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Introduction by the Organisers

The conference was organized by László Lovász (Redmond) and Hans Jürgen
Prömel (Berlin). The programme consisted of 15 lectures, supplemented by 21
shorter contributions, and covered many areas in Combinatorics such as partition
theory, discrete geometry, homomorphisms and lattices, extremal combinatorics,
graph theory, random structures, and additive number theory. The aim of the
workshop was to emphasize the underlying methods that are common to many of
these combinatorial branches and that act as both driving forces and organizing
principles of the field. The diversity of the topics and participants stimulated
a lot of fruitful discussion between the different branches and gave rise to new
collaborations, in particular for the younger generation of researchers.

In total, 51 scientists participated in this meeting; almost 40 came from coun-
tries other than Germany. The organizers and participants thank the Mathema-
tisches Forschungsinstitut Oberwolfach for providing an inspiring setting for this
conference. In the following we include the abstracts in alphabetical order.



6 Oberwolfach Report 1/2004



Combinatorics 7

Workshop on Combinatorics

Table of Contents

Noga Alon (joint with Assaf Naor)
CutNorm, Grothendieck’s Inequality, and Approximation Algorithms
for Dense Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Anders Björner (joint with Axel Hultman, Irena Peeva and Jessica Sidman)
Blockers, Ideals and some Turán-type Questions . . . . . . . . . . . . . . . . . . . . . . . . . 14
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Extremal Connectivity for Topological Cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Oleg Pikhurko (joint with Dhruv Mubayi)
Constructions of Non-Principal Families in Extremal Hypergraph Theory . 69
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Abstracts

CutNorm, Grothendieck’s Inequality, and Approximation Algorithms
for Dense Graphs

Noga Alon

(joint work with Assaf Naor)

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S with a set of rows indexed
by R and a set of columns indexed by S is the maximum, over all I ⊂ R, J ⊂ S,
of the quantity |∑i∈I,j∈J aij |. This concept plays a major role in the work of
Frieze and Kannan on efficient approximation algorithms for dense graph and
matrix problems, [3] (see also [1] and its references). Although the techniques
in [3] enable the authors to approximate efficiently the cut-norm of an n by m
matrix with entries in [−1, 1] up to an additive error of εnm, there is no known
polynomial algorithm that approximates the cut-norm of a general real matrix up
to a constant multiplicative factor.

Let CUT NORM denote the computational problem of computing the cut-
norm of a given real matrix. Here we first observe that the CUT NORM problem
is MAX SNP hard, and then provide an efficient approximation algorithm for the
problem. This algorithm finds, for a given matrix A = (aij)i∈R,j∈S , two subsets
I ⊂ R and J ⊂ S, such that |∑i∈I,j∈J aij | ≥ ρ||A||C , where ρ > 0 is an absolute
constant. We first describe a deterministic algorithm that supplies a rather poor
value of ρ, and then describe a randomized algorithm that provides a solution of
expected value greater than 0.56 times the optimum.

The algorithm combines semidefinite programming with a novel rounding tech-
nique based on (the proofs of) Grothendieck’s Inequality. This inequality, first
proved in [6], is a fundamental tool in Functional Analysis, and has several in-
teresting applications in this area. We will actually use the matrix version of
Grothendieck’s inequality, formulated in [10]. In order to apply semidefinite pro-
gramming for studying the cut-norm of an n by m matrix A = (aij), it is convenient
to first study another norm,

||A||∞�→1 = max
n∑

i=1

m∑
j=1

aijxiyj,

where the maximum is taken over all xi, yj ∈ {−1, 1}.
It is not difficult to show, that for every matrix A,

4||A||C ≥ ||A||∞�→1 ≥ ||A||C ,



12 Oberwolfach Report 1/2004

and hence a constant approximation of any of these norms provides a constant
approximation of the other.

The value of ||A||∞�→1 is given by the following quadratic integer program

Maximize
∑
ij

aijxiyj (1)

subject to xi, yj ∈ {−1, 1} for all i, j.

The obvious semidefinite relaxation of this program is

Maximize
∑
ij

aijui · vj (2)

subject to ||ui|| = ||vj || = 1,

where here ui · vj denotes the inner product of ui and vj , which are now vectors of
(Euclidean) norm 1 that lie in an arbitrary Hilbert space. Clearly we may assume,
without loss of generality, that they lie in an n + m-dimensional space.

This semidefinite program can be solved, using well known techniques (see [5])
within an additive error of ε, in polynomial time (in the length of the input and in
the logarithm of 1/ε.) The main problem is the task of rounding this solution into
an integral one. A first possible attempt is to imitate the technique of Goemans
and Williamson in [7], that is, given a solution ui, vj to the above program, pick a
random vector z and define xi = sign(ui ·z) and yj = sign(vj ·z). It is easy to check
that the expected value of xiyj satisfies E(xiyj) = 2

π arcsin(ui ·vj), and as arcsin(t)
and t differ only in constant factors for all −1 ≤ t ≤ 1, one could hope that this will
provide an integral solution whose value is at least some absolute constant fraction
of the value of the optimal solution. This reasoning is, unfortunately, incorrect,
as some of the entries aij may be positive and some may be negative, (in fact, the
problem is interesting only if this is the case, since otherwise either xi = yj = 1 or
xi = −yj = 1 for all i, j supplies the required maximum). Therefore, even if each
single term aijui · vj is approximated well by its integral rounding aijxiyj , there
is no reason to expect the sum to be well-approximated, due to cancellations. We
thus have to compare the value of the rounded solution to that of the semidefinite
program on a global basis. Nesterov [11] obtained a result of this form for the
problem of approximating the maximum value of a quadratic form

∑
ij bijxixj ,

where xi ∈ {−1, 1}, but only for the special case in which the matrix B = (bij) is
positive semidefinite. While his estimate is global, his rounding is the same simple
rounding technique of [7] described above. As explained before, some new ideas
are required in our case in order to get any nontrivial result.

Luckily, there is a well known inequality of Grothendieck, which asserts that
the value of the semidefinite program (2) and that of the integer program (1)
can differ only by a constant factor. The precise value of this constant, called
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Grothendieck’s constant and denoted by KG, is not known, but it is known that
its value is at most π

2 ln(1+
√

2)
= 1.782... ([8]) and at least π

2 = 1.570... ([6]). Stated
in other words, the integrability gap of the problem is at most KG. (Krivine
mentions in [8] that he can improve the lower bound, but such an improvement
has never been published).

It follows that the value of the semidefinite program (2) provides an approxi-
mation of ||A||∞�→1 up to a constant factor. This, however, still does not tell us
how to round the solution of the semidefinite program into an integral one with a
comparable value. Indeed, this task requires more work, and is carried out in the
full paper a preliminary version of which will appear in the proceedings of STOC
2004.

We describe three rounding techniques. The first one is a deterministic proce-
dure, which combines Grothendieck’s Inequality with some facts about four-wise
independent random variables, in a manner that resembles the technique used in
[2] to approximate the second frequency moment of a stream of data under se-
vere space constraints. The second rounding method is based on Rietz’ proof of
Grothendieck’s Inequality [12]. This proof supplies a better approximation guar-
antee for the special case of positive semidefinite matrices A, where the integrality
gap can be shown to be precisely π/2, and implies that Nesterov’s analysis for the
problem he considers in [11] is tight.

The third technique, which supplies the best approximation guarantee, is based
on Krivine’s proof of Grothendieck’s Inequality. Here we use the vectors ui, vj

which form a solution of the semidefinite program (2) to construct some other
unit vectors u′

i, v
′
j , which are first shown to exist in an infinite dimensional Hilbert

space, and are then found, using another instance of semidefinite programming,
in an n + m-dimensional space. These vectors can now be rounded to {−1, 1} in
order to provide an integral solution for the original problem (1) in a rather simple
way. We note that there are several known techniques for modifying the solution
of a semidefinite program before rounding it, see [13], [9], [4]. Here, however, the
modification seems more substantial.

We believe that our techniques will have further applications, as they provide
a method for handling problems in which there is a possible cancellation between
positive and negative terms. It seems that there are additional interesting problems
of this type. Moreover, unlike the semidefinite based approximation algorithms
for MAX CUT, MAX 2SAT and related problems, suggested in the seminal paper
of [7] and further developed in many subsequent papers, the problem considered
here has no known constant approximation algorithm, and the semidefinite pro-
gramming and its rounding appear to be essential in order to obtain any constant
approximation guarantee, and not only in order to improve the constants ensured
by appropriate combinatorial algorithms.
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Blockers, Ideals and some Turán-type Questions
Anders Björner

(joint work with Axel Hultman, Irena Peeva and Jessica Sidman [1, 2])

The point of departure are the theorems of Li & Li and Kleitman & Lovász
(from 1981) describing generators for certain ideals, see [3]. The immediate combi-
natorial interest of these theorems is that they in a useful way describe ideals with
the property that (upper) bounded independence number and (lower) bounded
chromatic number of a given graph are equivalent to membership of the corre-
sponding graph polynomial in these ideals. But the theorems are also interesting
from a ring-theoretic point of view, since they suggest a combinatorial procedure
for constructing generators for vanishing ideals of subspace arrangements.

The work presented was:

(1) The blocker construction A �→ A∗ for antichains in finite posets, generalizing the
well-known concept in Boolean lattices (set clutters). Particularly how to compute
blockers for symmetric antichains in the partition lattice Πn. This procedure
involves both the refinement order and the dominance order on the set of all
number partitions of n.

(2) The construction of the blocker ideal BA, H for a subspace arrangement A
embedded in a hyperplane arrangement H. This ideal is contained in the vanishing
ideal IA for the union of the subspaces in A, and

BA,H = IA ⇒ A∗∗ = A,

where A∗ denotes the blocker of A w.r.t. the intersection lattice of H.

(3) The fact that BA,H = IA implies that a minimal blocking set for A has size
equal to the minimal size of a flat in the blocker A∗. Some extremal results (e.g.
Turán’s theorem) can be deduced this way.
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Random Geometric Graphs
Béla Bollobás

(joint work with Paul Balister, Amites Sarkar and Mark Walters)

Random geometric graphs were introduced by Gilbert [6] in 1961, and in the
past forty years many variants of them have been studied in great detail (see
Meester and Roy [7], Penrose [8]). The aim of the talk is to present a number of
recent results obtained jointly with Paul Balister, Amites Sarkar and Mark Walters
on a variety of geometric random graphs.

Gilbert’s disc model Gr is defined as follows. Place points {xi} in R2 according
to a Poisson process with intensity 1 and let Gr be the random graph with vertex
set {xi} and edges xixj whenever |xi −xj | ≤ r. Equivalently, let Dr be the disc of
radius r with centre the origin, and join each xi to every xj in the disc xi + Dr of
radius r centred at xi. There is a critical area ac such that if |Dr| = πr2 < ac then
a.s. Gr has no infinite component (Gr does not percolate), while if |Dr| > ac then
Gr percolates a.s. The proven bounds on ac are still rather weak, with almost a
factor 5 between the upper and lower bounds. In the talk we present the result
due to Balister, Bollobás and Walters [4] that 4.508 < ac < 4.515 with probability
99.99%. (The probability is due to the uncertainty of numerically evaluating a
large integral.) For the critical area sc of a square rather than a disc, defined
analogously, the corresponding bounds are 4.392 < sc < 4.398.

Problems concerning ad hoc networks of radio transceivers inspire the following
considerable extension of the disc model. Place points {xi} in Rd according to
a Poisson process with intensity 1. Then, independently for each xi, choose a
bounded region Axi from some fixed distribution and let G be the random directed
graph with vertex set {xi} and edges �xixj whenever xj ∈ xi+Axi . The main result
of Balister, Bollobás and Walters [3] states that for any η > 0, if the regions xi+Axi

do not overlap too much (i.e., satisfy a somewhat technical precise condition), then
G has an infinite directed path provided the expectation of the area |Axi | of the
domain Axi is at least 1 + η. (It is trivial that the area has to be at least 1.) One
example where these conditions hold, and we obtain percolation, is in dimension d
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with Axi a ball of volume 1+η, where η tends to zero as d tends to infinity. Another
example is in two dimensions, where the Axi are randomly oriented sectors of a
disk of angle 2πε and area 1+η. In this case we can let η tend to zero as ε tends to
zero. Yet another special case of this theorem is the result proved independently
in [2] and by Franceschetti et al [5] that, given η > 0, if ε > 0 is small enough, in
R2 we may take each Axi to be a ‘thin’ annulus A = {x ∈ R2 : r(1− ε) ≤ |x| ≤ r}
of area 1 + η.

In the talk we shall examine some finite geometric random graphs as well. Let
P be a Poisson process of intensity one in a square Sn of area n. We construct a
random geometric graph Gn,k by joining each point of P to its k nearest neighbors.
Recently, Xue and Kumar [9] proved that if k = 0.074 logn then the probability
that Gn,k is connected tends to zero as n → ∞, while if k = 5.1774 logn then the
probability that Gn,k is connected tends to one as n → ∞. They conjectured that
the threshold for connectivity is k = log n. Recently, Balister, Bollobás, Sarkar
and Walters [1] have improved these lower and upper bounds to k = 0.3043 logn
and k = 0.5139 logn, respectively, disproving this conjecture, and have proved
reasonably good bounds for some generalizations of this problem.
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The Number of Linear Extensions of the Boolean Lattice
Graham Brightwell

(joint work with Prasad Tetali [1])

Let L(P ) denote the number of linear extensions of a poset P . A natural prob-
lem is to estimate L(P ) when P is the Boolean lattice Qt, consisting of the subsets
of {1, 2, . . . , t}, ordered by inclusion. This problem was apparently first posed by
Richard Stanley, although it has also been raised by several others independently.

A trivial lower bound on L(Qt) is
∏t

j=0

(
t
j

)
!, and a simple upper bound is(

t
�t/2	

)2t

; these bounds can be written as

log
(

t

	t/2

)
− 3

2
log e + o(1) ≤ log(L(Qt))

2t
≤ log

(
t

	t/2

)

.

(All logarithms are base 2.)
The only previous improvement on these trivial bounds was made by Sha and

Kleitman [4], who improved the upper bound to

L(Qt) ≤
t∏

j=0

(
t

j

)(t
j)

≤
t∏

j=0

(
t

j

)
! exp(2t),

yielding
log(L(Qt))

2t
≤ log

(
t

	t/2

)
− 1

2
log e + o(1).

In fact, the Sha-Kleitman bound can be generalised to any ranked poset satisfying
the LYM condition (see [1]).

We prove the following result, which shows that (as was generally expected) the
trivial lower bound gives the correct constant term in the asymptotic expansion:

log(L(Qt))
2t

= log
(

t

	t/2

)
− 3

2
log e + O

(
ln t

t

)
.

Our proof is based on what seems to be emerging as an “entropy method”
developed by Jeff Kahn [2], and used by him [3] to give a short and natural proof
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of the Kleitman-Markowsky bound for Dedekind’s problem concerning the number
of antichains in the Boolean lattice.

In the case where the poset P is bipartite, a small adaptation of Kahn’s proof
from [2] yields an extremal result. For P a bipartite poset on n elements, with
two ranks A and B, such that every element of A is below exactly u elements of
B, and every element of B is above exactly d elements of A, we have

L(P ) ≤ n!
(

d + u

u

)−n/(d+u)

.

This result is best possible for n a multiple of d + u.
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Coloring Claw-free Graphs

Maria Chudnovsky
(joint work with Paul Seymour)

A graph is called claw-free if it has no induced subgraph isomorphic to K1,3.
Line graphs are a well-known class of claw-free graphs, but there are others, such
as circular interval graphs and subgraphs of the Schläfli graph (a circular interval
graph is obtained from a collection of circular intervals and points on a circle by
making two points adjacent if they belong to the same interval). Recently we were
able to prove that all claw-free graphs in which every vertex is in a stable set of size
three, can be built from the classes mentioned above, together with some others,
by combining them in prescribed ways (this work is described in another paper in
this issue).



20 Oberwolfach Report 1/2004

Claw-free graphs being a generalization of line graphs, it is natural to ask what
properties of line graphs can be extended to all claw-free graphs. Vizing’s theorem
[1] gives a bound on the chromatic number, χ, of a line graph, in terms of the size
of a maximum clique, ω, namely χ ≤ ω + 1. Is there a similar bound for all claw-
free graphs? Does there exist a function f such that if G is a claw-free graph then
χ(G) ≤ f(ω(G))? It is easy to see that such f exists, in fact χ(G) ≤ ω(G)2 (the
neighborhood of a vertex in a clique of size ω is the union of at most ω cliques).

One might hope to get closer to Vizing’s bound, asking whether f is a linear
function. Unfortunately the answer to this question is negative. If G is the com-
plement of a triangle free graph, then χ(G) ≥ |V (G)|

2 , and yet ω(G) may be of order√
(|V (G)|). However, if we insist that G contains a stable set of size three, and

is connected (to prevent taking disjoin union with large complement triangle-free
graphs), then a much stronger result is true. We prove:

Theorem 1 Let G be a connected, claw-free graph and assume that G contains a
stable set of size three. Then χ(G) ≤ 2ω(G).

This bound is best possible. The proof of 1 uses the structure theorem men-
tioned above: first we verify the result for the basic classes of claw-free graphs,
and then prove that it is preserved under the operations. This proves the theorem
for those claw-free graphs that satisfy the hypotheses of the structure theorem,
namely claw-free graphs where every vertex is in a stable set of size three. But
it turns out that having proved the result for the part of the graph where every
vertex is in a stable set of size three, one can always figure out the “important”
information about vertices not in stable sets of size three, and finish the proof.

There is a slightly worse, but still linear bound on χ in terms of ω, that has a
short proof, without using the structure theorem, and we include it here.

Theorem 2 Let G be a connected, claw-free graph and assume that G contains a
stable set of size three. Then χ(G) ≤ 4ω(G).

In fact, we prove the following stronger statement that clearly implies 2. This
was conjectured by N. Linial during the Oberwolfach meeting.

Theorem 3 Let G be a connected, claw-free graph and assume that G contains a
stable set of size three. Then every vertex of G has degree at most 4ω(G).

Proof. We use induction on |V (G)|. Let v be a vertex of maximum degree in G
and let N be the set of neighbors of v. Since G is claw-free and contains a stable
set of size three, V (G) �= N ∪ {v} and there exists a vertex u ∈ V (G) \ (N ∪ {v})
such that the graph G \ u is connected. We may assume G \ u does not contain
a stable set of size three, for otherwise the result follows inductively. Let A be
the set of neighbors of u in G and B the set of non-neighbors. Since G contains
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a stable set of size three, and G \ u does not, it follows that there exist two non-
adjacent vertices b1, b2 in B. Since G is connected, A is non-empty. For i = 1, 2
let Nbi be the set of neighbors of bi in A. Since every vertex in Nb1 ∩ Nb2 would
be the center of a claw in G, Nb1 ∩ Nb2 = ∅. Since G \ u contains no stable set of
size three, A \ Nbi is a clique for i = 1, 2, and A is the union of two cliques. Also
since G \u contains no stable set of size three, Nb1 ∪Nb2 = A. So for every pair of
non-adjacent vertices in B, the sets of their neighbors in A partition A. It follows
that G|B does not contain the complement of an odd cycle, and so G|B is the
complement of a bipartite graph, in particular B is the union of two cliques. But
now G is the union of four cliques, so ω ≥ |V (G)|

4 , and the theorem holds. This
proves 3.
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The Homology of a Locally Finite Graph with Ends

Reinhard Diestel

When one studies the homology aspects of an infinite graph – in graph-theoretic
language, the properties of its cycle space – one can observe a curious phenomenon:
while all the basic properties of the cycle space of a finite graph remain true (and
trivial) also for infinite graphs, few of the less trivial theorems carry over.

Surprisingly, the situation can be remedied simultaneously for all those theo-
rems that fail in the infinite case by using a different homology for locally finite
graphs: not the simplicial homology of the graph itself, but a variant of the singular
homology of its Freudenthal compactification.

