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Introduction by the Organisers

The Statistics in Finance Workshop, organized by Richard A. Davis (Ft. Collins)
and Claudia Klüppelberg (Technische Universität München), was held January
11-17. This meeting was well attended with over 40 participants with broad geo-
graphic representation from Europe, England, Australia, the Far East, and the US.
This workshop was a nice blend of researchers with various backgrounds includ-
ing statistics, probability, and econometrics. Approximately 33 talks, of varying
lengths, were delivered during the five days. The talks were given by both leading
experts in the field as well as by up and coming stars.

There were several major themes in the various sessions. These included, con-
tinuous time models, Levy processes, stochastic volatility models, GARCH models,
extreme value theory with applications to financial risk, theory of copulas, and op-
tion pricing. This meeting generated a great deal of discussion and often smaller
groups of people met in the evenings for expanded and detailed lectures. A num-
ber of important research contacts were made which we fully expect to stimulate
many new collaborative research projects.

In addition to the excellent scientific program, there were two scheduled so-
cial activities. The inclement weather cleared up just in time for the traditional
Wednesday afternoon hike to Oberwolfach for coffee and Black Forest Cake. The
second activity, which most considered the highlight of the week, was a piano
recital performed by Peter Brockwell and Gernot Müller.

For many of the participants, this was their first trip to Oberwolfach, and they
came away very impressed from the experience. There was a strong consensus
that the “Statistics in Finance Workshop” should become a regular Oberwolfach
event.
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Abstracts

Continuous Time Stochastic Volatility Modelling
and Bipower Variation

Ole. E. Barndorff-Nielsen and Neil Shephard

The theory of semi-martingales and stochastic integration constitutes a powerful
and natural background for continuous time modelling of stochastic volatility, as
observed in financial time series. However, for the models to make financial sense
it is necessary to restrict somewhat from the completely general concept of semi-
martingales (SM). Recall that Y ∈ SM means that Y is of the form Y = A +M
where A ∈ FV and M ∈ Mloc. We wish to think of Y as the log price process
of a financial asset, with the process A expressing potential rewards and M the
risk. For this the decomposition of Y into the sum of A and M should be unique.
This is achieved by requiring A to be predictable (in which case Y is said to be a
special semi-martingale).

If we further assume that M is continuous, M ∈ SMc (below we comment
on alternative possibilities), then this has important consequences. First, if the
model Y is to be arbitrage free then A has also to be continuous, i.e. A ∈ FVc.
Further, by the Dambis-Dubins-Schwarz Theorem, M is then representable as a
time changed Brownian motion (BM). So M = B[M ] and B = MT where [M ] is
the quadratic variation of M and the time-change T is the inverse function of [M ].
(For this it is necessary that [M ]t → ∞ for t → ∞.) Thirdly, supposing that [M ] is
absolutely continuous, of the form [M ] =

∫ t

0 τudu, then, again by the no arbitrage
requirement, A must also be absolutely continuous, A =

∫ t

0
audu. The process

σ =
√

τ expresses the volatility, and it is to be noted that τ , which is termed the
variance process, may have jumps. Finally, the absolute continuity together with
the time-change representation implies that M can be written as Mt =

∫ t

0 σudWu

for a BM W .
Thus the choice for Y has been narrowed to the continuous stochastic volatility

semi-martingale framework (SVSMc) where

(1) Yt =
∫ t

0

audu +
∫ t

0

σudWu.

This type of process is sometimes called a Brownian semi-martingale; but, having
the financial context in mind, we refer to it as a (continuous time) stochastic
volatility process.

For more specific modelling, aimed at representing the important, and widely
established, stylised features of financial observational series, choices have to be
made of the two ingredients a and σ of (1). A simple example for a, of some
definite interest, takes at = µ+βτt. More generally, one may consider at = g(t, τt)
for some smooth function g. As to σ, a number of points have to be considered: (i)
Should σ be a pure diffusion process (or perhaps a superposition of such processes);
or should it be a pure diffusion plus a finite activity (FA) process (finite activity



118 Oberwolfach Report 2/2004

meaning that there are only finitely many jumps in any finite time interval), or
should it perhaps be an infinite activity (IA) process (for instance, an inverse
Gaussian OU process or a superposition of such processes, or one of the CARMA
processes introduced by Brockwell (2001), or one of the Lévy driven long-memory
models considered by Anh, Heyde and Leonenko (2002). (ii) Should the model
incorporate leverage, in the sense of dependence between σ and W . (iii) Should
σ be Markovian. And more specifically, how should the law of τ be chosen so
as to capture both the typical ‘exbell’ shape of log returns and the, generally
observed, quasi long range dependence in the log price series. Note that if a is 0,
or independent of σ and W , then under (1) the autocorrelations of the returns are
necessarily 0, in accordance with the empirical facts.

