n square matrices over an arbitrary field K,
is a Dedekind-finite ring. Many elementary proofs of this fact have been published; see for
instance [1, 3–5, 7] and the references therein. Now, it is clear from the Main Lemma that,
in order to prove the double-sidedness of the inverse of a matrix A, it is enough to show
that

9B.A � B D In/ and 8X.A �X D On H) X D On/; (1)

where In and On denote the n-order identity and the zero matrix, respectively. To show (1),
it would be enough to demonstrate

9B.A � B D In/ and .A � x D 0n H) x D 0n/

for all vectors x D .x1; x2; : : : ; xn/
t 2 Kn, where 0n WD .0; 0; : : : ; 0/

t 2 Kn.
Equivalently, we must demonstrate that A defines an injective map. Obviously, A is

surjective since A � B D In, and taking into account that (see, e.g., [2, Theorem 3.4])

n D dim range.A/C dim ker.A/ D nC dim ker.A/;

it follows that ker.A/ D ¹0nº, which is what we wanted to prove. Thus, we can summa-
rize this result just saying that double-sidedness of the matrix inverse holds true because
a finite-dimensional vector space cannot properly contain any subspace of the same dimen-
sion.

Remark. The Main Lemma can be generalized a little bit since we can substitute 1 by
a more general element d 2 R. In particular, the following holds: given a 2 R, we define
its center Z.a/ D ¹x 2 R W a � x D x � aº.

Proposition. If a; b 2 R are such that a � b 2 Z.a/ and a is not a left-divisor of zero, then

a � b D b � a:

Proof. Set d D a � b 2 Z.a/. We have that

a � .d � b � a/ D a � d � a � .b � a/ D a � d � .a � b/ � a D a � d � d � a D 0;

which implies that d D b � a since a is not a left-divisor of zero.

Of course, the above is applicable when the elements of R are matrices. There exist,
indeed, many other criteria for commutativity of matrices. For example, if A;B are simul-
taneously diagonalizable, they commute. This is so because there exist diagonal matrices



J. M. Almira and J. Á. Cid 32

D1; D2 and an invertible matrix P such that A D P�1 �D1 � P and B D P�1 �D2 � P .
Hence

A � B D P�1
�D1 � P � P

�1
�D2 � P

D P�1
�D1 �D2 � P D P

�1
�D2 �D1 � P

D P�1
�D2 � P � P

�1
�D1 � P D B � A:

Finally, we notice that the following somewhat similar result to the Main Lemma holds
for groups (see [8, Corollary 1.41]).

Proposition. If a set G with an associative operation has a unique left-neutral element
and each element of G has a right-inverse, then G is a group.

Moreover, the uniqueness of the left-neutral is a key assumption to prove this result,
and in fact, if we omit it from the hypotheses, then G is not necessarily a group. Another
more standard related result, without the uniqueness hypotheses, which requires the exis-
tence of both left-neutral and left-inverses, can be found in [6, 9].

2 A simple proof by induction

An elementary proof of property (1) that avoids the concept of dimension can be con-
structed by induction on the size n of the matrices A and B leading in this way to a simple
proof of the double-sidedness of the matrix inverse.

Theorem. Let A;B 2Mn.K/. If A � B D In, then B � A D In.

Induction seems a natural strategy in order to prove (1) since the initial case n D 1 is
obviously true and the structure of the matrix product allows to decompose it as a product
of smaller size matrix blocks. A different inductive proof can be found in [1].

(i) If nD 1, thenA;B are elements of K, andA �B D 1meansA¤ 0 so thatA �X D 0
implies X D 0.

(ii) Assume now that (1) holds true for matrices of some fixed size n � 1, and let
A; B 2 MnC1.K/ such that A � B D InC1 and A � X D OnC1 for some matrix X . Since
A � B D InC1 implies A ¤ OnC1, we have that A has a column which is not null. Mak-
ing an elementary operation on the columns of A (that is, interchanging two columns if
needed), we get a matrix with its first column not identically null, and then some elemen-
tary operations on its rows transform A into a matrix A� with its first column equal to
.1; 0; : : : ; 0/t 2 KnC1. Note that we can write A� D E � A � F , where E is the product of
some elementary matrices and F is the transpose of an elementary matrix, and hence both
matricesE and F are invertible; see [12]. (Recall that the elementary matrices are the ones
you obtain after making an elementary operation on the rows of the identity matrix.) Then,
for B� D F �1 � B �E�1 and X� D F �1 �X , it is easy to check that

InC1 D A
�
� B� D

24 1 vt

0n
QA

35 �
24‹ ‹

‹ QB

35 D
24‹ ‹

‹ QA � QB

35
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and

OnC1 D A
�
�X� D

24 1 vt

0n
QA

35 �
24ı zt

x QX

35 D
24ı C vt � x zt C vt � QX

QA � x QA � QX

35 :
From the first equality, we have that QA � QB D In, while the second implies QA � QX D On.
Then QX D On (by induction, applied to QA), and also, QA � x D 0n implies that x D 0n

(again, by induction, applied to QA). Finally, taking these equalities into account, we get
0 D ı C vtx D ı and 0t

n D zt C vt � QX D zt . Thus, X� D OnC1, and then also X D
F �X� D OnC1. So the proof by induction is done.
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