Our approach permits the extension to locally finite infinite graphs of the
following finite theorems, whose infinite analogues all fail with the usual simplicial
homology:

• Tutte’s theorem that the peripheral (ie., non-separating and induced) cycles
of a 3-connected graph generate its cycle space;

• Whitney’s theorem that a graph has a combinatorial dual if and only if it is
planar;
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• Euler’s theorem that a connected graph admits an Euler tour iff its edge set
lies in its cycle space (the infinite analogue of an Euler tour being a closed
topological curve in the compacification that traverses every edge exactly
once);

• Gallai’s theorem that the vertex set of a graph can be partitioned into two
sets each inducing an element of its cycle space;

• MacLane’s theorem that a graph is planar iff its cycle space has a set of
generators such that every edge lies in at most two of these;

• Tutte’s theorem that a 3-connected graph is planar iff every edge lies on at
most two peripheral cycles;

• the Tutte - Nash-Williams tree-packing theorem that a graph has k edge-
disjoint spanning trees iff every vertex partition, into 	 sets say, is crossed
by at least k(	 − 1) edges;

• the 4-colour-theorem (expressed dually in terms of 4-flows) that the edge set
of a planar bridgeless graph is a union of two elements of its cycle space (ie.,
has a 4-flow).

Furthermore, the following easy facts about the cycle space of a finite graph extend
to non-trivial theorems about locally finite graphs with this new cycle space:

• Every element of the cycle space is an edge-disjoint union (not just a sum)
of cycles.

• A non-empty set of edges lies in the cycle space iff it meets every finite cut
in an even number of edges, and it lies in the cocycle space (ie., is a cut) iff
it meets every finite element of the cycle space in an even number of edges.

• The fundamental cycles of any spanning tree generate the cycle space (the
generalization is based on topological spanning trees , path-connected sub-
spaces containing all the vertices and ends but no continuous 1–1 image
of S1; note that these ‘trees’ need not induce connected subgraphs, as their
path-connectedness can result from topological paths including ends).

• A set of edges lies in the cycle space iff in the subgraph it induces all vertex
degrees are even.

The generalization of the last statement involves the definition of ‘degrees’ also for
ends. An end has degree k if there are k but not k + 1 edge-disjoint infinite paths
converging to it. If there is no such k, it has infinite degree. Infinite end degrees
are also classified into ‘odd’ and ‘even’ in a more complicated way, which however
is essential for the generalization of the above statement.
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The new notion of end degrees motivated by these results seems to open up
new possibilities for an ‘extremal’ branch of infinite graph theory. For example, is
there a function f : N → N such that every locally finite graph whose vertices and
ends all have degree at least f(k) contains a k-connected subgraph? (Note that
since infinite trees can have large minimum degree, vertex degrees alone do not
force any dense substructures.)

Another natural area of application lies in Hamiltonicity problems. Define a
Hamilton circle in a graph G as a homeomorphic image of S1 in its Freudenthal
compactification that contains all its vertices. Does every 4-connected planar
locally finite graph have a Hamilton circle (extending Tutte’s theorem)? Does the
square of every 2-connected locally finite graph have a Hamilton circle (extending
Fleischner’s theorem)?

See [6] for an introductory overview of these results and numerous further
problems.
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All the above papers are available as preprints at

http://www.math.uni-hamburg.de/math/research/preprints/hbm.html

Graph Products, Fourier Analysis and Spectral Techniques

Ehud Friedgut
(joint work with Noga Alon, Irit Dinur and Benny Sudakov)

We consider powers of regular graphs defined by the weak graph product and
give a characterization of maximum-size independent sets for a wide family of
base graphs which includes, among others, complete graphs, line graphs of regular
graphs which contain a perfect matching and Kneser graphs. In many cases this
also characterizes the optimal colorings of these products.

We show that the independent sets induced by the base graph are the only
maximum-size independent sets. Furthermore we give a qualitative stability state-
ment: any independent set of size close to the maximum is close to some indepen-
dent set of maximum size.

Our approach is based on Fourier analysis on Abelian groups and on Spectral
Techniques. To this end we develop some basic lemmas regarding the Fourier
transform of functions on {0 . . . r − 1}n, generalizing some useful results from the
{0, 1}n case.

Consider the following combinatorial problem:
Assume that at a given road junction there are n three-position switches that

control the red-yellow-green position of the traffic light. You are told that whenever
you change the position of all the switches then the color of the light changes. Prove
that in fact the light is controlled by only one of the switches.

The above problem is a special case of the problem we wish to tackle in this
paper, characterizing the optimal colorings and maximal independent sets of prod-
ucts of regular graphs. The configuration space of the switches described above
can be modeled by the n-fold product of K3. Let us begin by defining the weak
graph product of two graphs.

The weak product of G and H , denoted by G × H is defined as follows: the
vertex set of G × H is the Cartesian product of the vertex sets of G and H . Two
vertices (g1, h1) and (g2, h2) are adjacent in G × H if g1g2 is an edge of G and
h1h2 is an edge of H . The “times” symbol, ×, is supposed to be reminiscent of
the weak product of two edges: | × − = ×. In this paper “graph product” will
always mean the weak product.
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In the first part of the paper we consider the interesting special case of the
product of complete graphs on r > 2 vertices,

G = Kn
r = ×n

j=1Kr.

We then discuss a more general setting, considering other r-regular graphs as well.
When G = Kn

r , we identify the vertices of G in the obvious way with the
elements of Zn

r . Recalling the definition of the product, two vertices are adjacent
in G iff the corresponding vectors differ in every coordinate. Clearly one can color
G with r colors by choosing a coordinate i and coloring every vertex according
to its ith coordinate. The following theorem asserts that if r > 2 then these are
the only r-colorings. Here, and in what follows, we denote by |H | the number of
vertices of a graph H .

Theorem 1 Let G = Kn
r , and assume r ≥ 3. Let I be an independent set with

|I| = |G|/r. Then there exists a coordinate i ∈ {1 . . . n} and k ∈ {0 . . . r − 1} such
that

I = {v : vi = k}.
Consequently, the only colorings of G by r colors are those induced by colorings of
one of the factors Kr.

Greenwell and Lovász [2] proved the above theorem (and actually, a somewhat
stronger statement) more than a quarter of a century ago. The novelty in this
paper is the proof we supply that uses Fourier analysis on the group Zn

r . Our
approach also allows us to deduce a stability version of the above theorem:

Theorem 2 For every r ≥ 3 there exists a constant M = M(r) such that for
any ε > 0 the following is true. Let G = Kn

r . Let J be an independent set such
that |J|

|G| = 1
r − ε. Then there exists an independent set I with |I|

|G| = 1
r such that

|J
I|
|G| < Mε.

Here “�” denotes the symmetric difference. What the above theorem tells us is
(in conjunction with Theorem 1) that any independent set that is close to being
of maximum-size is close to being determined by one coordinate. We do not know
of any purely combinatorial proof of this result.

The results in both theorems above can be extended to other base graphs. Let
α(G) denote the maximum possible size of an independent set in a graph G. The
following observation determines α(Hn) for any vertex transitive base graph H ,
in terms of α(H) and |H |.
Proposition 3 For any vertex transitive graph H and for any integer n ≥ 1, if
G = Hn then

α(G)
|G| =

α(H)
|H | .
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After the simple proof of this proposition (some special cases of which are proved
in [1]), we will provide some examples showing that the above equality does not
necessarily hold without the transitivity assumption.

The relevance of graph eigenvalues to independent sets in graphs is well known
and can be traced back to the old result that the independence number of any
regular graph H on r vertices in which the eigenvalues of the adjacency matrix
are µ1 ≥ µ2 · · · ≥ µr, is at most −rµr/(µ1 − µr). A proof of this fact, as well as
of the related results on the connection between the Shannon capacity of a graph
and its eigenvalues, can be found in [3]. This bound is tight for many graphs H
including, for example, complete graphs and the Petersen graph. It turns out that
the results in Theorem 1 and in Theorem 2 can be extended to any connected
non-bipartite regular base graph H for which the above bound is tight.

Theorem 4 Let H be a connected d-regular graph on r vertices and let d = µ1 ≥
µ2 ≥ · · · ≥ µr be its eigenvalues. If

α(H)
r

=
−µr

d − µr
(1)

then for every integer n ≥ 1,

α(Hn)
rn

=
−µr

d − µr
.

Moreover, if H is also non-bipartite, and if I is an independent set of size −µr

d−µr
rn

in G = Hn, then there exists a coordinate i ∈ {1, 2, . . . , n} and a maximum inde-
pendent set J in H, such that

I = {v ∈ V (H)n : vi ∈ J}.
Remark: Note that for any H and n, χ(Hn) = χ(H). If H satisfies the
conditions of the last Theorem and if, in addition, χ(H) = r

α(H) then every optimal
coloring of Hn is induced by a coloring of one of the multiplicands, since it is a
partition of Hn into maximum-size independent sets. Such a partition can only be
consistent if each color class is induced by the same coordinate. The assumption
χ(H) = r

α(H) holds for many of the interesting classes of graphs to which Theorem
4 applies.

Theorem 5 Let H be a d-regular, connected, non-bipartite graph on r vertices,
let d = µ1 ≥ µ2 ≥ · · · ≥ µr be its eigenvalues and suppose its independence
number satisfies (1). Then, there exists a constant M = M(H) such that for any
ε > 0 the following holds. Let G = Hn and let I be an independent set such that
|I|
|G| = α(H)

|H| − ε. Then there exists an independent set I ′ with |I′|
|G| = α(H)

|H| such that
|I′
I|
|G| < Mε.
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Triple Systems Not Containing a Fano Configuration and other
Turán-type Problems

Zoltán Füredi

Given a 3-uniform hypergraph F , let ex3(n,F) denote the maximum possible
size of a 3-uniform hypergraph of order n that does not contain any subhypergraph
isomorphic to F . The Fano configuration F (or Fano plane, or finite projective
plane of order 2, or Steiner triple system, STS(7), or blockdesign S2(7, 3, 2)) is
a hypergraph on 7 elements, say {x1, x2, x3, a, b, c, d}, with 7 edges {x1, x2, x3},
{x1, a, b}, {x1, c, d}, {x2, a, c}, {x2, b, d}, {x3, a, d}, {x3, b, c}. D. de Caen and
Z. Füredi [2] proved a conjecture of Vera T. Sós [11] that

Theorem 1

ex3(n, F) =
3
4

(
n

3

)
+ O(n2).

The tetrahedron, K
(3)
4 , i.e., a complete 3-uniform hypergraph on four ver-

tices, has four triples {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}. An aver-
aging argument shows [7] that the ratio ex3(n,F)/

(
n
3

)
is a non-increasing sequence.

Therefore
π(F) := lim

n→∞ex3(n,F)/
(
n
3

)
exists. The determination of π(K(3)

4 ) is one of the oldest problems of this field,
due to Turán [12], who published a conjecture in 1961 that this limit value is 5/9,
and Erdős [4] offered $1000 for a proof. The best upper bound, .5935 . . . , is due to
Fan Chung and Linyuan Lu [3]. The limit π(H) is known only for very few cases
when it is non-zero.
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⌈
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⌊
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T. Sós also conjectured that the
following hypergraph, Hn, gives the
exact value of ex3(n, F). Let H(X, X)
be the hypergraph obtained by tak-
ing the union of two disjoint sets
X and X as the set of vertices
and define the edge set as the set
of all triples meeting both X and
X . For Hn we take |X | = �n/2�
and |X| = 	n/2
, (i.e., they have
nearly equal sizes). Then

e(Hn) =
(

n

3

)
−
(	n/2


3

)
−
(�n/2�

3

)
.

The chromatic number of a hypergraph H is the minimum p such that its
vertex set can be decomposed into p parts with no edge contained entirely in a
single part. It is well known and easy to check that the Fano plane is not two-
colorable, its chromatic number is 3. Therefore F �⊆ H(X, X). Thus Hn supplies
the lower bound for ex3(n, F) in Theorem 1, implying that π(F) ≥ 3

4 .

Theorem 2 (Füredi and Simonovits [6]) There exist a γ2 > 0 and an n2 such
that the following holds. If H is a triple system on n > n2 vertices not containing
the Fano configuration F and

deg(x) >

(
3
4
− γ2

)(
n

2

)

holds for every x ∈ V (H), then H is bipartite, H ⊆ H(X, X) for some X ⊆ V (H).

This result is a distant relative of the following classical theorem of Andrásfai,
Erdős and T. Sós [1]. Let G be a triangle-free graph on n vertices with minimum
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degree δ(G). If δ(G) > 2
5n, then G is bipartite. The blow up of a five-cycle C5

shows that this bound is the best possible.
Using the method of [2] Mubayi and Rödl [9] determined the limit π for a few

more 3-uniform hypergraphs, for all of them π = 3/4. It is very likely that the
extremal hypergraphs are 2-colorable in those cases, too.

Turán [12] also conjectured that the 2-colorable triple system Hn is the largest
K

(3)
5 -free hypergraph. Sidorenko [10] disproved this conjecture, in this sharp form,

for odd values n ≥ 9. But it is still conjectured that it is true for all even values
and it seems that π(K(3)

5 ) = 3/4 holds as well. However this question seems to be
extremely difficult.

De Caen and Füredi [2] applied some multigraph extremal results of Füredi and
Kündgen [5]. To prove Theorem 2 we use colored multigraph extremal results.

A corollary of Theorem 2, namely that H(X, X) is extremal, was proved inde-
pendently and in a fairly similar way by Keevash and Sudakov [8]. Our Theorem 2
is stronger.
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Entropy and Graph Homomorphisms
David Galvin

(joint work with Prasad Tetali [3])

Let G be an n-regular, N -vertex bipartite graph on vertex set V (G), and let
H be a fixed graph on vertex set V (H) (perhaps with loops). Set

Hom(G, H) = {f : V (G) → V (H) : u ∼ v ⇒ f(u) ∼ f(v)}.

That is, Hom(G, H) is the set of graph homomorphisms from G to H .
When H = Hind consists of one looped and one unlooped vertex connected

by an edge, an element of Hom(G, Hind) can be thought of as a specification
of an independent set (a set of vertices spanning no edges) in G. Our point of
departure is the following result of Kahn [4], bounding the size of I(G), the set of
independent sets of G.

Theorem 1 For any n-regular, N -vertex bipartite graph G,

|I(G)| ≤ (2n+1 − 1)N/2n.

Note that |Hom(Kn,n, Hind)| = 2n+1 − 1 (where Kn,n is the complete bipartite
graph with n vertices on each side), so we may paraphrase Theorem 1 by saying
that |Hom(G, Hind)| is maximum when G is a disjoint union of Kn,n’s. Our main
result is a generalization of this statement (and our proof is a generalization of
Kahn’s).

Proposition 2 For any n-regular, N -vertex bipartite G, and any H,

|Hom(G, H)| ≤ |Hom(Kn,n, H)|N/2n.
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We also consider a weighted version of Proposition 2. Following [1], we put a
measure on Hom(G, H) as follows. To each i ∈ V (H) assign a positive “activity”
λi, and write Λ for the set of activities. Give each f ∈ Hom(G, H) weight wΛ(f) =∏

v∈V (G) λf(v). The constant that turns this assignment of weights on Hom(G, H)
into a probability distribution is

ZΛ(G, H) =
∑

f∈Hom(G,H)

wΛ(f).

When all activities are 1, we have ZΛ(G, H) = |Hom(G, H)|, and so the following
is a generalization of Proposition 2.

Proposition 3 For any n-regular, N -vertex bipartite G, any H, and any system
Λ of positive activities on V (H),

ZΛ(G, H) ≤ (ZΛ(Kn,n, H)
)N/2n

.

We may put this result in the framework of a well-known mathematical model
of physical systems with “hard constraints” (see [1]). We think of the vertices of
G as particles and the edges as bonds between pairs of particles, and we think
of the vertices of H as possible “spins” that particles may take. Pairs of bonded
vertices of G may have spins i and j only when i and j are adjacent in H . Thus
the legal spin configurations on the vertices of G are precisely the homomorphisms
from G to H . We think of the activities on the vertices of H as a measure of
the likelihood of seeing the different spins; the probability of a particular spin
configuration is proportional to the product over the vertices of G of the activities
of the spins. Proposition 3 concerns the “partition function” of this model — the
normalizing constant that turns the above-described system of weights on the set
of legal configurations into a probability measure.

Our proofs are based on entropy considerations, and in particular on a lemma
of Shearer (see [2, p. 33]) bounding the entropy of a random vector.
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Random Planar Graphs
Stefanie Gerke

(joint work with Colin McDiarmid [3])

Given 0 < p < 1 and a positive integer n, let Gn,p denote the random graph
with nodes v1, . . . , vn in which the

(
n
2

)
possible edges appear independently with

probability p. We denote by Rn,p the random graph Gn,p conditioned on it being
planar. (We may think of repeatedly sampling a graph Gn,p until we find one that
is planar.) Also, let us denote Rn, 1

2
by Rn. Thus Rn is uniformly distributed over

all labelled planar graphs on n nodes.
Rather little is known about random planar graphs, even about the number of

edges in such graphs, which is our focus here. Let us denote the number of edges
in a (simple) graph G by m(G). Thus we are interested in the random variable
m(Rn) and more generally in m(Rn,p). Of course m(G) ≤ 3n − 6 for any planar
graph G on n nodes. The expected value E[m(Rn)] is at least (3n− 6)/2 – see [2].
It is shown in [1] that m(Rn) ≤ 2.54n asymptotically almost surely (aas), that is
with probability tending to 1 as n → ∞. This result slightly improves the upper
bound of 2.56 in [6]. We will show here in particular that m(Rn) ≥ 13

7 n + o(n)
aas, thereby improving on the result from [2] mentioned above.

We now introduce two functions f(α) and g(p) which are needed to state our
two main results – see also Figure 1.

Given 1 < α ≤ 3, let k = k(α) = 	 2α
α−1
, and let

f(α) =
1
4
(
k2 + k + 6 − (k2 − 3k + 6)α

)
.

It is not hard to verify that f(α) is continuous and decreasing on 1 < α ≤ 3, and
satisfies f(α) → ∞ as α → 1 and f(3) = 0, see also the end of Section 4. (The
function f is also piecewise-linear and convex.) For 0 < p < 1 we may define g(p)
to be the unique value ρ ∈ (1, 3) such that f(ρ)/ρ = (1 − p)/p. The function g is
continuous and increasing on 0 < p < 1, and satisfies g(p) → 1 as p → 0, g(1

2 ) = 13
7

and g(p) → 3 as p → 1. We are now able to state our theorem concerning the
number of edges of random planar graphs.

Theorem 1 Let 0 < p < 1. Then as n → ∞,

E[m(Rn,p)] ≥ g(p)n + o(n);
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Figure 1: The functions f and g

and indeed for any ε > 0 there exists a δ > 0 such that

Pr(m(Rn,p) < (g(p) − ε)n) = o(e−δn).

In particular, since g(1
2 ) = 13

7 , this theorem shows that the expected number
of edges in a planar graph sampled uniformly at random from all labelled planar
graphs on n nodes is at least about 13

7 n.
To prove this result we will consider the number of edges that can be added to

a planar graph of n nodes and m edges while keeping the graph planar. Given a
planar graph G, we call a non-edge f addable in G if the graph G + f obtained by
adding f as an edge is still planar; and we let add(G) denote the set of addable
non-edges of G. Let P(n) denote the set of all (simple) planar graphs with n nodes
v1, . . . , vn; let P(n, m) denote the set of all graphs G ∈ P(n) with m edges; and
let add(n, m) denote the minimum value of |add(G)| over all graphs G ∈ P(n, m).
Observe that by Kuratowski’s theorem, if m ≤ 7 then add(n, m) =

(
n
2

) − m, and
if n ≥ 6 and m ≥ 8 then add(n, m) <

(
n
2

)−m. Also, add(n, m) > 0 if m < 3n− 6
and add(n, 3n − 6) = 0.

Theorem 2 Let 1 < α ≤ 3, and suppose that m = m(n) = αn + O(1) as n → ∞.
Then add(n, m) = f(α)n + O(1).

It was shown in [5] that a.a.s. the random planar graph contains any fixed
connected planar graph. If one chooses a graph uniformly at random from P(n, m)
with m = 	qn
 1 < q < 3 then the same statements holds:
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Theorem 3 (G., McDiarmid, Steger, Weißl [4]) Let 1 < q < 3. Then a.a.s.
the random planar graph on n nodes and 	qn
 edges contains any fixed connected
planar graph.
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Low-dimensional Faces of Random 0/1-Polytopes
Volker Kaibel

Investigations of special classes of 0/1-polytopes (convex hulls of subsets of
{0, 1}d) have not only lead to beautiful insights into combinatorial (optimization)
problems during the last decades, but also powerful algorithms have emerged from
them. Consequently, there has been some desire to learn more about the geomet-
rical and combinatorial structure of 0/1-polytopes in general. Here, the study of
random 0/1-polytopes has turned out to be particularly fruitful,

A quite fascinating result in this direction has been obtained by Dyer, Füredi,
and McDiarmid in 1992, who proved in [2] that the expected volume E [Vol P ]
of a d-dimensional random 0/1-polytope P with n vertices has a threshold at
2(1−(log e)/2)d (i.e., for each ε > 0, Vol P = o(1) if n ≤ 2(1−(log e)/2−ε)d and Vol P =
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1 − o(1) if n ≥ 2(1−(log e)/2+ε)d). Building on the methods developed in Dyer,
Füredi, and McDiarmid’ work, Bárány and Pór proved in 2000 that a random
0/1-polytope (within a certain range of vertex numbers) has a super-exponential
(in the dimension) number of facets [1].