To account for possible jumps in the price process one possibility is to add an
independent FA process to Y . Another is to substitute the σ • W term by either
σ•L or LT where L denotes a Lévy process and T is a time-change. Note that, ex-
cept for stable Lévy motions L, these two approaches are not equivalent; each has
its advantages and drawbacks. A simpler approach is pure Lévy modelling which
replaces Y by L. This already yields significant improvements over the classical
Black-Scholes model, but misses, in particular, the key time-wise dependence fea-
ture of finance data. A further variant, that does model dependence, is the recently
introduced continuous time GARCH model of Klüppelberg, Lindner and Maller
(2004). A great amount of interesting work in this area has been carried out in
the project led by Ernst Eberlein at Freiburg University. And in monograph form
there are now two recent additions to the literature that set out important aspects
of the Lévy based methods: Schoutens (2003) and Cont and Tankov (2003).

Our own joint research has fallen within the framework outlined above, and
much of this will be described in considerable detail in our forthcoming book
Barndorff-Nielsen and Shephard (2005).

The most recent part of this research concerns the new concept of bipower
variation, that we have introduced and studied in Barndorff-Nielsen and Shephard
(2003, 2004). This considers returns over time periods of lengths � and δ, where
nδ = � for some positive integer n and where for concreteness we may think of
� as representing a day, with δ corresponding to 5, 10 or 30 minute consecutive
intervals during that day. In the simplest 1,1 case, we define the realised bipower
variation on the i-th day as the probability limit for δ → 0 of

{Yδ}[1,1]
i =

n∑
j=2

|yj−1,i| |yj,i| ;

here
yj,i = Y(i−1)�+jδ − Y(i−1)�+(j−1)δ, j = 1, 2, ..., n.

The limit of {Yδ}[1,1]
i is denoted by {Y }[1,1]

i . We show that when we add to an SV
process a finite activity jump process then, up to proportionality, the probability
limit of this object (subject to some weak assumptions) is the quadratic variation
of the SV process over the day as δ ↓ 0. Thus the realised bipower variation process
is reasonably robust to jumps.
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An asymptotic distribution theory for realised bipower variation can be calcu-
lated. Further, the joint distribution of realised bipower variation and the qua-
dratic variation version of this, can be calculated under the assumption that there
are no jumps. This allows us to consistently test the hypothesis that the sample
path of price processes have jumps.
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Fractionally Integrated Continuous Time ARMA Processes
Peter J. Brockwell

(joint work with Tina Marquardt)

Continuous-time models for time series which exhibit both heavy-tailed and
long-memory behaviour are of considerable interest, especially for the modelling
of financial time series, where such behaviour is frequently observed empirically.
A recent paper of Anh, Heyde and Leonenko (2002) develops such models via the
Green-function solution of fractional differential equations driven by Lévy pro-
cesses. A very general class of Gaussian fractionally integrated continuous time
models with extensive financial applications has also been introduced by Comte
and Renault (1996).

In this paper we consider the class of Lévy-driven continuous-time ARMA
(CARMA) processes and the fractionally integrated (FICARMA) processes ob-
tained by fractional integration of the kernel of the CARMA process. For com-
pleteness we include a brief account of the derivation of this kernel and indicate
its relevance to the stochastic volatility model of Barndorff-Nielsen and Shep-
hard (2001). In the latter paper an Ornstein-Uhlenbeck process driven by a non-
decreasing Lévy process was used to model volatility in a stochastic volatility
model for log asset prices. The stationary Ornstein-Uhlenbeck process,