While Bárány and Pór’s work sheds some light on the highest dimensional
faces of 0/1-polytopes, in my recent work (partly together with Anja Remshagen)
I have investigated the lowest dimensional faces of random 0/1-polytopes. In [4] we
proved that the expected graph density of a d-dimensional random 0/1-polytope P
with n vertices has a threshold at 2(1/2)d. In [3] this result has been extended to
the density of arbitrary (fixed) dimensional faces in the following way.

Denote by νr(P ) the quotient of the number of faces of P with exactly r vertices
and

(
n
r

)
(the r-density of P ). In [3], for each r ≥ 3, we establish the existence

of a sharp threshold for the r-density and determine the values of the threshold
numbers τr such that, for all ε > 0,

E [νr(P )] =

{
1 − o(1) if n ≤ 2(τr−ε)d for all d

o(1) if n ≥ 2(τr+ε)d for all d

holds for the expected value of νr(P ).
In particular, these results indicate that the high densities often encountered in

polyhedral combinatorics (e.g., the cut-polytope of the complete graph has both
2- and 3-density equal to one) are due to the geometry of 0/1-polytopes rather
than to the special combinatorics of the underlying problems.

The threshold values τr (for r ≥ 3) nicely extend the results for r = 2, while the
proof becomes more involved and needs a heavier machinery (the one developed
in the above mentioned paper by Dyer, Füredi, and McDiarmid). As a pay-back,
however, it reveals several interesting insights into the geometry of (random) 0/1-
polytopes.
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Excluded Subposets in the Boolean Lattice

Gyula O.H. Katona

Introduction. Let [n] = {1, 2, . . . , n} be a finite set, families F ,G, etc. of
its subsets will be investigated. If F is a family let fi denote the number of its
i-element members. Let P be a poset. The goal of the present investigations is to
determine the maximum size of a family F (in [n]) which does not contain P as a
(non-necessarily induced) subposet. This maximum is denoted by La(n, P ).

The easiest example is the case when P consist of two comparable elements
(subsets of [1]). Then we are actually looking for the largest family without in-
clusion. The well-known Sperner theorem ([6]) gives the answer, the maximum is(

n
�n

2 	
)
.

The following sharpening, the so called YBLM inequality ([8], [1], [4], [5]) is
also important.

Theorem 1 If F is a family of subsets of [n] without inclusion then

n∑
i=0

fi(
n
i

) ≤ 1

holds

We say that the distinct sets A, B1 . . . , Br form an r-fork if they satisfy A ⊂
B1, . . . , Br.

The first result in this direction of generalizing the Sperner theorem was the
following one ([3]).

Theorem 2 Suppose that F contains no 2-fork. Then(
n

	n
2 

)(

1 +
1
n

+ o

(
1
n

))
≤ |F| ≤

(
n

	n
2 

)(

1 +
2
n

+ o

(
1
n

))

holds.
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The case of r + 1-forks was considered in [7].

Theorem 3 Suppose that F contains no r + 1-fork. Then(
n

	n
2 

)(

1 +
r

n
+ o

(
1
n

))
≤ |F| ≤

(
n

	n
2 

)(

1 + 2
r2

n
+ o

(
1
n

))

holds.

Let us remark that the lower estimates in the previous results and in the new
results of the next section are all based on a code construction of [2] and its
generalizations.
New results. The second term of the upper estimate is too weak in Theorem
1.3. We were recently able to improve this result.

Theorem 4 (A. de Bonis, G.O.H. Katona) Suppose that F contains no r+1-fork.
Then (

n

	n
2 

)(

1 +
r

n
+ o

(
1
n

))
≤ |F| ≤

(
n

	n
2 

)(

1 +
2r

n
+ o

(
1
n

))
.

This is best possible in the sense that the coding problem what is used in the
construction contains an undecided multiplicative factor 2.

The proof of the upper bound in the above theorem is based on the following
YBLM-type inequality.

Theorem 5 ( A. de Bonis, G.O.H. Katona) Suppose that F contains no r+1-fork
(0 < r) and all members F ∈ F satisfy |F | ≤ m. Then

n∑
i=0

fi(
n
i

) ≤ 1 +
r

n − m + 1
.

Let us now try to maximize the size of a family F containing no r + s + 1 distinct
members satisfying A1, . . . , As ⊂ B1, . . . , Br+1. Let Pr+1,s denote the poset with
two levels, s element on the lower, r + 1 elements on the upper level, every lower
one is in relation with every upper one. It is easy to see that our condition can
be formulated in the way that we are looking for the maximum number of the
elements in the Boolean lattice of subsets of [n] (defined by inclusion) without
containing Pr+1,s as a subposet.

Theorem 6 (A. de Bonis, G.O.H. Katona) Suppose that 2 ≤ s, 2 ≤ r and s ≤ r+1
hold. Then(

n

	n
2 

)(

2 +
r

n
+ o

(
1
n

))
≤ La(n, Pr+1,s)

≤
(

n

	n
2 

)(

2 + 2
r + s − 2

n
+ o

(
1
n

))
.
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Surprisingly, we have an exact result in the case s = 2, r = 1.

Theorem 7 (A. de Bonis, G.O.H. Katona, K. Swanepoel) If 5 ≤ n and F contains
no four distinct members A1, A2, B1, B2 such that Ai ⊂ Bj, i, j = 1, 2 then the
maximum of |F| is the sum of the two largest binomial coefficients of order n.
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Local Chromatic Number and Sperner Capacity
János Körner

(joint work with Concetta Pilotto and Gábor Simonyi)

Colouring the vertices of a graph so that no adjacent vertices receive identical
colours gives rise to many interesting problems and invariants. The best known
among all these invariants is the chromatic number, the minimum number of
colours needed for such proper colourings. the following interesting variant was
introduced by Erdős, Füredi, Hajnal, Komjáth, Rödl, and Seress [5] (cf. also [7]).
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Definition 1 ([5]) The local chromatic number ψ(G) of a graph G is the maximum
number of different colours appearing in the closed neighbourhood of any vertex,
minimized over all proper colourings of G. Formally,

ψ(G) := min
c: V (G)→N

max
v∈V (G)

|{c(u) : u ∈ ΓG(v)}|,

where N is the set of natural numbers, ΓG(v), the closed neighborhood of the vertex
v ∈ V (G), is the set of those vertices of G that are either adjacent or equal to v
and c : V (G) → N runs over those functions that are proper colourings of G.

It was proved in [5] that there exist graphs with ψ(G) = 3 and χ(G) arbitrarily
large.

Throughout our paper [12] the present extended abstract is referring to, we
are interested in chromatic invariants as upper bounds for the Shannon capacity
of undirected graphs and its natural generalization Sperner capacity for directed
graphs. We treat Shannon capacity in terms that are complementary to Shannon’s
own, (cf. [15], [14] and [9], [11]). In this language Shannon capacity describes
the asymptotic growth of the clique number in the co-normal powers of a graph.
Shannon proved (although in different terms) that the Shannon capacity c(G) of
a graph is upper bounded by its fractional chromatic number.

We show that ψ(G) is bounded from below by the fractional chromatic number
of G. This proves, among other things, that ψ(G) is always an upper bound for the
Shannon capacity c(G) of G, but it is not a very useful one since it is always weaker
than the fractional chromatic number itself. Thus the situation is rather different
in the case of directed graphs. We introduce an analog of the local chromatic
number for directed graphs and show that it is always an upper bound for the
Sperner capacity of the digraph at hand. To illustrate the usefulness of this bound
we apply it to show, for example, that an oriented odd cycle with at least two
vertices with outdegree and indegree 1 always has its Sperner capacity equal to
that of the single-edge graph K2. We introduce fractional versions that further
strengthen our bounds.

The definition of the directed version of ψ(G) is straightforward.

Definition 2 The local chromatic number ψd(G) of a digraph G is the maximum
number of different colours appearing in the closed out-neighbourhood of any vertex,
minimized over all proper colourings of G. Formally,

ψd(G) := min
c: V (G)→N

max
v∈V (G)

|{c(w) : w ∈ Γ+
G(v)}|

where N is the set of natural numbers, Γ+
G(v), the closed out-neighbourhood of

the vertex v ∈ V (G), is the set of those vertices w ∈ V (G) that are either equal
to v or else are endpoints of directed edges (v, w) ∈ E(G), originated in v, and
c : V (G) → N runs over those functions that are proper colourings of G.
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Our main goal is to prove that ψd(G) is an upper bound for the Sperner capacity
of digraph G.

Definition 3 For directed graphs G = (V, E) and H = (W, L), the co-normal (or
disjunctive or OR) product G · H is defined to be the following directed graph:

V (G · H) = V × W

and
E(G · H) = {((v, w), (v′, w′)) : (v, v′) ∈ E or (w, w′) ∈ L}.

The nth co-normal (or disjunctive or OR) power Gn of digraph G is defined as the
n-fold co-normal product of G with itself, i. e., the vertex set of Gn is V n = {x =
(x1 . . . xn) : xi ∈ V }, while its edge set is defined as

E(Gn) = {(x,y) : ∃i (xi, yi) ∈ E(G)}.
(A pair (a, b) always means an oriented edge in this paper as opposed to undirected
edges denoted by {a, b}.)

Definition 4 ([9])
A subgraph of a digraph is called a symmetric clique if its edge set contains all

ordered pairs of vertices belonging to the subgraph and we denote the size (num-
ber of vertices) of the largest symmetric clique by ωs(G). The (non-logarithmic)
Sperner capacity of a digraph G is defined as

σ(G) = sup
n

n
√

ωs(Gn).

It is obvious that Sperner capacity is a generalization of Shannon capacity. It
is a true generalization in the sense that there exist digraphs the Sperner capacity
of which is different from the Shannon capacity (c(G) value) of its underlying
undirected graph. Denoting by G both an arbitrary digraph and its underlying
undirected graph, it follows from the definitions that σ(G) ≤ c(G) always holds.
The smallest example with strict inequality in the previous relation is a cyclically
oriented triangle, cf. [4], [3].

Shannon capacity is is difficult to determine, and it is unknown for many
relatively small and simple graphs, for example, for all odd cycles of length at
least 7. This shows that Sperner capacity cannot be easy to determine either.
There is an interesting and important connection between Sperner capacity and
extremal set theory, introduced in [13] and fully explored in [10]. Several problems
of this flavour are also discussed in [11].

Alon [1] proved that for any digraph G

σ(G) ≤ min{∆+(G), ∆−(G)} + 1
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where ∆+(G) is the maximum out-degree of the graph G and similarly ∆−(G) is
the maximum in-degree. The proof relies on a linear algebraic method similar to
the one already used in [3] for a special case (cf. also [6] for a strengthening and
cf. [2] for a general setup for this method in case of undirected graphs). We also
use this method for proving the following stronger result.

Theorem 5
σ(G) ≤ ψd(G).

We call an oriented cycle alternating if it has at most one vertex of outdegree
1. (In stating the following results we follow the convention that an oriented
graph is a graph without oppositely directed edges between the same two points,
while a general directed graph may contain such pairs of edges.) Clearly, in any
oriented cycle the number of vertices of outdegree 2 equals the number of vertices
of outdegree 0. Thus, in particular, a 2k+1 length oriented odd cycle is alternating
if it has k points of outdegree zero, k points of outdegree 2 and only 1 point of
outdegree 1. It takes an easy checking that up to isomorphism there is only one
orientation of C2k+1 which is alternating.

Theorem 6 Let G be an oriented odd cycle that is not alternating. Then

σ(G) = 2.

The Sperner capacity of an alternating odd cycle can indeed be larger than 2. This
is obvious for C3, where the alternating orientation produces a transitive clique of
size 3. A construction proving that the Sperner capacity of the alternating C5 is at
least

√
5 is given in [8]. The construction is clearly best possible by the celebrated

result of Lovász [14] showing c(C5) =
√

5.
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On H-linked Graphs

Alexandr Kostochka
(joint work with Gexin Yu)

In this talk, we introduce the notion of H-linked graphs and find suffiicient
minimum degree conditions for a graph to be H-linked. This improves known
conditions for a graph to be k-ordered.
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Let H be a graph. An H-subdivision in a graph G is a pair of mappings
f : V (H) → V (G) and g: E(H) into the set of paths in G such that:

(a) f(u) �= f(v) for all distinct u, v ∈ V (H);
(b) for every uv ∈ E(H), g(uv) is an f(u)f(v)-path in G, and distinct edges

map into internally disjoint paths in G.
Say that a graph G is H-linked if every injective mapping f : V (H) → V (G)

can be extended to an H-subdivision in G. This is a natural generalization of
k-linkage.

Recall that a graph is k-linked if for every list of 2k vertices

{s1, . . . , sk, t1, . . . , tk} ,

there exist internally disjoint paths P1, . . . , Pk such that each Pi is an si, ti-path.
From the definitions of k-linked and H-linked graphs, we immediately see that a
graph G is k-linked if and only if G is H-linked for every graph H with |E(H)| = k.

It is known that to check that a graph on at least 2k vertices is k-linked it
is enough to check only the lists {s1, . . . , sk, t1, . . . , tk}, where all si and ti are
distinct. Thus, a graph G on at least 2k vertices is k-linked if and only if G is
Mk-linked, where Mk is the matching with k edges.

Let Bk denote the (multi)graph with 2 vertices and k parallel edges. By
Menger’s Theorem, a graph G on at least k + 1 vertices is k-connected if and
only if G is Bk-linked.

A graph is k-ordered, if for every ordered sequence of k vertices, there is a cycle
that encounters the vertices of the sequence in the given order. Let Ck denote the
cycle of length k. Clearly, a graph G is k-ordered if and only if G is Ck-linked.

After Chartrand introduced the notion of k-ordered graphs, several authors
(see, e.g., [4, 8, 7, 5]) studied sufficient degree conditions for a graph to be k-
ordered. Recall that Dirac [2] found sufficient conditions for a simple graph G to
be Hamiltonian in terms of the minimum degree, δ(G), and Ore [9] found similar
conditions in terms of σ2(G), the minimum value of the sum deg(u) + deg(v) over
all pairs {u, v} of non-adjacent vertices in G. Let D0(n, k) denote the minimum
positive integer d such that every n-vertex simple graph with minimum degree at
least d is k-ordered. Similarly, let R0(n, k) denote the minimum positive integer r
such that every n-vertex simple graph G with σ2(G) ≥ r is k-ordered. Improving
on results in [4, 8], it was shown in [5] that R0(n, k) = n + �(3k − 9)/2� for
every 3 ≤ k ≤ n/2. This implies that D0(n, k) ≤ �(2n + 3k − 9)/4� for every
3 ≤ k ≤ n/2. Moreover, Kierstead et al. [7] showed that D0(n, k) = �n

4 � +
	k

2
 − 1 for 3 ≤ k ≤ n+3
11 . Observe that these bounds demonstrate the interesting

phenomenon: R0(n, k) > 2D0(n, k) for k small with respect to n. It is also known
that D0(n, k) > �n

4 � + 	k
2 
 − 1 for k > n/3, but the value of D0(n, k) was not

known for n+3
11 < k < 2n

5 .
The main result of the talk gives the minimum degree conditions for a graph
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to be H-linked if δ(H) ≥ 2. This results extends the result of Kierstead et al. [7]
in two directions: for a larger scope of k and for much more general H .

Theorem 1 Let H be a simple graph with k edges and δ(H) ≥ 2. Every graph G
of order n ≥ 5k with δ(G) ≥ �(n + k)/2� − 1 is H-linked. If H is the cycle Ck

with k edges, then every graph G of order n ≥ 5k with δ(G) ≥ �n/2� + 	k/2
 − 1
is H-linked. The minimum degree conditions are sharp.

In particular, Theorem 1 yields D0(n, k) = �n
4 � + 	k

2 
 − 1 for k ≤ n/5.
Note that δ(G) ≥ �(n + k)/2�−1 is exactly the minimum degree condition that

provides the k-connectivity of G. Thus, an evident degree condition for a graph
to be k-connected, provides that a graph is H-linked for many H . If one drops
the condition δ(H) ≥ 2, then this degree restriction is not sufficient in general. In
a joint work with Kawarabayashi [6], we considered similar problem for k-linked
graphs. Let D(n, k) be the minimum positive integer d such that every n-vertex
graph with minimum degree at least d is k-linked. Also, let R(n, k) denote the
minimum positive integer r such that every n-vertex graph G with σ2(G) ≥ r is
k-linked.

Theorem 2 [6] If k ≥ 2, then

R(n, k) =




2n − 3, n ≤ 3k − 1;
	 2(n+5k)

3 
 − 3 3k ≤ n ≤ 4k − 2;
n + 2k − 3, n ≥ 4k − 1,

(1)

and

D(n, k) =
⌈

R(n, k)
2

⌉
=




n − 1, n ≤ 3k − 1;
	n+5k

3 
 − 1 3k ≤ n ≤ 4k − 2;
�n−3

2 � + k, n ≥ 4k − 1.
(2)

Egawa et al. [3] considered a closely related problem, but the answers differ,
especially for σ2(G). The bounds of Theorem 2 and of Egawa et al. [3] are helpful
in estimating f(k) — the minimum positive integer f such that every f -connected
graph is k-linked. After a series of papers by Jung, Larman and Mani, Mader, and
Robertson and Seymour, the first linear upper bound for f , namely, f(k) ≤ 22k
was proved by Bollobás and Thomason [1]. Very recently, Thomas and Wollan [10]
improved this bound to f(k) ≤ 16k. In [6] we show how to apply Theorem 2 in
the Thomas-Wollan proof to improve their bound to f(k) ≤ 12k. Thomas and
Wollan informed us that elaborating our idea they are able to improve the bound
even further: to f(k) ≤ 10k.
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Spanning Triangulations in Graphs with Large Minimum Degree
Daniela Kühn

(joint work with Deryk Osthus)

In [6] and [5] we investigated the following extremal problem: given a function
m = m(n), how large does the minimum degree of a graph G of order n have to
be in order to guarantee a planar subgraph with at least m(n) edges? The main
result of [5] determines the minimum degree which is necessary to force a planar
subgraph with the maximum possible number of edges, i.e. a planar triangulation.



46 Oberwolfach Report 1/2004

Theorem 1 There exists an integer n0 such that every graph G of order n ≥ n0

and minimum degree at least 2n/3 contains a triangulation as a spanning subgraph.

Our proof of Theorem 1 can easily be extended to obtain a spanning triangulation
of an arbitrary surface. Theorem 1 improves a result from [6] where the minimum
degree was required to be at least 2n/3 + γn (here γ > 0 can be chosen to be
arbitrary small and n0 = n0(γ)).

The following example shows that Theorem 1 is best possible for all integers
n which are divisible by 3. Consider the graph G∗ which is obtained from two
disjoint cliques A and B of order n/3 by adding an independent set C of n/3 new
vertices and joining each of them to all the vertices in the two cliques. So G∗

has minimum degree 2n/3 − 1. Observe that any spanning triangulation in G∗

would have two facial triangles T1 and T2 which share an edge and are such that
T1 contains a vertex of A and T2 contains a vertex of B. But this is impossible
since every triangle of G∗ containing a vertex of A (respectively B) can have at
most one vertex outside A (respectively B), namely in C. One can extend this
example slightly to show that for all n a minimum degree of �2n/3� − 1 does not
ensure a spanning triangulation (see [5]).

The spanning triangulation guaranteed by Theorem 1 can be found in poly-
nomial time. In other words, the maximum planar subgraph problem (which in
a given graph G asks for a planar subgraph with the maximum number of edges)
can be solved in polynomial time for graphs G of minimum degree at least 2n/3.
In general this problem was shown to be Max SNP-hard by Cǎlinescu et al. [1],
i.e. there exists a positive ε for which there cannot be a polynomial time approx-
imation algorithm with approximation ratio better than 1 − ε, unless P = NP .
The best known approximation algorithm has an approximation ratio of 4/9 [1].

Our proof of Theorem 1 relies on Szemerédi’s Regularity lemma, the Blow-
up lemma of Komlós, Sárközy and Szemerédi [4] and several ideas which were
introduced in [3] by the same authors. (In [3] they proved the related result that
every graph of sufficiently large order n and minimum degree at least 2n/3 contains
the square of a Hamilton cycle.)

In the remainder we discuss how Theorem 1 might perhaps be strengthened.
Obviously a minimum degree of 2n/3 will not force every given triangulation P
of order n as a subgraph. For example, G might be 3-partite, which implies that
we can only hope for triangulations P with chromatic number 3. Of course, we
cannot guarantee all of these either, as there are triangulations whose chromatic
number is 3 and whose maximum degree is n − 2. However, in view of our proof
of Theorem 1, it might be helpful to restrict one’s attention to triangulations P of
bounded band-width, as this imposes a linear structure on P . (The band-width of a
graph H is the smallest integer k for which there exists an enumeration v1, . . . , v|H|
of the vertices of H such that every edge vivj ∈ H satisfies |i − j| ≤ k.) Bollobás
and Komlós [2] conjectured that for every γ > 0 and all r, ∆ ∈ N there are α > 0
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and n0 ∈ N such that every graph G of order n ≥ n0 and minimum degree at least
(1− 1

r +γ)n contains a copy of every graph H of order n whose chromatic number
is at most r, whose maximum degree is at most ∆ and whose band-width is at
most αn.

This would imply that every sufficiently large graph of minimum degree at
least (2/3+ γ)n contains every 3-chromatic triangulation of bounded band-width.
Even in this special case the error term γn cannot be omitted completely: there
are 3-chromatic triangulations whose colour classes have different sizes. These
obviously do not embed into the complete 3-partite graph whose vertex classes
have equal size. However, it might be true that for all integers b there exists a
constant C = C(b) such that every graph of order n and minimum degree at least
2n/3 + C contains every 3-chromatic triangulation of order n and band-width at
most b as a subgraph.

Also, we do not know whether one can strengthen Theorem 1 in the following
way. Given n, is there a triangulation Pn of order n which is contained in every
graph G of order n and minimum degree at least 2n/3? When n is divisible by 3,
then the preceding arguments show that Pn would have to be 3-chromatic with
equal size colour classes. Moreover, Pn would have to contain induced cycles of
many different lengths. To see the latter, consider a graph G which is similar
to the graph G∗ defined earlier. This time the cliques have order n/3 − 1, the
independent set C has order n/3 + 2 and we insert a 2-factor into C. One can
show that every spanning triangulation of G must contain one of the cycles in
G[C].
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ica 17 (1997), 109–123.
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Revisiting Two Theorems of Curto and Fialkow on Moment Matrices
Monique Laurent

The moment problem
Given a probability measure µ on Rn, the quantity yα :=

∫
xαµ(dx) is called its

moment of order α. The moment problem concerns the characterization of the
sequences y = (yα)α∈Z

n
+

that are the sequences of moments of some nonnegative
measure µ; in that case one says that µ is a representing measure for y and µ is a
probability measure if y0 = 1. The results of Curto and Fialkow that we consider
here deal with moment sequences of finite atomic measures, i.e., measures of the
form µ =

∑r
i=1 λiδxi with λ1, . . . , λr �= 0 and x1, . . . , xr ∈ Rn. Here, δx is the

Dirac measure at x ∈ Rn (with mass 1 at x and 0 elsewhere), whose moment
sequence is the zeta vector ζx := (xα)α∈Zn ∈ R

Z
n
+ .

Given y ∈ R
Z

n
+ , its moment matrix is the symmetric matrix M(y) indexed by

Z
n
+ whose (α, β)th entry is equal to yα+β, for α, β ∈ Z

n
+. A well known necessary

condition for y to have a representing measure µ is the positive semidefiniteness of
its moment matrix. Moreover, the support of µ is contained in the set of common
zeros of the polynomials belonging to the kernel of M(y) and the rank of M(y) is
at most the number of atoms in the support of µ.

The cone M consisting of the sequences y having a representing measure, and
the cone P consisting of the polynomials nonnegative on Rn, are dual of each
other (Haviland [5]). Moreover, the cone M+ consisting of the sequences y whose
moment matrix M(y) is positive semidefinite, and the cone Σ2 consisting of all
sums of squares of polynomials, are dual of each other (Berg et al. [1]). Thus
the moment problem can be cast - via duality - as the problem of characterizing
nonnegative polynomials. The inclusion: Σ2 ⊆ P is an equality for n = 1 and it
is strict for n ≥ 2, as already noticed by Hilbert in the 1890s. Equivalently, the
inclusion: M ⊆ M+ is an equality for n = 1 (this is Hamburger’s theorem) and
it is strict for n ≥ 2.

There are, however, some cases when the implication: y ∈ M+ =⇒ y ∈ M
holds. Berg, Christensen and Ressel [1] show that this is true when y is bounded.
Curto and Fialkow [2] show that this is true when M(y) has finite rank.

Theorem 1 [2] If M(y) � 0 and M(y) has finite rank r, then y has a unique
representing measure, which is r-atomic.

As a direct application of Theorem 1, the reverse implication also holds: If y
has a r-atomic representing measure, then M(y) � 0 and rank M(y) = r.

Curto and Fialkow’s proof for Theorem 1 is along the following lines. (See
chapter 4 in [2].) Assume M(y) � 0 and rank M(y) = r. Then, the kernel
I := {p ∈ R[x1, . . . , xn] | M(y)p = 0} of M(y) is an ideal in R[x1, . . . , xn] and the
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quotient vector space A := R[x1, . . . , xn]/I has finite dimension r. Define an inner
product on A by setting 〈p, q〉 := pT M(y)q. In this way, A is a Hilbert space of
dimension r. For q ∈ R[x1, . . . , xn], consider the multiplication operator ϕq : A →
A defined by ϕq(p) = pq. Obviously, the operators ϕx1 , . . . , ϕxn pairwise commute.
Curto and Fialkow use then the spectral theorem and the Riesz representation
theorem for proving the existence of a representation measure for y. This type of
proof based on functional analytic tools is often used for proving results about the
moment problem. See, e.g., Fuglede [4], Schmüdgen [8].

The first main contribution of this paper is an alternative more elementary
proof for Theorem 1. Our proof uses Hilbert’s Nullstellensatz and, beside this
algebraic result, it uses only elementary linear algebra. Our starting point is to
observe that the kernel I of M(y) is a radical ideal. Hence, the variety V (I)
(consisting of the common complex roots of all polynomials in I) has cardinality
r. Say, V (I) = {v1, . . . , vr}. Note that a complex point v belongs to V (I) if and
only if its conjugate v belongs to V (I). Thus, one can write: V (I) = S ∪ T ∪ T ,
where S := V (I) ∩ Rn and T := {v | v ∈ T }.

Let pv1 , . . . , pvr ∈ C[x1, . . . , xn] be interpolation polynomials at the points of
V (I); that is, pvi(vj) = 1 if i = j and pvi(vj) = 0 if i �= j, for i, j = 1, . . . , r. One
can assume that pv is real valued for v ∈ S and that pv = pv for v ∈ T .

Let Z be the matrix whose columns are the zeta vectors ζv1 , . . . , ζvr , and let
Z̃ be the matrix whose rows contain the coefficient vectors of the interpolation
polynomials pv1 , . . . , pvr . Thus, Z̃Z = Ir. Theorem 1 now follows from the next
three lemmas.

Lemma 2 M(y) = Zdiag(Z̃y)ZT .

Lemma 3 V (I) ⊆ Rn.

Lemma 4 M(y) =
∑r

i=1 pT
vi

M(y)pviζviζ
T
vi

and µ :=
∑r

i=1 pT
vi

M(y)pviδvi is the
unique measure representing y.

The F -moment problem
Curto and Fialkow [3] study the F -moment problem for truncated sequences. That
is, given a sequence y ∈ RS2t , decide whether y has a representing measure
supported by a given set F ⊆ R

n. Here, for an integer t ≥ 1, St denotes the set of
α ∈ Zn

+ with
∑

i αi ≤ t. Consider the case when F is a basic closed semialgebraic
set, of the form

F := {x ∈ R
n | h1(x) ≥ 0, . . . , hm(x) ≥ 0}, (1)

where h1, . . . , hm ∈ R[x1, . . . , xn]; set

dj = �deg(hj)/2�, d :=
m

max
j=1

dj . (2)
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Necessary conditions can be formulated in terms of positive semidefiniteness of the
localizing matrices of y. Given h ∈ R[x1, . . . , xn], h ∗ y denotes the vector whose
αth entry is (h ∗ y)α :=

∑
β hβyα+β ; its moment matrix is a localizing matrix of y.

Moreover, Mt(y) is the matrix indexed by St whose (α, β)th entry is yα+β . One
can easily verify that, if y ∈ RS2t has a representing measure supported by the
set F , then Mt(y) � 0 and Mt−dj(hj ∗ y) � 0 for all j = 1, . . . , m. Curto and
Fialkow [3] show that, under certain rank assumptions, these necessary conditions
are also sufficient for the existence of a representing measure supported by F . The
following is the main result of [3] (Theorem 1.6 there).

Theorem 5 [3] Let F be the set from (1) and let d1, . . . , dm, d be as in (2). Let
y ∈ RS2t and r := rank Mt(y). The following assertions are equivalent.

(i) y has a r-atomic representing measure whose support is contained in F .

(ii) Mt(y) � 0 and y can be extended to a vector y ∈ R
S2(t+d) in such a way that

Mt+d(y) is a flat extension of Mt(y) and Mt(hj ∗ y) � 0 for j = 1, . . . , m.

The second main contribution of our paper is a very short proof of this result.
Assume (ii) holds. Then, by Theorem 6 below, y has a representing measure
µ =

∑r
i=1 λiδvi , where r = rank Mt(y). Hence, it suffices to show that all vi’s

belong to the set F . This follows from the assumption that Mt(hj ∗ y) � 0, after
observing that, as r = rank Mt(y), one can find interpolation polynomials at
v1, . . . , vr having degree at most t.

Theorem 6 [2] Given y ∈ RS2t , assume that Mt(y) � 0 and that rank Mt(y) =
rank Mt−1(y). Then one can extend y to a vector in R

Z
n
+ having a representing

measure which is (rank Mt(y))-atomic.

Our study of the moment problem is partly motivated by its application to
optimization. Indeed, Lasserre [7] shows how to construct asymptotic converging
sequences of semidefinite relaxations using moment matrices, for the problem of
minimizing a polynomial over a basic closed semi-algebraic set. Curto and Fi-
alkow’s results are used for proving, in some cases, the finite convergence. See also
Henrion and Lasserre [6].
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Partition Regular Equations

Imre Leader
(joint work with N. Hindman, P.A. Russell and D. Strauss)

An n × m matrix A, with rational entries, is called partition regular if when-
ever the natural numbers are finitely coloured there is a monochromatic vector x
(meaning that all entries of x have the same colour) such that Ax = 0. We may
also speak of the ‘system of equations’ Ax = 0 being partition regular.

The aim of this talk is to review some previous knowledge about the important
notion of ‘consistency’, to be defined below, and then to go on to some more recent
work. This recent work is joint with Hindman and Strauss [3],[4] and joint with
Russell [5].

Many of the classical theorems of Ramsey Theory, such as Schur’s theorem
and van der Waerden’s theorem, may naturally be interpreted at statements that
certain matrices are partition regular. The partition regular matrices were charac-
terised by Rado [7] in the 1930s. His characterisation had the following important
consequence: if A and B are partition regular then so is their diagonal sum. In
other words, if we can always solve Ax = 0 in one colour class, and we can always
solve By = 0 in one colour class, then in fact we can solve Ax = 0 and By = 0 in
the same colour class. We say that the matrices A and B are consistent.
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This is important because it can be used to prove some ‘universal’ results.
For example, whenever the natural numbers are finitely coloured, some class must
contain solutions to all partition regular systems.

Let us now pass to the infinite case, where, in contrast to Rado’s theorem, the
whole picture is very much not yet understood. Which infinite systems of equations
are partition regular? One very simple example, coming straight from Ramsey’s
theorem, is as follows: whenever the natural numbers are finitely coloured there
exist x1, x2, . . . such that the set {xi + xj : i �= j} is monochromatic. (This is not
quite given in the form of a solution to Ax = 0 for some suitable A, but it can easily
be converted into that form if desired.) More generally, Ramsey’s theorem implies
that, for any fixed a1, . . . , am positive integers, whenever the natural numbers are
finitely coloured there exist x1, x2, . . . such that the set {a1xi1 + . . . + amxim :
i1 < . . . < im} is monochromatic. We call this simple system a ‘Ramsey’ system.
It is worth pointing out that one cannot relax the condition on i1, . . . , im to the
condition that they are merely distinct: for this system there are bad colourings.

The first non-trivial example of an infinite partition regular system was given by
Hindman [2], who showed that whenever the natural numbers are finitely coloured
there exist x1, x2, . . . such that the set

FS(x1, x2, . . .) = {
∑
i∈I

xi : 0 < |I| < ∞}

is monochromatic. This was extended by Milliken [6]and Taylor [8], who showed
that, for any fixed a1, . . . , am positive integers, whenever the natural numbers are
finitely coloured there exist x1, x2, . . . such that the set

FSa1,...,am(x1, x2, . . .) = {a1

∑
i∈I1

xi + . . . + am

∑
i∈Im

xi}

is monochromatic, where we allow all finite nonempty I1, . . . , Im such that max Ir <
min Ir+1 for all r. However, it is important to point out that not too many other
examples of infinite partition regular systems are known.

It was proved by Deuber, Hindman, Leader and Lefmann [1] that unfortu-
nately, in the infinite case, consistency does not always hold. Indeed, two different
Milliken-Taylor systems are, except in trivial cases, always inconsistent. This left
as a vexing open problem the question of whether or not the simple Ramsey sys-
tems were consistent. This was open for some time, being eventually solved by
Hindman, Leader and Strauss [3]. The proof uses a large amount of machinery
from the Stone-Cech compactification of the natural numbers (the space of ultra-
filters), together with a new notion related to this space called ‘central partition
regularity’.

Recently, however, Leader and Russell [5] have found a very short proof of the
consistency of Ramsey systems.
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One other interesting development has concerned Ramsey systems with nega-
tive entries. Here we allow some of the ai to be negative (although of course the
final coefficient am must be positive, to have any hope of finding solutions in the
natural numbers). One might imagine that this is just generalisation for its own
sake, but curiously enough when one allows negative entries one suddenly obtains
some much simpler proofs of inconsistency than were needed in [1]. This work is
presented in [4].
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Lifts, Discrepancy and Nearly Optimal Spectral Gaps

Nati Linial
(joint work with Yonatan Bilu)

Let G be a graph on n vertices. A 2-lift of G is a graph H on 2n vertices, with
a covering map π : H → G. It is not hard to see that all eigenvalues of G are also
eigenvalues of H . In addition, H has n “new” eigenvalues. We conjecture that



54 Oberwolfach Report 1/2004

every d-regular graph has a 2-lift such that all new eigenvalues are in the range
[−2

√
d − 1, 2

√
d − 1] (If true, this is tight , e.g. by the Alon-Boppana bound). Here

we show that every graph of maximal degree d has a 2-lift such that all “new”
eigenvalues are in the range [−c

√
d log3 d, c

√
d log3 d] for some constant c. This

leads to a polynomial time algorithm for constructing arbitrarily large d-regular
graphs, with second eigenvalue O(

√
d log3 d).

The proof uses the following lemma (Lemma 5): Let A be a real symmetric matrix
with zeros on the diagonal. Let d be such that the l1 norm of each row in A is at
most d. Let α be such that for every x, y ∈ {0, 1}n with < x, y >= 0 it holds that
|xAy|

||x||||y|| ≤ α. Then the spectral radius of A is O(α(log(d/α) + 1)). An interesting
consequence of this lemma is a converse to the Expander Mixing Lemma.

Definitions
Let G = (V, E) be a graph on n vertices, and let A be its adjacency matrix. Let
µ1 ≥ µ2 ≥ . . . ≥ µn be the eigenvalues of A. We say that G is an (n, d, µ) −
expander if G is d-regular, and maxi=2,...,n |µi| ≤ µ. When µ = 2

√
d − 1 we say

that such a graph is Ramanujan. When µ = Õ(
√

d) we say that such a graph is
Quasi-Ramanujan.

A signing of the edges of G is a function s : E(G) → {−1, 1}. The signed
adjacency matrix of a graph G with a signing s has rows and columns indexed by
the vertices of G. The (x, y) entry is s(x, y) if (x, y) ∈ E and 0 otherwise.
A 2-lift of G, associated with a signing s, is a graph Ĝ defined as follows. Associated
with every vertex x ∈ V are two vertices, x0 and x1, called the fiber of x. If
(x, y) ∈ E, and s(x, y) = 1 then the corresponding edges in Ĝ are (x0, y0) and
(x1, y1). If s(x, y) = −1, then the corresponding edges in Ĝ are (x0, y1) and
(x1, y0). The graph G is called the base graph, and Ĝ a 2-lift of G. By the spectral
radius of a signing we refer to the spectral radius of the corresponding signed
adjacency matrix. When the spectral radius of a signing of a d-regular graph is
Õ(

√
d) we say that the signing (or the lift) is Quasi-Ramanujan.

Quasi-Ramanujan 2-Lifts and Quasi-Ramanujan Graphs

Preliminaries. The eigenvalues of a 2-lift of G can be easily characterized in
terms of the adjacency matrix and the signed adjacency matrix:

Lemma 1 Let A be the adjacency matrix of a graph G, and As the signed ad-
jacency matrix associated with a 2-lift Ĝ. Then every eigenvalue of A and every
eigenvalue of As are eigenvalues of Ĝ. Furthermore, the multiplicity of each eigen-
value of Ĝ is the sum of its multiplicities in A and As.
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Consider the following scheme for constructing (n, d, λ)-expanders. Start with
G0 = kd+1, the complete graph on d + 1 vertices ∗ . Its eigenvalues are d, with
multiplicity 1, and −1, with multiplicity d. We want to define Gi as a 2-lift of
Gi−1, such that all new eigenvalues are in the range [−λ, λ]. Assuming such a
2-lifts always exist, the Gi constitute an infinite family of (n, d, λ)-expanders.
It is therefore natural to look for the smallest λ = λ(d) such that every graph of
degree at most d has a 2-lift, with new eigenvalues in the range [−λ, λ]. In other
words, a signing with spectral radius ≤ λ. We note that λ(d) ≥ 2

√
d − 1 follows

from the Alon-Boppana bound.
Quasi-Ramanujan 2-lifts for every graph. Based on extensive computer sim-
ulations we conjecture that every graph has a signing with small spectral radius:

Conjecture 2 Every d-regular graph has a signing with spectral radius at most
2
√

d − 1.

In this section we show a close upper bound:

Theorem 3 Every graph of maximal degree d has a signing with spectral radius
O(
√

d · log3 d).

The theorem follows immediately from the following two lemmata (along with
Lemma 1). The first shows that with positive probability the Rayliegh quotient is
small for vectors in v, u ∈ {−1, 0, 1}n. The second shows that this is essentially a
sufficient condition for all eigenvalues being small.

Lemma 4 For every graph of maximal degree d, there exists a signing s such that
for all v, u ∈ {−1, 0, 1}n the following holds:

|vtAsu|
||v||||u|| ≤ 10

√
d log d, (1)

where As is the signed adjacency matrix.

Lemma 5 Let A be an n × n real symmetric matrix such that the l1 norm of
each row in A is at most d. Assume that for any two vectors, u, v ∈ {0, 1}n, with
supp(u) ∩ supp(v) = ∅:

|uAv|
||u||||v|| ≤ α,

and that all diagonal entries of A are, in absolute value, O(α(log(d/α)+1)). Then
the spectral radius of A is O(α(log(d/α) + 1)).

∗We could start with any small d-regular graph with a large spectral gap. Such graphs are
easy to find.



56 Oberwolfach Report 1/2004

Note 6 Lemma 5 is tight up to constant factors. To see this, consider the n-
dimensional vector x whose i’th entry is 1/

√
i. Let A be the outer product of x

with itself, that is, the matrix whose (i, j)’th entry is 1/
√

i · j. Clearly x is an
eigenvector of A corresponding to the eigenvalue ||x||2 = Θ(log(n)). Also, the sum
of each row in A is O(

√
n). To prove that the lemma is essentially tight, we need to

show that maxu,v∈{0,1}n
uAv

||u||||v|| is constant. Indeed, fix k, l ∈ [n]. Let u, v ∈ {0, 1}n

be such that ||u|| = k and ||v|| = l. As the entries of A are decreasing along the
rows and the columns, uAv is maximized for such vectors when their support is
the first k and l coordinates. For these optimal vectors, uAv = Θ(

√
k · l). Thus,

maxu,v∈{0,1}n

uAv

||u||||v|| = Θ(1).