X(t) =
∫ t

−∞
e−c(t−y)dL(y), c > 0,



120 Oberwolfach Report 2/2004

was chosen because it has a non-negative kernel (g(t) = exp(−ct)I[0,∞)(t)) and
consequently, if the driving Lévy process L is non-decreasing, the process X will
be non-negative as is necessary if it is to represent volatility. However the use
of the Ornstein-Uhlenbeck process restricts the class of volatility autocorrelation
functions to functions of the form ρ(h) = exp(−ch) for some c > 0. Barndorff-
Nielsen and Shephard suggested extending this class by using linear combinations
of independent Ornstein-Uhlenbeck processes with positive coefficients, however
the autocorrelation functions are still restricted to be monotone decreasing. If the
Ornstein-Uhlenbeck process is replaced by a non-negative Lévy-driven CARMA
process, a much larger class of autocorrelations can be modelled, and in particular
the monotonicity constraint can be removed (see Brockwell (2003) for further
details).

In this paper we derive explicit expressions for the kernel and auto covariance
functions of a FICARMA process whose autoregressive polynomial has distinct ze-
roes. (Corresponding results for multiple zeroes can be obtained by letting distinct
roots converge to a common limit.) We also consider the asymptotic behaviour of
these functions for large lags. The results are continuous-time analogues of the re-
sults of Sowell (1992) for discrete-time fractionally integrated ARMA processes. A
comprehensive treatment of the latter processes can be found in the book of Beran
(1994). From a second-order point of view, the fractionally integrated CARMA
process is a special case of the (Gaussian) fractionally integrated processes defined
by Comte and Renault (1996), however the particular form of the kernel of the
CARMA process leads to very simple expressions for the kernel and autocovariance
functions for the corresponding fractionally integrated process.

If a CARMA(p, q) process is sampled at times {0, 1, 2, . . .}, it is well-known
that the sampled process is a discrete-time ARMA(p, r) process with r < p. It
is therefore of interest to compare the behaviour of the fractionally integrated
CARMA process sampled at integer times with that of the sampled CARMA
process fractionally integrated (in the discrete-time sense). In this paper we make
such a comparison for the fractionally integrated Ornstein-Uhlenbeck process.
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Extremal Behaviour of Fractal Models
Boris Buchmann

(joint work with Claudia Klüppelberg)

A fractional Brownian motion (FBM) is a centred Gaussian process (BH
t)t∈R

with covariance function

EBH
tB

H
s =

1
2
{|t|2H + |s|2H − |t − s|2H}.

The parameter H ∈ (0, 1) is the so-called Hurst coefficient. For H = 1/2 FBM is
the Wiener process, otherwise, both long memory (H > 1/2) and short memory
(H < 1/2) occurs in the increments and FBM is no longer a semi-martingale.
FBM has been studied by Kolmogorov in the fourties as a model for turbulence
and by Mandelbrot and van Ness (1968) to describe certain aspects in the Nile
data. Recently, it has been proposed as tool for financial applications (e.g. Hu
and Øksendal (1999), Brody, Syroka and Zervos (2003)). The fractional Ornstein-
Uhlenbeck process (OH,γ,σ

t ) (FOUP), i.e., the stationary solution of the Langevin
equation

OH,γ,σ
t = OH,γ,σ

0 − γ

∫ t

0

OH,γ,σ
s ds + σBH

t ,

where γ > 0, has been studied by Cheridito, Kawaguchi, Maejima (2003). It is a
Gaussian process which again exhibits long memory (H > 1/2) and short memory
(H < 1/2). In contrast to the latter authors we have studied the shape of the
covariance function near zero. Combining both results allows us to develop the
extreme value theory for FOUP based on classical results on Gaussian processes
(Pickands (1969), Berman (1971), Leadbetter, Lindgren, Rootzén (1983)). More
precisely, we obtain the norming constant bT (H, γ, σ) such that

2
Γ(2H+1)1/2

γH

σ
(log T )1/2

{
max

0≤t≤T
OH,γ,σ

t −bT (H, γ, σ)
}

d→ G,

where G is a Gumbel distributed random variable. The extreme value theory can
be extended to processes XH,γ,f

t := f(OH,γ
t ) where f is a state space transform

(SST), i.e., a continuous strictly increasing function. Our concept is related to the
work of Davis (1982) where the extreme value theory for diffusions is studied by
transforms in time and space. The process XH,γ,f to be in the maximum domain
of a Gumbel distribution is provided by the following condition on the derivative,
namely,

lim
z→∞

f ′(z + a(z))
f ′(z)