An explicit construction of quasi-Ramanujan graphs. For the purpose of
building expanders, it is enough to prove a weaker version of Theorem 3. Roughly,
that every expander graph has a 2-lift with small spectral radius. In this sub-
section we show that when the base graph is a good expander (in the sense of the
definition below), then w.h.p. a random 2-lift has a small spectral radius. We then
derandomize the construction to get a deterministic polynomial time algorithm for
constructing arbitrarily large expander graphs.

Definition 7 We say that a graph G on n vertices is (β, t)-sparse if for every
u, v ∈ {0, 1}n, with |S(u, v)| ≤ t,

uAv ≤ β||u||||v||.
Lemma 8 Let A be the adjacency matrix of a d-regular (γ(d), log n)-sparse G
graph on n vertices, where γ(d) = 10

√
d log d. Then for a random signing of G

(where the sign of each edge is chosen uniformly at random) the following hold
w.h.p.:

1. ∀u, v ∈ {−1, 0, 1}n : |uAsv| ≤ γ(d)||u||||v||.
2. Ĝ is (γ(d), 1 + log n)-sparse

where As is the random signed adjacency matrix, and Ĝ is the corresponding 2-lift.

Corollary 9 Let A be the adjacency matrix of a d-regular (γ(d), log n)-sparse G
graph on n vertices, where γ(d) = 10

√
d log d. Then there is a deterministic poly-

nomial time algorithm for finding a signing s of G such that the following hold:

1. The spectral radius of As is O(
√

d log3 d).

2. Ĝ is (γ(d), 1 + log n)-sparse,

where As is the signed adjacency matrix, and Ĝ is the corresponding 2-lift.
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A converse to the Expander Mixing Lemma
There are several approaches to expansion in graphs. A combinatorial definition
says that a d-regular graph on n vertices is an (n, d, c)-vertex expander if every set
of vertices, W , of size at most n/2, has at least c|W | neighbors outside itself. An
algebraic definition says that such a graph is an (n, d, λ)-expander if all eigenvalues
but the largest are, in absolute value, at most λ.
The two notions are closely related. For example, it is known (cf. [2]) that an
(n, d, λ)-expander is also an (n, d, d−λ

2d )-vertex expander. Conversely, Alon shows in
[1] that an (n, d, c)-vertex expander is also an (n, d, d− c2

4+2c2 )-expander. Roughly,
these results show that one type of expansion implies the other. However, in all
such results one implication (from combinatorial to algebraic expansion) is much
weaker than the other.
For two subsets of vertices, S and T , let e(S, T ) denote the number of edges
between them. A very useful property of (n, d, λ)-expanders is known as the Ex-
pander Mixing Lemma (cf. [2]): For every two subsets of vertices, A and B, of an
(n, d, λ)-expander:

|e(A, B) − d|A||B|/n| ≤ λ
√

|A||B|.
Lemma 5 also implies a converse to this well known fact:

Corollary 10 Let G be a d-regular graph on n vertices. Suppose that for any
S, T ⊂ V (G), with S ∩ T = ∅

|e(S, T ) − |S||T |d
n

| ≤ α
√

|S||T |
Then all but the largest eigenvalue of G are bounded, in absolute value, by O(α(1+
log(d/α))).

It is known that for a random d-regular graph, w.h.p., the condition in Corollary
10 holds with α = O(

√
d) (cf. [3]). Hence, it follows from the corollary that w.h.p.,

such a graph is an (n, d, O(
√

d log d))-expander. While this result is weaker than
previous ones ([6, 5, 4]), the proof here is somewhat shorter and simpler.
Acknowledgments. We thank László Lovász for insightful discussions, and Efrat
Daom for help with computer simulations. We thank Eran Ofek for suggesting that
Corollary 10 might be used to bound the second eigenvalue of random d-regular
graphs.
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man and Shlomo Hoory.
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[3] Y. Bilu and S. Hoory. On codes and hypergraphs. To appear in European
Journal of Combinatorics.

[4] J. Friedman. A proof of alon’s second eigenvalue conjecture. manuscript.

[5] J. Friedman. On the second eigenvalue and random walks in random d-regular
graphs. Combinatorica, 11(4):331–362, 1991.

[6] J. Friedman, J. Kahn, and E. Szemeredi. On the second eigenvalue of random
regular graphs. In Proceedings of the twenty-first annual ACM symposium on
Theory of computing, pages 587–598. ACM Press, 1989.

Expected Length of the Longest Common Subsequence for Large
Alphabets

Jiř́ı Matoušek

(joint work with Marcos Kiwi and Martin Loebl)

We investigate the distribution of the length L of the longest common subse-
quence of two randomly uniformly and independently chosen n character words
u = u1u2 . . . un and v = v1v2 . . . vn over a k-ary alphabet. That is, L is the maxi-
mum integer such that there exist indices i1 < i2 < · · · < iL and j1 < j2 < · · · < jL

with uiq = vjq , q = 1, 2, . . . , L. This problem has emerged more or less indepen-
dently in several remarkably disparate areas, including the comparison of versions
of computer programs, cryptographic snooping, and molecular biology. An ex-
tended abstract of this work appears in Proc. 6th Latin American Theoretical
Informatics Symposium (LATIN 2004), LNCS series, Springer, Berlin. A full ver-
sion is available at the web page of the author.

By a well-known subadditivity argument, E [L] /n converges to a constant γk.
The value of γk is not known for any particular value of k, although much effort
has been spent in finding good upper an lower bounds for it (see, for example, [2]
and references therein).

We analyze the behavior of γk for k → ∞, and more generally, we consider
the expectation of L when k is an (arbitrarily slowly growing) function of n and
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n → ∞. In particular, we prove a conjecture of Sankoff and Mainville from the
early 80’s [7] stating that

lim
k→∞

γk

√
k = 2. (1)

(See [6, § 6.8] for a discussion of work on lower and upper bounds on γk as well as
a stronger version, due to Arratia and Steele, of the above stated conjecture.)

The constant 2 in (1) arises from a connection with another celebrated prob-
lem, the distribution of LISN , the length of the longest increasing subsequence
in a (uniform) random permutation of {1, 2, .., N}. Hammersley [4] proved the
existence of β = limN→∞(E [LISN ] /

√
N) and conjectured that β = 2. Later,

Logan and Shepp [5], based on a result by Schensted [8], proved β ≤ 2, and fi-
nally, Vershik and Kerov [10] showed β = 2. In a major recent breakthrough Baik,
Deift, Johansson [3] described explicitly the asymptotic distribution of LISN (for
N → ∞). For a detailed account of these results, history, and related work we can
recommend the surveys of Aldous and Diaconis [1] and Stanley [9]; the methods
used in attacking this problem are of remarkable beauty and diversity.

Our main result about the longest common subsequence can be stated as fol-
lows.

Theorem 1 For every ε > 0 there exist k0 and C such that for all k > k0 and all
n with n/

√
k > C we have

(1 − ε) · 2n√
k

≤ E [L] ≤ (1 + ε) · 2n√
k

where, as above, L is the length of the longest common subsequence of two random
words of length n over an alphabet of size k. Moreover, there is an exponentially
small tail bound; namely, for every ε > 0 there exists c > 0 such that for k and n
as above,

P
[∣∣∣∣L − 2n√

k

∣∣∣∣ ≥ ε
2n√

k

]
≤ e−cn/

√
k.

In the rest of this extended abstract, we outline the main tools and ideas of
the proof, referring to the full version for precise formulations and further details.

First we reformulate the problem a little. Given the two random words u =
u1u2 . . . un and v = v1v2 . . . vn, let us draw two horizontal lines in the plane and
place n points a1, a2, . . . , an in this order on the top line and n points b1, b2, . . . , bn

in this order on the bottom line. Then we connect ai to bj by an edge (straight
segment) iff ui = vj , obtaining a drawing of a bipartite graph G (which is a disjoint
union of complete bipartite graphs). A common subsequence of the words u and v
corresponds to a planar matching in G (a matching in which no two edges cross).

Although we want to deal mainly with the case of n arbitrarily large compared
to k, which is the situation in the Sankoff–Mainville conjecture, we first consider
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a seemingly opposite setting: when k is large and n is also large but considerably
smaller than n. For definiteness, we set n = k0.7. Then we expect G to have
about n2/k = k0.4 edges, and most of these edges connect vertices of degree
1. If we let G′ be the subgraph of G obtained by deleting all edges incident
to vertices of degree greater than 1, then G′ is a matching (plus some isolated
vertices). The number N of edges of G′ is typically very close to k0.4. The
matching determines a permutation of {1, 2, . . . , N}, and by a symmetry argument,
it can be seen that, for a given N , all permutations of {1, 2, . . . , N} have the
same probability of being obtained in this way. Moreover, the longest increasing
subsequence of the permutation corresponds exactly to the largest planar matching
in G′. Therefore, up to a small error, the longest common subsequence of u and v
is distributed as LISN . Then one can derive from the known results about LISN

that E [L] = (2 + o(1))n/
√

k holds in this situation. For the rest of the proof,
we also need tail estimates for large deviations of L, and these are conveniently
obtained from Talagrand’s inequality applied to L (we cannot directly use known
tail estimates for LISN , for example because of the vertices of degree larger than
1 in G).

Now we consider n very large compared to k (and k still large). A lower bound
for E [L] is straightforward: We partition the words u and v into segments of length
k0.7 each, and we use the previously derived result separately for each block (the
ith block consists of the ith segment of the word u plus the ith segment of the
word v). Thus, the lower bound is provided by a common subsequence, or planar
matching in the graph language, that never crosses a block boundary.

An upper bound for E [L] is more demanding, since the largest planar matching
need not respect any partition into blocks fixed in advance; there could be “very
skew” edges. Our strategy is to simultaneously consider many different partitions
into blocks. The blocks have upper and lower segments of size about k0.7, but
they can be very skew; the segment of u starting at a position i can form a
block with a segment of v starting at position j, with i and j differing by a large
amount. Supposing that there is a planar matching with at least m = (1+ε)2n/

√
k

edges, it “fits” at least one of the block partitions, meaning that it respects its
block boundaries. For each fixed block partition and each fixed distribution of
the numbers of edges of the planar matching among the blocks, we bound above
the probability that there is a planar matching with m edges that fits that block
partition; this relies on independence among the blocks. Then we sum up over all
possible block partitions and show that with high probability, there is no planar
matching with m edges at all.
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On the Power of Two Choices in Continuous Time
Colin McDiarmid

(joint work with Malwina Luczak)

Balls-and-bins processes have been useful for analysing a wide range of prob-
lems, in discrete mathematics and computer science, and in particular for problems
which involve load sharing and resource balancing, see [8]. Here is one central re-
sult, from Azar, Broder, Karlin and Upfal (1994 [1],1999 [2]), concerning the ‘power
of two choices’. Let d be a fixed positive integer. Suppose that there are n bins,
and n balls arrive one after another: each ball picks d bins uniformly at random
and is placed in a least loaded of these bins. Then with probability tending to 1
as n → ∞ (aas), the maximum load of a bin is lnn/ln lnn + O(1) if d = 1, and is
ln lnn/ lnd + O(1) if d ≥ 2. Thus there is a dramatic drop when we move from 1
to 2 choices.

In some recent work, balls have been allowed to ‘die’ – see [2, 3, 9] – which is
of course desirable when modelling telephone calls. For example, suppose that we
start with n balls in n bins: at each time step, one ball is deleted uniformly at
random, and one new ball appears and is placed in one of d bins as before. It is
shown in [2] that as n → ∞, at any given time t ≥ cn2 ln lnn, aas the maximum
load of a bin is at most ln ln n/ lnd + O(1).

Let us consider here a simple and natural ‘immigration-death’ balls-and-bins
model in continuous time. Indeed let us consider two such models, one involving
bins and one involving queues, first the bins.

Let d be a fixed positive integer. Suppose that there are n bins. Balls arrive
in a Poisson process at rate λn, where λ > 0 is a constant. Upon arrival each ball
chooses d random bins (with replacement), and is placed into a least-loaded bin
among those chosen. (If there is more than one chosen bin with least load, the
ball is placed in the first such bin chosen.) Balls have independent exponential
lifetimes with unit mean.

Probabilists have proved various detailed weak-convergence results for such
models, see for example [4, 9, 10], but these results seem not to say anything
about quantities like the equilibrium maximum load. Using mainly combinatorial
methods, we can establish concentration results, which apply to the fraction of bins
with load at least k at time t; these concentration results may then be used to
analyse a balance equation involving these quantities. We are thus able to handle
random variables like the maximum load, over long periods of time. The system
mixes rapidly, so let us focus on the stationary behaviour. (In fact, it is because
the system mixes rapidly that we are able to prove our concentration results.)

Theorem 1 ([5]) Let d be a fixed positive integer, and suppose that the n-bin
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system is in the stationary distribution. Then there is an integer-valued function
m(n) such that aas the maximum load is m(n) or m(n)− 1: if d = 1 then m(n) =
(1 + o(1))ln n/ln lnn, and if d ≥ 2 then m(n) = ln lnn/lnd + O(1).

Now consider a second continuous-time model, the supermarket model. This is
as before except that now bins are replaced by queues, each with a single unit-rate
server, and λ < 1. There are similar results for this model.

Theorem 2 ([6]) Let d be a fixed positive integer, and suppose that the n-queue
system is in the stationary distribution. If d = 1, then aas the maximum queue
length is within ω(n) of ln n/ ln(1/λ), where ω(n) is any function tending to ∞),
and it is not concentrated on a bounded interval. If d ≥ 2 then there is an integer
valued function m(n) = ln lnn/lnd+O(1) such that aas the maximum queue length
is m(n) or m(n) − 1.

This is all joint work with Malwina Luczak. It arose from our endeavour to
establish rigorous continuous-time results for routing in networks analogous to the
discrete-time results in [7]. The ‘bins’ part of this work has recently been written
up, the queues part nearly so: results on routing will follow later.
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Homomorphism Duality: On Short Answers to Exponentially Long
Questions

Jaroslav Nešetřil

(joint work with Claude Tardif)

We give a new and more efficient construction of duals for general finite rela-
tional structures of a given type. We complement this by proving the superpoly-
nomial lower bound for the size of the dual core. This bound is achieved even for
duals of paths (i.e. for the type (2). This solves the main problem of [9].

Coloring problems belong to some of the central problems of combinatorics.
Perhaps being encouraged by applications (such as channel assignement problems
or Constraint Satisfaction type problems (CSP)) the recent revival of interest led
to the investigation of many variants and far reaching generalizations, see e.g.
[5, 3, 13]. The following problem captures both the difficulty and generality of
some of this development:

H-coloring problem
Instance: A graph G;
Question: Does there exists a homomorphism G −→ H .
Recall, that a homomorphism G −→ H is any mapping f : V (G) −→ V (H)

satisfying f(x)f(y) ∈ E(H) whenever xy ∈ E(G).
Thus for any complete graph H = Kk the H-coloring problem reduces to the

question whether the chromatic number χ(G) of graph G is ≤ k. All CSP-problems
may be expressed in a similar way as H-coloring problems for relational structures:

Let ∆ = (δi; i ∈ I) be a sequence of positive integers. A relational structure
of type ∆ (shortly ∆-structure) is a pair (X, (Ri; i ∈ I)) where X is a finite set
and Ri is a δi-nary relation on X (i.e. we have Ri ⊂ Xδi). Given a type ∆ and
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δ-systems A = (X, (Ri; i ∈ I)) and A′ = (X ′, (R′
i; i ∈ I)) a homomorphism is a

mapping f : X −→ X ′ satisfying for every i ∈ I

(f(x1), f(x2), . . . , f(xδi)) ∈ R′
i whenever (x1, x2, . . . , xδi) ∈ Ri.

Given a structure H of type ∆ we define the H-coloring problem in the complete
analogy to graphs (yes, despite using for ∆-systems symbols A, B and the like, we
still want to reserve H for the template of the coloring problem).

Viewing all this one expects that H-coloring problems are difficult to handle
and that such problems tend to be computationally hard. This is indeed the case
for undirected graphs. But for other types, and already for type (2) corresponding
to the directed graphs, the situation is very difficult and there are many polynomial
instances and the whole problem seems to be presently very difficult: there are
many polynomial instances and even more hard cases, see e.g.[3, 2, 1].

This paper is devoted to the study of polynomial instances of H-coloring prob-
lems. Among those perhaps the simplest are those coloring problems which can
be characterized by a simple obstruction set, by forbidden structures of a single
type. This is expressed by the notion of the (singleton) homomorphism duality:

We say that a pair (F, H) of ∆-structures is a dual pair if the following equiv-
alence holds for every ∆-structure A:

F �−→ A iff A −→ H.

The ∆-structure H is also called the dual of F and it is denoted by DF .
Note that up to homomorphism equivalence the dual DF is uniquelly determined.
One also sees easily that the only dual pair for undirected graphs (up to the
homomorphism equivalence) is the pair (K2, K1), see [8] where this notion was
first isolated. However one should not be discouraged by this as the richness of
dualities lies in relational structures. Already for directed graphs (i.e. the type
(2)) the duality pairs include pairs (Pk, Tk) where Pk is the monotone path of
length k (i.e. with k + 1 vertices) and Tk is the transitive tournament with k
vertices. One can see easily that these duality pairs correspond to the Hasse-
Galai-Roy theorem: an undirected graph G has chromatic number > k if and
only if every orientation of G contains a monotone path of length k. Dualities
represent a suprisingly rich scheme and many more dualities (and thus polynomial
instances of coloring problems) were found [6, 7, 11]. Finally [9] characterize
all homomorphism dualities (recall that a core of ∆ structure A is the minimal
structure which is homomorphism equivalent to A):

Theorem 1 For every type ∆ and for every ∆-tree T there exists a dual ∆-
structure DT . There are no other dual pairs.

Viewing the difficulty of the classification of polynomial instances of H-coloring
(already) for directed graphs it is perhaps surprising that one can achieve the full
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characterization of homomorphism dualities for general ∆-systems. The abun-
dance of polynomial instances leads to the question about the nature of dual
graphs. The proof given in [9] rests on some algebraic construction (such as the
graph exponentiation) and on the reformulation of dualities in terms of homomor-
phism partial order C (”gaps” in C). Thus dual structures DT are complicated
(and constructed indirectly) and their properties are non-trivial (and sometimes
surprising, [10]). Thus it is desirable to have simpler explicite construction. Such
a construction was provided in [11] for the case of directed graphs. This has been
recently used in [12] to prove that the construction of the dual DT is connected
appart from isolated vertices.

In this paper we give a new construction of the dual for a general type ∆. This
new construction is also more efficient: for a ∆-tree T with n vertices it produces
the dual DT of size 2n log(n) (as opposed to the double exponential bound which
follows from [9]).

We complement this by providing examples which yield superpolynomial lower
bound for cores of DT . This improves the result of [9] and solves the main open
problem left there. Perhaps surprisingly, in order to prove this lower bound we
use relational structures (for large ∆).

The super polynomial lower bound for the size of core duals can be interpreted
in the positive terms:

Corollary 2 There are directed core graphs H such that |V (H)| ≥ 2n, and for
every directed graph G, G is H-colorable if and only if every subgraph of G with
at most n log(n) vertices is H-colorable.

This an introduction to a paper by the same authors and the same title which
is being submitted. It is available electronically at ITI Series and KAM-DIMATIA
Series.
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Extremal Connectivity for Topological Cliques

Deryk Osthus

(joint work with Daniela Kühn)

Given a natural number s, let d(s) be the smallest number such that every
graph of average degree > d(s) contains a subdivision of the complete graph Ks

of order s. The existence of d(s) was proved by Mader [6]. As first observed by
Jung [3], the complete bipartite graph Kt,t with t := 	s2/8
 shows that d(s) ≥
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	s2/8
. Bollobás and Thomason [2] as well as Komlós and Szemerédi [4] showed
that s2 is the correct order of magnitude for d(s). More precisely, it is known that

(1 + o(1))
9s2

64
≤ d(s) ≤ (1 + o(1))

s2

2
. (1)

The upper bound is due to Komlós and Szemerédi [4]. As observed by �Luczak,
the lower bound is obtained by considering a random subgraph of a complete
bipartite graph with edge probability 3/4. It is widely believed that the lower
bound gives the correct constant, i.e. that random graphs provide the extremal
graphs. If true, this would mean that the situation is similar as for ordinary
minors. Indeed, Thomason [8] was recently able to prove that random graphs are
extremal for minors and Myers [7] showed that all extremal graphs are essentially
disjoint unions of pseudo-random graphs.

In [5] we showed that the lower bound in (1) is correct if we restrict our
attention to bipartite graphs whose connectivity is close to their average degree:

Theorem 1 Given s ∈ N, let cbip(s) denote the smallest number such that every
cbip(s)-connected bipartite graph contains a subdivision of Ks. Then

cbip(s) = (1 + o(1))
9s2

64
.

In Theorem 1 the condition of being bipartite can be weakened to being H-free
for some arbitrary but fixed 3-chromatic graph H . The proof of Theorem 1 builds
on results and methods of Komlós and Szemerédi [4]. For arbitrary graphs, the
best current upper bound on the extremal connectivity is the same as in (1). The
proof of Theorem 1 yields the following improvement [5].

Theorem 2 Given s ∈ N, let c(s) denote the smallest number such that every
c(s)-connected graph contains a subdivision of Ks. Then

(1 + o(1))
9s2

64
≤ c(s) ≤ (1 + o(1))

s2

4
.

The lower bounds in Theorems 1 and 2 are provided by the random bipartite
graphs mentioned above (since their connectivity is close to their average degree).
Thus at least in the case of highly connected bipartite graphs they are indeed
extremal.

By using methods as in the proof of Theorem 1, in [5] we also obtain a small
improvement for the constant in the upper bound in (1).

Theorem 3 Given s ∈ N, let d(s) denote the smallest number such that every
graph of average degree > d(s) contains a subdivision of Ks. Then

(1 + o(1))
9s2

64
≤ d(s) ≤ (1 + o(1))

10s2

23
.
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The example of �Luczak mentioned above only gives us extremal graphs for
Theorem 1 whose connectivity is about 3n/8, i.e. whose connectivity is rather
large compared to the order n of the graph. However, in [5] we showed that
there are also extremal graphs whose order is arbitrarily large compared to their
connectivity. In contrast to this, the situation for ordinary minors is quite different.
In general a connectivity of order s

√
log s is needed to force a Ks minor, but

the connectivity of the known extremal graphs is linear in their order. In fact,
confirming a conjecture of Thomason [9], Böhme, Kawarabayashi and Mohar [1]
proved that for all integers s there is an integer n0 = n0(s) such that every graph
of order at least n0 and connectivity at least 45s contains the complete graph
Ks as minor. Thus a linear connectivity suffices to force a Ks minor if we only
consider sufficiently large graphs.
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Constructions of Non-Principal Families in Extremal Hypergraph
Theory

Oleg Pikhurko
(joint work with Dhruv Mubayi)

Here, we prove the non-principality phenomenon for the classical extremal
problems for k-uniform hypergraphs. The main motivation is to study the quali-
tative difference between the cases k = 2, and k ≥ 3, and our results for the Turán
problem exhibit this difference.

Given a a family F of k-graphs, let ex(n,F) be the maximum size of an F -free
k-graph G on n vertices. Let π(F) be the limit of ex(n,F)/

(
n
k

)
as n → ∞. We

call π(F) the Turán density of F .
Mubayi and Rödl [11] conjectured that there is a family F of 3-graphs such

that
π(F) < min{π(F ) | F ∈ F}, (1)

and commented that the result should even hold for a family F of size two.
Balogh [1] proved the conjecture, calling this phenomenon the non-principality
of the Turán function. This is in sharp contrast with the case of graphs (k = 2)
where the Erdős-Stone-Simonovits Theorem [4, 2] applies.

However, Balogh’s family has many graphs. Here we show how the so-called
stability results lead to families F satisfying (1) and consisting of two k-graphs
only. This approach succeeds for all even k ≥ 4 and for k = 3, since it depends on
stability results which are known only in these cases.

Non-Principal Families of Size 2

To obtain the cone cn(F ) of a k-graph F , enlarge each edge of F by a new
common vertex x:

cn(F ) := {{x} ∪ D | D ∈ F}.
We call two order-n k-graphs F and G ε-close if we can make F isomorphic to

G by adding and removing at most ε
(
n
k

)
edges. A k-graph G is F -extremal if it

is a maximum F -free k-graph of order v(G). Let us call a k-graph F stable if any
F -free k-graph G of order n with at least (π(F ) − o(1))

(
n
k

)
edges is o(1)-close to

an F -extremal k-graph.

Lemma 1 Let F be a stable k-graph. Suppose that we can find a k-graph H of
order h such that π(H) ≥ π(F ) and any F -extremal k-graph of order n contains
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Ω(nh) copies of H. Then

π({F, H}) < min(π(F ), π(H)). (2)

Proof. Suppose on the contrary that π({F, H}) ≥ π(F ). Then there is an {F, H}-
free k-graph G of order n and size (π(F ) − o(1))

(
n
k

)
. Since F is stable, G is

o(1)-close to an F -extremal k-graph G′. By hypothesis, G′ contains Ω(nh) copies
of H . But each edge belongs to O(nh−k) H-subgraphs, so we cannot destroy all
of them by removing o(nk) edges. This is a contradiction to G �⊂ H .

Theorem 2 For even k ≥ 4 and for k = 3 there are k-graphs F and H satisfy-
ing (2).

Proof. Let k = 2l be even. Let F = {A ∪ B, A ∪ C, B ∪ C}, where A, B, C
are disjoint l-sets. Frankl [5] showed that π(F ) = 1

2 . Keevash and Sudakov [9,
Theorem 3.4] showed that F is stable. Every extremal k-graph G′ for F on n ≥ n0

vertices has vertex partition X ∪ Y , |X | ≈ |Y | ≈ n
2 , and consists of all edges

intersecting X (and also Y ) in an odd number of vertices.
Let us take H = cn(Kk−1

m ) where m = m(k) is a sufficiently large integer to
satisfy k!

mk

(
m
k

)
> 1

2 . The latter implies that π(H) > 1
2 , because the blown-up

Kk
m does not contain H . As G′ contains (2 + o(1)) n

2

(
n/2
m

)
copies of H , Lemma 1

implies that the family {F, H} has the required properties.
For k = 3 we can use the stability result either for the Fano plane, (established

independently by Füredi and Simonovits [7] and by Keevash and Sudakov [8]), or
for F3,2, established by Füredi, Pikhurko, and Simonovits [6]. In both cases we
can take H = cn(K2

m) for some sufficiently large m.

Concluding Remarks

For the case of odd k ≥ 5, we can build upon the ideas in [1] and construct
a non-principal k-graph family F for every k ≥ 3, see [10]. The obtained family
consists of finitely many k-graphs; however, this approach does not seem to give
|F| = 2.

One can also consider the Ramsey-Turán density ρ(F) where in addition to
being F -free we require that the maximum size of an independent set of G is o(n).
(This problem was introduced by Erdős and Sós [3].) One can show that for k ≥ 3
if F is a non-principal k-graph family with respect to the Turán density then F(2)
is non-principal with respect to the Ramsey-Turán density, see [10]. Here F(2) is
obtained by blowing-up each member of F by factor of 2.

Curiously, the situation with graphs remains open.
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Problem 3 Do there exist 2-graphs G1, G2 for which

ρ({G1, G2}) < min{ρ(G1), ρ(G2)}?

What about if we require ρ({G1, G2}) > 0 as well?
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The Phase Transition in the Uniformly Grown Random Graph has
Infinite Order

Oliver Riordan
(joint work with Béla Bollobás and Svante Janson)

The emergence of a giant component is one of the most frequently studied
phenomena in the theory of random graphs. Much of the interest is due to the fact
that a giant component in a finite graph corresponds to an infinite component, or
‘infinite cluster’, in percolation on an infinite graph. In fact, it can be argued that it
is more important and more difficult to study detailed properties of the emergence
of the giant component than to study the corresponding infinite percolation near
the critical probability.

The quintessential example of the emergence of a giant component is in the
classical random graph model Gn,p, the graph with vertex set {1, 2, . . . , n} in
which each pair of vertices is joined with probability p, independently of all other
pairs. Let us say that an event holds with high probability (whp), if it holds with
probability tending to 1 as n → ∞. In 1960, Erdős and Rényi [7, 8] showed that
the critical probability for Gn,p is 1/n: if c < 1 is a constant then whp the largest
component of Gn,c/n has O(log n) vertices, while there is a function θ(c) > 0 such
that for constant c > 1, whp Gn,c/n has a component of order (θ(c) + o(1))n, and
no other component of order larger than O(log n). The proper ‘window’ of the
phase transition was found much later by Bollobás [1] and �Luczak [10]. In Gn,c/n

the giant component emerges rather rapidly: the right-derivative of θ(c) at c = 1
is 2; this makes the study of the phenomenon manageable.

Our task here is considerably harder, since in the model we shall study the giant
component emerges much more slowly. Our model, Gn(c), is the finite version of
a model first proposed by Dubins in 1984 (see [9, 11]): it is parametrized by
n, the number of vertices, and a constant c > 0 to which edge probabilities are
proportional, just as for Gn,c/n. It can be read out of results of Kalikow and
Weiss [9] and Shepp [11] that there is a critical value c = 1/4 above which a giant
component is present. In Gn(c), the transition from having no giant component
to having a giant component is rather tantalizing, since it is very slow indeed. It
turns out that for any c less than 1/4, whp the largest component of Gn(c) already
contains nΘ(1) vertices, which is much larger than the O(log n) we have in Gn,a/n,
a < 1. For c > 1/4, whp there is a giant component of order proportional to n,
and the other components are small. In fact, there is a function φ(c), equal to 0 for
c ≤ 1/4 but positive for c > 1/4, such that whp the largest component of Gn(c)
has order (φ(c) + o(1))n. However, rather than having positive right-derivative
at the critical point, in this case (if the derivatives exist) every derivative of φ(c)
at c = 1/4 is zero. This phenomenon is often called a phase transition of infinite



74 Oberwolfach Report 1/2004

order. Somewhat surprisingly, in spite of this extremely gentle growth of the giant
component, we can give good bounds on φ(c) from above and below, showing, in
particular, that φ(1/4 + ε) = o(εk) for every k.

A somewhat similar, although less surprising, phenomenon was studied in [2],
where for a different model it was shown that for every positive value of the
appropriate parameter c there is a giant component, but its normalized size has
all derivatives zero at c = 0. Nevertheless, a gentle increase at the very beginning
is considerably less suprising than a ‘sudden’ gentle increase in a function which
is zero up to some positive value.

Turning to the model, in [3], Callaway, Hopcroft, Kleinberg, Newman and
Strogatz introduced a simple new model (which we shall call the CHKNS model)
for random graphs growing in time. They gave heuristic arguments to find the
critical point for the percolation phase transition in this graph, and numerical
results (from integrating an equation, rather than just simulating the graph) to
suggest that this transition has infinite order. Heuristic arguments for an infinite
order phase transition in this and other models have been given by Dorogovtsev,
Mendes and Samukhin [4].

Here we consider an even simpler and more natural model, the uniformly grown
random graph, or ‘1/j-graph’. This is the finite version of a model proposed by
Dubins in 1984. We define the 1/j-graph G

1/j
n as the random graph on {1, 2, . . . , n}

in which each pair i < j of vertices is joined independently with probability 1/j.
We may think of Gn = G

1/j
n as a graph growing in time, where each vertex joins to

a set of earlier vertices chosen uniformly at random, the set itself having a random
size, which is essentially Poisson with mean 1. We study the random subgraph
Gn(c) of Gn obtained by selecting edges independently with probability c < 1. Of
course, Gn(c) can be defined directly by specifying that each pair i < j is joined
independently with probability c/j. With this definition, values of c greater than
one make sense, provided we replace c/j by max{c/j, 1}.

Kalikow and Weiss [9] showed that for c < 1/4 the infinite version G∞(c)
of Gn(c) is disconnected with probability one. It is implicit in their work that
whp the largest component in the finite graph Gn(c), c < 1/4, has order o(n).
In the other direction, Shepp [11] showed that for c > 1/4, G∞(c) is connected
with probability 1; his proof involved showing that Gn(c) has a component of
order Θ(n) with probability bounded away from zero. Hence, the threshold for
the emergence of a giant component in Gn(c) is at c = 1/4. A similar result for a
considerably more general model was proved by Durrett and Kesten [6].

Here we study the size of the giant component above the threshold, showing
that the giant component emerges very slowly.

Theorem 1 There is a function φ(c) such that as n → ∞ with c ≥ 0 fixed, whp
the largest component of G

1/j
n (c) contains (φ(c) + o(1))n vertices.
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Furthermore, φ(c) = 0 for c ≤ 1/4, and

φ(c) = exp

(
− π + o(1)

2
√

c − 1/4

)

as c tends to 1/4 from above.

In particular, φ(1/4 + ε) = o(εk) for any k, and the phase transition is of
‘infinite order’.

Although we work with the 1/j-graph, as it has a simpler and more natural
static description, all our results carry over to the CHKNS model. As pointed
out independently by Durrett [5], this is also true of the earlier threshold results,
which predate the CHKNS model by 10 years!
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[8] P. Erdős and A. Rényi, On the evolution of random graphs, Bull. Inst. Internat.
Statist. 38, 343–347, (1961).



76 Oberwolfach Report 1/2004

[9] S. Kalikow and B. Weiss, When are random graphs connected?, Israel J. Math.
62 (1988), 257–268.

[10] T. �Luczak, Component behavior near the critical point of the random graph
process, Random Structures and Algorithms 1, 287–310 (1990).

[11] L.A. Shepp, Connectedness of certain random graphs. Israel J. Math. 67
(1989), 23–33.

The Regularity Method for k-uniform Hypergraphs
Vojtěch Rödl

(joint work with Brendan Nagle, Mathias Schacht and Jozef Skokan)

The Regularity Lemma of Szemerédi [20], proved to be a powerful tool in
Combinatorics. This lemma states that all sufficiently large graphs can be ap-
proximated, in some sense, by random graphs. Since “random-like” graphs are
often easier to handle than arbitrary graphs, the Regularity Lemma is especially
useful in situations when the problem in question is easier to prove for random
graphs.

Let G = (V, E) be a graph and A, B ⊆ V be a pair of disjoint sets of vertices
of G. Denote by e(A, B) the number of edges of G between A and B. The density
of the pair (A, B) is defined by d(A, B) = e(A, B)/(|A||B|). The pair is called
ε-regular if for any A′ ⊆ A, B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have
|d(A, B) − d(A′, B′)| < ε.

Theorem 1 (Szemerédi’s Regularity Lemma) For every ε > 0 there exist
a T0 such that the vertex set V (G) of any graph G can be partitioned into t ≤ T0

classes V (G) = V1 ∪ · · · ∪ Vt, so that all but εt2 pairs (Vi, Vj) are ε-regular.

Many applications of the Regularity Lemma are based on its accompanying
Counting Lemma (see, e.g., [9, 10] for a survey).

Theorem 2 (Counting Lemma) If G is an 	-partite graph with V (G) = V1 ∪
· · · ∪ V� and |Vi| = n for all i ∈ [	], and all pairs (Vi, Vj) are ε-regular of density d

for 1 ≤ i < j ≤ 	, then G contains (1±f�(ε))d(�
2)×n� cliques K� of order 	, where

f�(ε) → 0 as ε → 0.

We discuss a generalization of Szemerédi’s Regularity Lemma from graphs to k-
uniform hypergraphs, which allows us to prove an accompanying Counting Lemma.
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Unlike for graphs, there are several “natural ways” to define “regularity” for k-
uniform hypergraphs. Consequently, various forms of a Regularity Lemma for
hypergraphs have been already considered in [1, 2, 4, 6, 13]. None of these Regu-
larity Lemmas seemed to admit a companion counting result (i.e., a corresponding
generalization of Theorem 2). The first attempt of developing a Hypergraph Reg-
ularity Lemma with a corresponding Counting Lemma was undertaken by Frankl
and the speaker in [5] for 3-uniform hypergraphs. Recently, the speaker in collab-
oration with Skokan [17] established a generalization of this Regularity Lemma to
k-uniform hypergraphs for any k ≥ 3.

Analogously to the feature that Szemerédi’s Regularity Lemma decomposes
a given graph into an ε-regular partition, this Hypergraph Regularity Lemma
decomposes the edge set of a given k-uniform hypergraph into constantly many
“blocks”, almost all of which are, in a specific sense, “quasi-random”. The concept
of hypergraph regularity which plays the analogous role of the ε-regular pair is,
unfortunately, considerably more technical than its graph counterpart, and we
cannot give the precise definitions here.

Just as Theorem 2, the Counting Lemma, is an important companion statement
to Szemerédi’s Regularity Lemma, most applications of the Hypergraph Regularity
Lemma from [17] require a similar companion lemma - the “general Counting
Lemma”. Analogously to Theorem 2, the general Counting Lemma estimates the
number of copies of the clique K

(k)
� (i.e., the complete k-uniform hypergraph on

	 vertices) contained in an appropriate collection of “dense and regular blocks”
within a regular partition provided by the Hypergraph Regularity Lemma. Such
a Counting Lemma was established for special cases (k = 3, 	 > 3 and k = 4,
	 = 5) in [5, 11, 16]. Recently, in [12] Nagle, Schacht and the speaker, succeeded
to prove the general Counting Lemma for any 	 > k ≥ 2, reducing it to an earlier
result from [8]. This Counting Lemma together with the Hyergraph Regularity
Lemma of [17] can be viewed as a generalization of the Regularity Method from
graphs to uniform hypergraphs. A similar extension was independently obtained
by Gowers [7].

These generalizations can be applied to several extremal hypergraph problems.
In particular, answering a question of Erdős, Frankl, and speaker [3], we proved
the following theorem in [15]

Theorem 3 Suppose an n-vertex k-uniform hypergraph H contains only o(n�)
copies of K

(k)
� . Then one can delete o(nk) edges of H to make it K

(k)
� -free.

It is known that this theorem can be used to give an alternative proof the
well-known Density Theorem of Szemerédi regarding the upper density of sets
containing no arithmetic progression of fixed length (see [5, 15]). Moreover, it can
also be used to derive combinatorial proofs to some of the density theorems of
Furstenberg and Katznelson (see [7, 14, 18]).
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[15] V. Rödl and J. Skokan, Applications of the regularity lemma for uniform
hypergraphs, manuscript.

[16] , Counting subgraphs in quasi-random 4-uniform hypergraphs, submit-
ted.



Combinatorics 79

[17] , Regularity lemma for k-uniform hypergraphs, to appear in Random
Structures Algorithms.

[18] J. Solymosi, Note on a question of Erdős and Graham, to appear in Combin.
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Graph Parameters and Reflection Positivity
Alexander Schrijver

(joint work with Michael H. Freedman and László Lovász [1])

We characterize which real-valued (undirected) graph parameters are of the
following type, where H is a graph and α : V H → R+ and β : EH → R:

fH,α,β(G) :=
∑

φ:V G→V H
φ homomorphism

(
∏

v∈V G

αφ(v))(
∏

uv∈EG

βφ(u)φ(v)). (1)

Here φ : V G → V H is a homomorphism if φ(u)φ(v) ∈ EH for all uv ∈ EG. (So if
φ(u) = φ(v), then H has a loop at φ(u).) To reduce technicalities, it has turned
out to be convenient to assume that G has no loops but may have multiple edges,
while H has no multiple edges but may have loops.

Several graph parameters are indeed of this type. A first example of such a
parameter is f(G) := the number of k-vertex-colourings of G (for some fixed k).
Then we can take H = Kk (the complete loopless graph on k vertices), and α and
β the all-one functions on V G and EG respectively. More generally, by taking
any graph H and α ≡ 1 and β ≡ 1, f(G) counts the number of homomorphism
of G into H . By taking H to be a two-vertex graph with one edge connecting the
two vertices and a loop at one of the two vertices, f(G) then counts the number
of stable sets of G.

Other examples are given by the partition functions of several models in sta-
tistical mechanics. Then H can be taken to be a complete graph with all loops
attached, and V H is interpreted as the set of states certain elements of a system
G can adopt. The function β : EH → R describes the energy of the interaction
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of two neighbouring states, while α : V H → R+ can be the external energy of the
different states, or, alternatively, if

∑
v∈V H αv = 1, αv may be the probability that

an element is in state v. Then any function φ : V G → V H is a configuration of
system G, and fH,α,β(G) is the total or average energy of the system. (A different
interpretation of this model is in economics, where β gives the profit or cost of
certain interactions, and fH,α,β gives the expected profit or cost.)

It will follow from our theorem (but also a direct construction based on charac-
ters can be made) that also the following graph parameters are of the type above.
Let Γ be a finite abelian group and let S be a subset of Γ with −S = S (i.e.,
−s ∈ S if s ∈ S). For any graph G, fix an arbitrary orientation. Call a function
x : EG → Γ an S-flow if all values of x are in S and x satisfies the flow conserva-
tion law at each vertex v of G: the inflow is equal to the outflow. Let f(G) be the
number of S-flows. (Since −S = S, this number is independent of the orientation
chosen.) A well-known example is when Γ is the cyclic group with k elements and
S = Γ \ {0}. Then an S-flow corresponds to a nowhere-zero k-flow, and Tutte’s
nowhere-zero 5-flow conjecture says that f(G) > 0 if k = 5 and G has no bridges.
(It can be shown that for the case of nowhere-zero k-flows, we can take for H the
complete graph on k vertices with all loops attached, and set α(v) = 1/k for each
v ∈ V H , β(e) = k − 1 for each nonloop edge e of H , and β(e) = −1 for each loop
e of H .)

The question of characterizing the graph parameters of form (1) is motivated,
among others, by the question of the physical realizability of certain graph param-
eters. It turns out that two conditions on certain matrices derived from the graph
parameter are necessary and sufficient: restricted (namely exponential) growth
of the ranks and positive semidefiniteness — a condition that corresponds to the
well-known reflection positivity in statistical mechanics.

These matrices are described as follows. For any integer k ≥ 0, let Gk be the
set of graphs in which k of the vertices are labeled 1, . . . , k, while the remaining
vertices are unlabeled. For G, G′ ∈ Gk, let GG′ denote the graph obtained by first
taking the disjoint sum of G and G′, and next identifying equally labeled vertices.
(So GG′ has |V G| + |V G′| − k vertices.) For any graph parameter f , let Mf,k be
the (infinite) Gk × Gk matrix whose entry in position G, G′ is equal to f(GG′).

Then for any graph parameter f (where K0 is the graph with no vertices and
edges):

Theorem 1 There exist H, α : V H → R+ and β : EH → R such that f = fH,α,β

if and only if f(K0) = 1 and there exists a c such that each Mf,k is positive
semidefinite and has degree at most ck.

Necessity can be shown rather straightforwardly. The method for proving
sufficiency is based on considering each Gk as a semigroup (taking GG′ above as
multiplication), making the semigroup algebra over Gk, and taking the quotient
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algebra over the null-space of Mf,k, thus obtaining a finite-dimensional Banach
algebra, which has a basis of idempotents. The interaction of the idempotents
between these algebras for different values of k gives us the combinatorics to find
H and the functions α and β.

Extension of this method gives similar results for directed graph and hyper-
graph parameters, and more generally for any parameter for systems that have a
certain semigroup structure.
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Claw-free Graphs

Paul Seymour
(joint work with Maria Chudnovsky)

A graph is claw-free if no induced subgraph is isomorphic to the complete
bipartite graph K1,3. We give a structural description of all claw-free graphs with
the additional property that every vertex is in a 3-vertex stable set.

One way to formulate our result is that, for every claw-free graph G, either G
belongs to one of (about ten) well-understood basic classes of graphs, or G admits
one of (about five) types of decomposition, or some vertex is not in a stable set
of size 3. Having proved that, we can stand back and ask, what does this tell us
about the “global structure” of G? And there is indeed a “structure theorem”,
but we are still working on its precise formulation, and for this abstract we confine
ourselves to the decomposition theorem.

First, here are a few kinds of claw-free graphs.

• Line graphs. If H is a graph, its line graph L(H) is the graph with vertex
set E(H), in which distinct e, f ∈ E(H) are adjacent if and only if they have
a common end in H .

• The icosahedron. This is the unique planar graph with twelve vertices all
of degree five.

• The Schläfli graph. Let G be the graph with 27 vertices ai,j,k (1 ≤ i, j, k ≤
3), and with adjacency as follows. ai,j,k is adjacent to ai′,j′,k′ if and only if
either
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– k′ = k and either i′ = i or j′ = j, or

– k′ = k + 1 (mod 3) and j′ �= i, or

– k′ = k + 2 (mod 3) and i′ �= j.

• Circular interval graphs. Let Σ be a circle and let F1, . . . , Fk be subsets
of Σ, each homeomorphic to the closed interval [0, 1], and no three with union
Σ. Let V be a finite subset of Σ, and let G be the graph with vertex set V
in which v1, v2 ∈ V are adjacent if and only v1, v2 ∈ Fi for some i.

• XX-configurations. Let G be the graph with vertex set {v1, . . . , v13},
with adjacency as follows. v1- · · · -v6 is a hole in G of length 6. Next, v7

is adjacent to v1, v2; v8 is adjacent to v4, v5, and possibly to v7; v9 is ad-
jacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9; v11 is adjacent to
v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent
to v1, v2, v4, v5, v7, v8.

• An extension of L(K6). Let H be the graph with seven vertices h0, . . . , h6,
in which h1, . . . , h6 are pairwise adjacent and h0 is adjacent to h1. Let G
be the graph obtained from the line graph L(H) of H by adding one new
vertex, adjacent precisely to the members of V (L(H)) = E(H) that are not
incident with h1 in H .

• The graph of crosses. Let k ≥ 1. Let G have vertex set the union of
nine disjoint sets Ai,j (1 ≤ i, j ≤ 3), where A2,1,A2,3, A1,2,A3,2 all have
cardinality k, and the other five have cardinality 1. Let every vertex of Ai,j

be adjacent to every vertex of Ai′,j′ if either i = i′ or j = j′, and otherwise
let there be no edges between Ai,j and Ai′,j′ . Now we need to change the
adjacency between the four sets A2,1, A2,3, A1,2, A3,2. Order each of these
four sets. If u is the ith vertex of one of these four sets, say Aa,b, and v is
the jth vertex of another of these sets, say Ac,d, let u, v be adjacent if either

– i = j and a �= c and b �= d, or

– i �= j and either a = c or b = d.

• The path of triangles. Let G have vertices v1, . . . , vn with n odd, in which
for i < j, vi is adjacent to vj if either j − i = 1, or j − i = 2 and i is odd, or
j − i ≥ 3 and j − i = 2 mod 3.

For each of these types of graph, we regard the graphs of that type and all
their induced subgraphs as forming one of our basic classes. These are the nicest
of our classes; there are a few others, quite similar, that we omit. (We shall not
attempt a precise statement of the theorem here.)
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Next, decompositions. Two subsets X, Y of V (G) with X∩Y = ∅ are complete
to each other if every vertex of X is adjacent to every vertex of Y , and anticomplete
if no vertex in X is adjacent to a member of Y .

Distinct vertices u, v of G are twins (in G) if they are adjacent and have ex-
actly the same neighbours in V (G) \ {u, v}. Admitting twins is the first of our
decompositions.

Now let A, B be disjoint subsets of V (G). The pair (A, B) is called a homoge-
neous pair of cliques if

• A, B are both cliques

• every vertex v ∈ V (G) \ (A∪B) is either A-complete or A-anticomplete and
either B-complete or B-anticomplete, and

• A is neither complete nor anticomplete to B.

The third kind of decomposition is a 1-join. Suppose that V1, V2 partition
V (G), and for i = 1, 2 there is a subset Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a clique, and Ai, Vi \ Ai are both nonempty

• A1 is complete to A2

• every edge between V1 and V2 is between A1 and A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for

i = 1, 2 there are subsets Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are cliques, Ai ∩Bi = ∅ and Ai, Bi and Vi \ (Ai ∪Bi) are
all nonempty

• A1 is complete to A2, and B1 is complete to B2, and there are no other edges
between V1 and V2, and

• V0 is a clique; and for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete
to Vi \ (Ai ∪ Bi).

We call the triple (V1, V0, V2) a 2-join. (This is closely related to, but not quite
the same as, what has been called a 2-join in other papers.)

The fifth and last decomposition is the following. Let (V1, V2) be a partition
of V (G), such that for i = 1, 2 there are cliques Ai, Bi, Ci ⊆ Vi with the following
properties:

• For i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi
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• V1 is complete to V2 except that there are no edges between A1 and A2,
between B1 and B2, and between C1 and C2.

• V1, V2 are both nonempty.

In these circumstances we say that G is a hex-join of G|V1 and G|V2. Note that if
G is expressible as a hex-join as above, then the sets A1 ∪B2, B1∪C2 and C1∪A2

are three cliques with union V (G), and consequently no graph G with α(G) > 3
admits a hex-join. (α(G) denotes the size of the largest stable set in G.)

Let us say a triad in G is a stable set of vertices with cardinality 3. Our main
theorem, then, says:

Theorem 1 For every connected claw-free graph in which every vertex belongs to
a triad, either G belongs to one of the basic classes, or G admits either twins, a
homogeneous pair of cliques, a 1-join, a 2-join or a hex-join.

It is convenient to break the proof (and indeed, the full statement of the theo-
rem) into four cases:

• α(G) ≥ 4

• α(G) ≤ 3, but there are four vertices so that only one pair of them is adjacent

• for every triad, every vertex not in X has exactly two neighbours in X , and
every vertex is in a triad

• for every triad, every vertex not in X has exactly two neighbours in X , and
some vertex is not in any triad.

In each case (except the fourth, where we have nothing to say), we have a result
that “either G belongs to a basic class or G admits a decomposition”, but the
basic classes and decompositions are different for different types. We omit further
details here. Some of these results are written in [1, 2].
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Paradoxical Decompositions and Growth Properties
Vera T. Sós

The theory of paradoxical decompositions arose in connection with the exis-
tence of non-Lebesgue measurable sets.

The non-existence of isometry-invariant finitely additive measure in R3 was
proved by Banach and Tarski (1924) [1] by means of paradoxical decomposition.
They proved that it is possible to partition the unit ball in R3 into finitely many
pieces and to rearrange them by rigid motions (using isometric transformations)
to form two unit balls. This “duplication”, this “paradoxical decomposition” of
the ball at first seems to be impossible.

The analysis of this surprising phenomenon led to the concept of amenable
groups introduced and studied first by von Neumann (1929) [10]. Since that time
the subject developed into a field which has importance beside analysis, group
theory and geometry in discrete mathematics and computer science (e.g., in the
theory of random walks, percolation, expanders).

The Hausdorff-Banach-Tarski paradoxical decompositions of the ball (or of the
sphere) in R

d exist for d = 3 (and also for d > 3), but do not exist for d = 1 and
d = 2.

Von Neumann discovered that these different phenomena are due to the dif-
ference between the isometry groups of R1, R2 and R3, the latter one is more
“rich”. He considered a general setting where the basic notions are the finitely
additive group invariant measure (or invariant mean) and the paradoxical groups
(or amenable groups=non-paradoxical groups).

The objective of the present talk is to give some illustrations and indications
of the wide range of topics which developed from the subject mentioned above,
providing some motivation of the particular problem considered in the paper of
Deuber, Simonovits and Sós [3] and some of its aftermath.

In the paper [3] - - for an arbitrary metric space the concept of wobbling trans-
formations (called more recently also bounded perturbation of the identity) is in-
troduced.

Definition. Let (X, d) be a metric space, A, B ⊆ X . A bijection f : A → B is
called a wobbling bijection if

sup
x∈A

d(x, f(x)) < ∞ .

A, B ⊆ X are called wobbling equivalent if there is a wobbling bijection f : A → B.
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Definition. The set A ⊆ X is called wobbling paradoxical if there is a decompo-
sition

A = A1 ∪ A2, A1 ∩ A2 = ∅
such that A, A1, A2 are pairwise wobbling equivalent.

In [3] wobbling paradoxicity is characterized by the following growth condition:
For A ⊂ X , k > 0 let Nk(A) denote the k-neighbourhood of A:

Nk(A) = {x ∈ X : d(x, A) ≤ k} .

Definition. The metric space (X, d) is doubling, if there is a k > 0 such that

|Nk(A)| ≥ 2|A|for every finiteA ⊂ X.

Theorem 1 Let (X, d) be a discrete and countable metric space. (X, d) is wobbling
paradoxical if and only if it is doubling.

In the lecture we surveyed the connection of wobbling paradoxicity to the
amenability of groups, to theory of random walks on graphs and groups and some
recent applications of the doubling property and wobbling paradoxicity.

A survey paper written jointly with Gábor Elek will appear in a Volume dedi-
cated to the memory of Walter Deuber.

For detailed information and references about the extremely wide area the
reader is referred to the excellent books like of Gromov [5], de la Harpe [6],
Lubotzky [9], Paterson[11], Wagon [13], Woess [14], and the many survey pa-
pers on these subjects, e.g., by Ceccherini-Silberstein, Grigorchuk and de la Harpe
[2], Laczkovich [7], [8], Thomassen and Woess [12].
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On the Sparse Regularity Lemma

Angelika Steger
(joint work with S. Gerke, Y. Kohayakawa, V. Rödl)

Over the last decades Szemerédi’s regularity lemma [17] has proven to be a very
powerful tool in modern graph theory. Roughly speaking, the regularity lemma
asserts that one can partition a graph G into a constant number of equal-size parts
in such a way that most parts are pairwise ε-regular; see [1, 2, 14] for the precise
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statement of Szemerédi’s regularity lemma and some applications. Unfortunately,
in its original setting it only gives nontrivial results for dense graphs, that is graphs
with Θ(n2) edges. In 1996 Kohayakawa [10] and independently Rödl introduced
a variant which holds for sparse graphs, provided they satisfy some additional
structural conditions (which essentially mean that the graph does not contain too
dense spots). However, using this sparse regularity lemma to prove extremal and
Ramsey type results similar to the known results in the dense case, requires an
additional key step, as �Luczak showed that one cannot directly generalise the
methods used for dense graphs to the sparse case, see [12]. The missing step has
been formulated as a conjecture by Kohayakawa, �Luczak and Rödl [11], see also
[12]. Over the last few years this conjecture has already attracted considerable
attention; see [9] and the references therein. One reason for the popularity of the
conjecture is its connection with Turán-type problems in random graphs: if the
K�LR conjecture is true for a graph H , then asymptotically almost surely (a.a.s.)
the number of edges in any H-free subgraph of a binomial random graph Gn,p is
at most ((1−1/(χ(H)−1)+ε)

(
n
2

)
p for any ε > 0 as long as p > C(ε, H)n−1/d2(H).

Here χ(H) denotes the chromatic number of H , and d2(H) denotes the 2-density
of H . Observe that the bound on the number of edges in an H-free subgraph is
essentially best possible since every graph G contains a (χ(H)−1)-partite subgraph
with (1− 1/(χ(H)− 1))|E(G)| edges. Also the result is not true for much smaller
p since then a.a.s. the number of copies of H in Gn.p is much smaller than the
number of edges; see [9].

This Turán-type result has been established in a series of papers for various
special cases, each requiring its own a tailor-made proof. It is now known when
H = K3 is a triangle [3], H is a cycle of arbitrary length [4, 7, 8], and when
H = K4 is the complete graph on four vertices [11]. If one only considers denser
random graphs, where p is about the square root of the conjectured value, then
the result is also known to be true for all complete graphs [13, 16].

In fact in their paper [11] Kohayakawa, �Luczak and Rödl not only proved the
Turán problem for H = K4, but also outlined a proof strategy based on the sparse
regularity lemma which would prove the Turán result for general graphs H , if one
could prove an equivalent of the well known embedding lemma for dense graphs
in the sparse context as well. They formulated this requirement as a conjecture
— the above mentioned K�LR-conjecture.

In the remainder of this abstract we first state the K�LR-conjecture precisely
and then report on recent achievements.

Definition 1 A bipartite graph B = (U
·∪W, E) is called (ε, p)-regular if for all

U ′ ⊆ U and W ′ ⊆ W with |U ′| ≥ εn and |W ′| ≥ εn,∣∣∣∣ |E(U ′, W ′)|
p · |U ′| · |W ′| −

|E(U, W )|
p · |U | · |W |

∣∣∣∣ ≤ ε.
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If instead all such U ′ ⊆ U W ′ ⊆ W just satisfy

|E(U ′, W ′)| ≥ p · λ · |U ′| · |W ′|

for some constant λ > 0 the graph B = (U
·∪W, E) is called (ε, p, λ)-lower regular.

Definition 2 Let H be a graph on l vertices. An l-partite graph G = (V1 ∪ . . . ∪
Vl, E) on l pairwise disjoint vertex sets Vi of size n each is called (H, n, m, ε)-
regular if the graph induced by Vi, Vj is (ε, m/n2)-regular whenever {i, j} ∈ E(H)
and there are no edges between Vi and Vj otherwise. The set of all (H, n, m, ε)-
regular graphs is denoted by S(H ; n, m, ε), and F(H ; n, m, ε) is the set of all graphs
in S(H ; n, m, ε) not containing H as a subgraph.

The K�LR-conjecture can now be formulated as follows.

Conjecture 3 Let H be an arbitrary graph and β > 0, then there exist positive
constants ε0, C, n0 such that

|F(H, n, m, ε)| < βm

(
n2

m

)e(H)

for all m ≥ Cn2−1/d2(H), n ≥ n0 and 0 < ε ≤ ε0, where d2(H) = max{ e(F )−1
v(F )−2 :

F ⊆ H, v(F ) > 2}.

Note that
(
n2

m

)e(H)
is the number of graphs which are “blow-ups” of H , and

it is not hard to see that it is also asymptotically equal to |S(H, n, m, ε)|, so the
conjecture asserts that only an exponentially small fraction βm of such graphs are
H-free. It was shown by �Luczak that |F(H, n, m; ε)| > 0 for some graphs H , see
[12] where �Luczak is quoted.

The conjecture is easily seen to be true for trees. It is also known to be true
for cycles [15] and for the complete graphs H = K4 and K5 on four respectively
five vertices [5, 6].

One of the key difficulties in the proof of the K�LR-conjecture is the fact that
for m = o(n2) the size of a neighbourhood of a vertex is on average o(n). The
definition of regularity, however, only deals with linear sized subsets and thus
regularity seem to be not inherited by subgraphs induced on the neighborhoods of
some vertices. Recently we were able to prove that nevertheless in the sparse case
a hereditary version holds as well.

Theorem 4 For all β, ε′, λ > 0 there exist ε, C > 0 such that for all (ε, p, λ)-

regular graphs B = (U
·∪W, E) the following holds. For all q ≥ C(λp)−1 there

exist at most βq
(|U|

q

)
sets Q ⊆ U such that (Q, W ) is not (ε′, p, λε′/32)-lower

regular.
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This lemma readily implies much shorter and elegant proofs of the results
known so far. It can also be used to prove the Turán result for H = K6 and,
hopefully, more general results in the near future.
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[13] Y. Kohayakawa, V. Rödl, and M. Schacht. The Turán Theorem for random
graphs. Combinatorics, Probability and Computing, accepted for publication.



Combinatorics 91

[14] J. Komlós and M.Simonovits. Szeméredi’s regularity lemma and its appli-
cation in graph theory (in Combinatorics - Paul Ersős is eighty, D. Miklós,
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Solving Extremal Problems Using Stability Theorems

Benjamin Sudakov
(joint work with P. Keevash and in part with N. Alon and J. Balog)

In this talk we discuss a ‘stability approach‘ for solving extremal problems.
Roughly speaking, it can be described as follows. In order to show that given
configuration is a unique optimum for an extremal problem, we first prove an
approximate structure theorem for all constructions whose value is close to the
optimum and then use this theorem to show that any imperfection in the structure
must lead to a suboptimal configuration. To illustrate this strategy, we use the
following results.

• Let Tk(n) be the Turán graph, i.e., the complete k partite graph on n vertices
with class sizes as equal as possible and denote by tk(n) the number of edges
in Tk(n). Then for k ≥ 2 and sufficiently large n every graph G on n vertices
has at most 2tk(n) distinct 2-edge colorings without a monochromatic clique
of size k + 1. Moreover the equality is only possible if G = Tk(n). This
settles a conjecture of Yuster. Our proof is based on Szemerédi’s regularity
lemma together with some additional tools in Extremal Graph Theory, and
provide one of the rare examples of a precise result proved by applying this
lemma.

• The Fano plane is a 3-uniform hypergraph with 7 triples on 7 vertices whose
edges correspond to the lines of the projective plane over the field with two
elements. We show that the maximum number of triples on n vertices not
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containing a copy of the Fano plane can be obtain by partitioning vertices
into two equal parts and taking all the triples which intersect both of them.
This confirms a conjecture of V. Sós from 1976 which was also independently
proved by Füredi and Simonovits.

• Let C(2k)
r be the 2k-uniform hypergraph obtained by letting P1, · · · , Pr be

pairwise disjoint sets of size k and taking as edges all sets Pi ∪Pj with i �= j.
This can be thought of as the ‘k-expansion’ of the complete graph Kr: each
vertex has been replaced with a set of size k. An example of a hypergraph
with vertex set V that does not contain C(2k)

3 can be obtained by partitioning
V = V1 ∪ V2 and taking as edges all sets of size 2k that intersect each of V1

and V2 in an odd number of elements. Let B(2k)
n denote a hypergraph on n

vertices obtained by this construction that has as many edges as possible.
We prove a conjecture of Frankl, which states that any hypergraph on n

vertices that contains no C(2k)
3 has at most as many edges as B(2k)

n .

Sidorenko has given an upper bound of r−2
r−1 for the Turán density of C(2k)

r

for any r, and a construction establishing a matching lower bound when
r is of the form 2p + 1. We also show that when r = 2p + 1, any C(4)

r -
free hypergraph of density r−2

r−1 − o(1) looks approximately like Sidorenko’s
construction. On the other hand, when r is not of this form, we show that
corresponding constructions do not exist and improve the upper bound on
the Turán density of C(4)

r to r−2
r−1 − c(r), where c(r) is a constant depending

only on r.

To prove these results we use the tools from extremal graph theory, linear
algebra, the Kruskal-Katona theorem and properties of Krawtchouck poly-
nomials.

All these results were obtained jointly with P. Keevash and the first one was
also obtained jointly with N. Alon and J. Balogh.

Canonical Colourings with Many Colours
Anusch Taraz

(joint work with B. Bollobás, Y. Kohayakawa, V. Rödl, M. Schacht)

Canonical colouring theorems state that, roughly spoken, every colouring of a
sufficiently large object exhibits a local pattern of a given size that is coloured in a
very regular way. From this point of view, partition theorems such as Ramsey’s or
van der Waerden’s theorem deal with the special case of colourings with a bounded
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numbers of colours and assert that here, the local pattern can be guaranteed to be
monochromatic. The topic of this talk, on the contrary, is to determine conditions
that ensure local spots which are rich in colours. Our objects of interest will be
both cliques in hypergraphs as well as arithmetic progressions on the integers.

Let us begin with arithmetic progressions. The classical theorem of van der
Waerden states that every colouring of the first n natural numbers with at most
t colours must contain a monochromatic k-term arithmetic progression, provided
that n is sufficiently large compared to t and k. If no restriction on the number of
colours is given, then the canonical colouring theorem by Erdős and Graham [2]
states that we must find a monochromatic k-AP or an injective k-AP; i.e. one
which uses pairwise distinct colours.

What condition could guarantee the latter of the two outcomes? It is not
enough to merely ask for the colouring to use many colours globally, as can be seen
by the following simple example. If 	 = 3i · r, where r isn’t divisible by 3, then
colour the number 	 with colour i. Obviously this colouring uses an unbounded
number of colours, but it is easy to see that not even an injective 3-AP will appear.
Thus we need a stronger requirement on the colourfulness.

Theorem 1 For every k ∈ N and for every ε > 0 there exist integers t and n0

such that for every n ≥ n0 every colouring γ : [n] → N with the property that

∀T ⊆ [n] with |T | ≥ (1 − ε)n : |γ(T )| > t

must contain an injective k-term arithmetic progression.

The proof of this theorem is in fact quite short, as it can be based on a quantita-
tive version [3] of Szemerédi’s famous density theorem for arithmetic progressions.
For graphs and hypergraphs such a density result does not hold and therefore the
situation becomes more difficult. Here we are considering colourings of E(Kr

n),
the edges of the complete r-uniform hypergraph on n vertices. For the sake of
a simpler exposition, we only mention the case r = 3 here. Given a family of
disjoint vertex sets V1, . . . , Vs, we say that two edges e, e′ ⊂ V1 ∪· · ·∪Vs are of the
same type if |e ∩ Vj | = |e′ ∩ Vj | for all j = 1, . . . , s. Generalizing the result in [1],
the following theorem asserts, roughly spoken, the existence of colourful canonical
colourings which may be 1-partite, 2-partite or 3-partite.

Theorem 2 For every k ∈ N and for every ε > 0 there exist integers t and n0

such that for every n ≥ n0 every colouring γ : E(K(3)
n ) → N with the property that

∀T ⊆ E(K(3)
n ) with |T | ≥ (1 − ε)

(
n

3

)
: |γ(T )| > t

must contain one of the following colourful canonical colourings:
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• there exists a set V1 and an index i ∈ {1, 2, 3} such that |V1| = k and so that
two edges contained in V1 receive the same colour only if their i-th vertices
in V1 are identical, or

• there exist sets V1, V2 and indices i ∈ {1, 2, 3} and j ∈ {1, 2} such that
|V1| = |V2| = k and so that two edges of the same type receive the same
colour only if their i-th vertices in Vj are identical, or

• there exist sets V1, V2, V3 and indices i ∈ {1, 2, 3} and j ∈ {1, 2, 3} such that
|V1| = |V2| = |V3| = k and so that two edges of the same type receive the
same colour only if their i-th vertices in Vj are identical.

As an application of this theorem we consider (	, H)-local colourings. For fixed
integer 	 and hypergraph H , a colouring of E(Kr

n) is said to be (	, H)-local, if
every copy of H in Kr

n is coloured with at most 	 different colours. Obviously, the
larger we choose 	, the more colours can appear in an (	, H)-local colouring. We
address two questions:

• Given H , what is the largest value of 	 such that the maximum number of
colours used by an (	, H)-local colouring is still bounded?

• Given H , what is the largest value of 	 such that the maximum number of
colours used by an (	, H)-local colouring is still essentially bounded?

Here the term essentially bounded means the following: for every ε > 0, the
colouring is such that after the removal of a suitably chosen ε-fraction of the edges,
the remaining edges only use a bounded number of colours.
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Chromatic Numbers of Triangle-free Graphs and their Complements
Carsten Thomassen

It is easy to see that triangle-free graphs may have large minimum degree. It
is also well-known that they may have arbitrarily large chromatic numbers. Can
these two phenomena happen simultaneously? Erdős and Simonovits asked in
1973 for which positive real numbers c, there exists a function f(c) such that the
following holds: If G is a triangle-free graph with n vertices and minimum degree
at least cn, then the chromatic number is at most f(c). (In other words, the
chromatic number is independent of the number of vertices of the graph). They
proved that f(c) does not exist for c < 1/3. I proved a few years ago that f(c)
exists for each c > 1/3. So only the case c = 1/3 remains open. S. Brandt has
conjectured that f(1/3) = 4.

Hajos’ conjecture says that every graph of chromatic number k contains a
subdivision of the complete graph on k vertices. The conjecture was disproved
by Catlin in 1979 for all k greater than 6. Kühn and Osthus have verified Hajos’
conjecture for graphs of girth greater than 100. The conjecture is open for triangle-
free graphs. I showed recently that, if a regular triangle-free graph has bipartite
edge-index greater than the number of vertices of the graph, then the complement
is a counterexample to Hajos’ conjecture. Thus, the complements of triangle-free
graphs provide a large class of interesting counterexamples, and it is conceivable
that some of these might be counterexamples to Hadwiger’s conjecture as well.
Searching for possible counterexamples, I tried to investigate the bipartite edge-
index of triangle-free graphs on a fixed surface, in particular the projective plane.
I found no natural graphs with a sufficiently large bipartite edge-index. Instead I
found some with a small bipartite edge-index solving two open problems stated in
Bollobas’ classical monograph ”Extremal Graph Theory” from 1978. One of the
problems, due to Erdős, involves the smallest possible bipartite edge-index g(n)
of a 4-color-critical graph on n vertices. Erdős asked if g(n) tends to infinity as n
tends to infinity. I showed that g(n) equals 3 or 4 for infinitely many n.

Dynamic Configuration of Optical Telecommunication Networks

Andreas Tuchscherer

We investigate methods for online call admission and routing and wavelength
assignment in optical telecommunication networks. On demand connections are
established by lightpaths which are optical channels that operate on one wave-
length and can pass several network links without any opto-electronic conversion.
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Definition 1 An optical network is a triple (G, Λ, W ), where

• G = (V, E) is a simple and undirected graph,

• Λ = {λ1, . . . , λk} is a set of wavelengths, and

• W : E → 2Λ is a map from E to the power set of Λ, where W (e) is the set
of wavelengths generally available on edge e.

A lightpath in the optical network (G, Λ, W ) is a pair (p, λ) which consists of a
path p in G together with a wavelength λ ∈ Λ such that λ ∈ W (e) for each edge
e ∈ E(p).

The Wavelength Division Multiplexing technique allows for using different wave-
lengths on one edge simultaneously. However, each wavelength on an edge cannot
be used by more than one lightpath at the same time.

Definition 2 (Wavelength conflict constraint) For each pair of simultane-
ously routed lightpaths (p1, λ1) and (p2, λ2) in an optical network (G, Λ, W ), we
have:

E(p1) ∩ E(p2) = ∅ or λ1 �= λ2.

A lightpath (p, λ) is called free if it can be realized without violating the wavelength
conflict constraint.

The considered problem can be formulated as follows.

Definition 3 (Dynamic Singleclass Call Admission Problem) An instance
of the Dynamic Singleclass Call Admission Problem (Dsca) is given by an opti-
cal network (G, Λ, W ), a time horizon T , and a sequence of connection requests
(σ1, σ2, . . .) with σj = (uj, vj , bj, tj , dj , pj), where

uj, vj ∈ V are the end nodes,
bj ∈ N is the number of required lightpaths,

tj ∈ [0, T ] is the start time,
dj ∈ R+ is the duration,
pj ∈ R+ is the profit.

The task is to maximize the total profit gained such that valid answers are given
to all connection requests. The answer for each σj must be given without knowl-
edge of calls with later start times and specifies whether the request is accepted or
rejected. If σj is accepted, it contributes pj to the total profit but requires that bj

lightpaths connecting uj and vj are realized in (G, Λ, W ) from tj until tj + dj. In
doing so, the wavelength conflict constraint must be satisfied all the time.
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Concerning the evaluation of online algorithms for the problem Dsca by com-
petitive analysis, the following negative result can easily be shown.

Theorem 4 ([Tuc03]) For the problem Dsca with dj = ∞ and pj = bj for each
request σj, the competitive ratio of each deterministic competitive algorithm is km,
where k denotes the number of wavelengths and m denotes the number of edges in
the optical network.

In the following, we report on the practical approach. The algorithms below
are evaluated by simulation. The greedy algorithms have originally been proposed
in [MA98]. We distinguish between two variants: partial wavelength search (pws)
and total wavelength search (tws).

pws: Let λi1 , . . . , λik
be some order on the set of wavelengths. If there is a

free [u, v]-lightpath, route a shortest one in wavelength λ, where λ is
the first wavelength in the order providing any free [u, v]-lightpath.

tws: Let λi1 , . . . , λik
be some order on the set of wavelengths. If there is

a free [u, v]-lightpath, route a shortest one in wavelength λ, where λ
is the first wavelength in the order providing a globally shortest free
[u, v]-lightpath.

Sorting the wavelengths in order of decreasing current availability (number
of edges where the wavelength can currently be used) turned out to yield the
best versions in partial and total wavelength search (see [Tuc03]). We denote the
corresponding algorithms by pack(p) and pack(t).

The second class of algorithms (network fitness algorithms) have been devel-
oped at Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) in a joint
project with T-Systems Nova GmbH.

fit: Let fit : S → R+ be some network fitness function, where S denotes
the set of all possible network states of (G, Λ, W ) (a network state
corresponds to a configuration of routed lightpaths). If there is a free
[u, v]-lightpath, route such a lightpath (p, λ) that the resulting state
S + (p, λ) yields a maximum fitness value.

We consider two network fitness algorithms called available-lightpaths-reduc-
tion (alr) and single-flow-reduction (sfr). While alr defines the fitness as the
total number of currently free lightpaths, the algorithm sfr defines the fitness as
the sum over all pairs of nodes s and t and each wavelength λ of the maximum
number of free edge-disjoint [s, t]-lightpaths in wavelength λ.

We have investigated by simulation the blocking probability (ratio of rejected
requests and appeared requests) depending on the traffic load (multiplex factor).
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Figure 2 depicts the results for the four presented algorithms in a setting with
randomly generated calls. It turns out that the total wavelength search version
pack(t) is superior to the partial wavelength search version pack(p) and produces
solutions with about the same quality as alr. The network fitness algorithm sfr

performs best.
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Figure 2: Results of selected algorithms in a 14-nodes network.
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On the Turán Number for the Hexagon
Jacques Verstraëte

(joint work with Zoltan Füredi and Assaf Naor)

One of the fundamental problems in extremal combinatorics is the determina-
tion of the maximum number of edges in a graph which contains no 2k-cycles. The
densest constructions of 2k-cycle-free graphs for certain small values of k arise from
the existence of rank two geometries called generalized k-gons, first introduced by
Tits [5]. These may be defined as rank two geometries whose bipartite incidence
graphs are r-regular graphs of diameter k and girth 2k, where r > 2 and k > 2,
and are known to exist only when k is three, four or six. This fact is an important
consequence of a fundamental theorem of Feit and Higman [3]. It is therefore of in-
terest to examine the extremal problem for quadrilaterals, hexagons, and cycles of
length ten. In these cases, Lazebnik, Ustimenko and Woldar [4] used the existence
of polarities of generalized polygons to construct dense 2k-cycle-free graphs.

Erdős and Simonovits [2] conjectured the asymptotic optimality of these graphs,
by conjecturing that the extremal number for the 2k-cycle is asymptotic to 1

2n1+1/k

as n tends to infinity. This was known to hold for quadrilaterals almost fifty years
ago, but was recently disproved in [4] for cycles of length ten. The only remaining
case allowed by the Feit-Higman theorem is the case of hexagons. In this paper,
we refute the Erdős-Simonovits conjecture for hexagons:

Theorem 1 For infinitely many positive integers n, there are n-vertex hexagon-
free graphs of size at least

3(
√

5 − 2)
(
√

5 − 1)4/3
n4/3 + O(n) ≈ 0.534n4/3.

On the other hand, every n-vertex hexagon-free graph has size at most λn4/3 +
O(n), where λ ≈ 0.627 is the real root of 16λ3 − 4λ2 + λ − 3 = 0.

The proof of Theorem 1 requires a statement about hexagon-free bipartite
graphs, which is interesting in its own right (see de Caen and Szekely [1]).

Theorem 2 Let m, n be positive integers. Then an m by n bipartite hexagon-free
graph has size at most 21/3(mn)2/3 + O(n). When m = 2n or n = 2m, there are
m by n bipartite graphs with 21/3(mn)2/3 + O(n) edges.
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Sharp Bounds on Long Arithmetic Progressions in Sumsets
V. H. Vu

(joint work with E. Szemerédi)

One of the main tasks of additive number theory is to examine structural
properties of sumsets. For a set A of integers, the sumset lA = A+ · · ·+A consists
of those numbers which can be represented as a sum of l elements of A. A closely
related notion is that of l∗A, which is the collection of numbers which can be
represented as a sum of l different elements of A. Among the most well-known
results in all mathematics are Vinogradov’s theorem which says that 3P (P is the
set of primes) contains all sufficiently large odd number and Waring’s conjecture
(proved by Hilbert, Hardy and Littlewood, Hua, and many others) which asserts
that for any given r, there is a number l such that l∗Nr (Nr denotes the set of
rth powers) contains all sufficiently large positive integers (see [16] for an excellent
exposition concerning these results).

In recent years, a considerable amount of attention has been paid to the study
of finite sumsets. For a finite set A, the natural analogue of Vinogadov-Waring
results is to show that under proper conditions, a finite set sumset lA (l∗A) contains
a long arithmetic progression.

Let us assume that A is a subset of the interval [n] = {1, . . . , n}, where n is
a large positive integer. The concrete problem we would like to talk about is to
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estimate the length of the longest arithmetic progression in lA (l∗A) as a function
of l, n and |A| (we are, of course, talking about the worst set A). This problem was
stated explicitly for the sumset lA in a survey of Freiman, but we notice that many
results had been proved earlier [1, 11, 12, 5]. We adapt a notation from Freiman’s
paper and denote by f(|A|, l, n) the minimum length of the longest arithmetic
progression in lA, where the minimum is taken over all sets A ⊂ [n] with |A|
elements (f∗(|A|, l, n) is defined similarly).

In this paper, we solve the problem completely for a wide range of l and |A|.
In fact, our method carries us far beyond our original aim of estimating f(|A|, l, n)
and f∗(|A|, l, n). We are able to show that lA and l∗A not only contain large
arithmetic progressions, but also large proper generalized arithmetic progressions.
Let us state the result for lA.

Theorem 1 For any fixed positive integer d there are positive constants C and c
depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying ld|A| ≥ Cn, lA contains an arithmetic progression
of length cl|A|1/d.

Corollary 2 For any fixed positive integer d there are positive constants C1, C2,
c1 and c2 depending on d and ε such that whenever C1n

ld
≤ |A| ≤ C2n

ld−1

c1l|A|1/d ≤ f(|A|, l, n) ≤ c2l|A|1/d.

Theorem 3 For any fixed positive integer d there are positive constants C and c
depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying ld|A| ≥ Cn, lA contains a proper GAP of rank d′

and volume at least cld
′|A|, for some d′ ≤ d.

The same results hold for l∗A. However the proofs are much more difficult
because of the assumption that the elements in a sum must be different. We can
also prove similar results for finite fields.

Our results have some interesting applications. In particular, we settle two
forty year old conjectures of Erdős [3] and Folkman [7] (respectively) concerning
infinite arithmetic progressions. Let us end this abstract with the statements of
these conjectures/theorems. For an infinite sequence of integers A, SA denotes the
collection of partial sums of A.

Theorem 4 Let A = a1 < a2 < . . . be a sequence of positive integers with density
at least Cn1/2, where C is a sufficiently large constant. Then SA contains an
infinite arithmetic progression.

This theorem was conjectured by Folkman in 1966 [7] and was a refined form
of an earlier conjecture by Erdős made in 1962 [3] (see also [4] and [10] for more
recent discussions).
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Theorem 5 Let A = a1 < a2 < . . . be a sequence of positive integers with density
at least Cn, where C is a sufficiently large constant. Then SA contains an infinite
arithmetic progression.

By the density of A, we mean the number of elements of A between 1 and n.
In the second theorem, this number may be large than A as we allow repetitions.
It is known since the sixties (see [2]) that both statements are sharp, up to the
constant C.

Most of the results discussed here appear in [14] and [15]. A related paper is
[13], in which an application of different kind is discussed.
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On Musin’s Proof for the Kissing Number in Dimensions 3 and 4

Günter M. Ziegler

The “kissing number problem” asks for the maximal number of white spheres
that can touch a black sphere of the same size in n-dimensional space. The answers
in dimensions one, two and three are classical, while the answers in dimensions
eight and twenty-four were a big surprise in 1979, based on an extremely elegant
method initiated by Philippe Delsarte in the early eighties.

However, despite the fact that in dimension four there is a really special con-
figuration which is conjectured optimal—the shortest vectors in the D4 lattice,
which are also the vertices of a regular 24-cell—it was even proved [1] that the
bounds given by Delsarte’s method aren’t good enough to solve the problem in
dimension four: This may explain the astonishment even to experts when last fall
Oleg Musin announced a solution (currently under review) of the problem, based
on a clever modification of Delsarte’s method [3, 4].

The purpose of my talk was to outline Musin’s new ideas. This started with a
short description of the classical approach, due to Delsarte, Goethals & Seidel [2]:
If f(t) =

∑
k ckG

(n)
k (t) is a non-negative combination of Gegenbauer polynomials

which satisfies f(t) ≤ 0 in the range t ∈ [−1, 1
2 ], then κ(n) ≤ f(1)/c0 is an upper

bound for the kissing number in dimension n. Musin’s modification is to require
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the condition f(t) ≤ 0 only in a range t ∈ [t0, 1
2 ] for some fixed t0 < − 1

2 , while
f(t) must be strictly monotonically decreasing in the range t ∈ [−1, t0]. This leads
to an upper bound on κ(n) in terms of some non-convex non-linear optimization
problems. Musin explains ideas that reduce the dimensions of these optimization
problems considerably. Apparently the problems are rather well-behaved, and can
be solved numerically.

Their solution not only yields κ(4) = 24, but it also gives us a systematic and
conceptual new proof for the Newton–Gregory problem, κ(3) = 12, which was first
resolved by Schütte and van der Waerden (1953).
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