= 1

for all functions x �→ a(x) such that a(x) = O(x−1) for x → ∞. Generally, if
f ′(x) = r(x) exp(κxp) for sufficiently large x and some regularly varying function
r the condition is satisfied whenever p < 2. If f is a SST such that for some
constants C0 > 0 and C1 ∈ R

log f(x) = C0x
2 + C1 + o(1) for x → ∞,
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then XH,f,γ is found to be in the maximum domain of attraction of a Frechét
distribution. The concept of SSTs can be related with a geometric approach to
solve integral equations of the type

Xt − X0 =
∫

0

t

µ(Xs)ds +
∫

0

t

σ(Xs)dBH
s .

As (BH
t) is not a semi-martingale for H �= 1/2 Itô integration can not be used

to define an integral w.r.t FBM. Different approaches have been discussed in the
literature (Hu and Øksendal (1999), Mikosch and Norvaĭsa (2000), Duncan, Hu and
Pazik-Duncan (2000), Mazet, Alós and Nualart (2001)). We follow the approach
of Zähle (1998, 2001) which works for H > 1/2. FBM is then sufficiently Hölder
continuous such that the integral w.r.t FBM is well-defined as Riemann-Stieltjes
integral whenever the integrand is Hölder of some order strictly larger 1 − H . By
a law of iterated logarithm (Arcones (1995)) FBM takes values in the weighted
function space ṼH containing all functions f Hölder of at least any order strictly
smaller H such that

sup
t

|f(t)|
1 + |t|H √(log log)+(|t|) < ∞ .

Replacing BH by any possible function g ∈ ṼH we derive a necessary and sufficient
condition on µ and σ for existence and uniqueness of a solution in terms of SSTs
and the FOUP.
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Structural Models for Credit Risk Migration
Ngai Hang CHAN

1. Abstract

A structural model for credit migration is considered in this paper. The pro-
posed model is firm specific and depends on two parameters: the default distance
and credit history. The default distance is the standardized logarithmic asset-to-
liability ratio modelled by a Brownian motion and the credit history is modelled
by an occupation time variable. By examining the properties of this occupation
time variable, the credit performance of a given firm can be analyzed. This model
not only allows one to derive a closed-form credit transition probability, but also
explains default probability overlaps of different ratings. It can be used to back
out the subjective thinking of credit performance of rating agencies.

2. Structural Models

Credit risk management is an important tool in finance, especially in the high-
yield bond market and the bank loan market. An essential concern of a financial
corporation is changes in credit ratings of companies. Nationally recognized statis-
tical rating organizations (NRSRO), like Standard & Poor’s and Moody’s Investor
Services, classify corporate bond issuers into different credit ratings in order to
reflect their credit worthiness. Credit risk managers pay serious attentions to the
ratings and transition matrices published by NRSRO. Transition matrices in the
form of arrays of migrating probabilities constitute the building block of risk man-
agement tools, see for example JP Morgan’s Credit Metrics and McKinsey’s Credit
Portfolio View. The Markov model of Jarrow, Lando and Turnbull (1997) uses
the transition matrix to generate the term structure of credit spreads.

Predictions of transition probabilities have been receiving considerable amount
of attentions recently. Most of the research make use of historical transition ma-
trices and firm ratings to estimate future transition probabilities, see for example
Aderson et. al (1991), Altman and Kao (1992), Kavvathas (2000), and Lando
and Skodeberg (2002). Two types of default models are structural approach and
reduced-form models. Structural type models suggest that a firm defaults when its
asset value drops below its liabilities. KMV corporation implements this structural
approach and generates expected default probabilities (EDPs) of firms. Details of
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the KMV methodology can be found in Crosbe and Bohn (1993). Jarrow and
Turnbull (1995) and Duffie and Singleton (1999) propose a second approach called
reduced-form models. The time of default in this model is characterized by an
exogenously defined intensity process.

This paper proposes a structural model of credit migration. There are at least
two reasons to adopt the structural approach. First, it has a solid theoretical basis
as it takes into account of the capital structure of a firm. Second, a structural
model makes use of the distance-to-default of a firm. The distance-to-default
values can be measured from the market, either through KMV or internal models.
Finally, the recent acquisition of KMV and Moody’s Investor Services provides the
market with a possibility of using structural approach to measure credit transition
probabilities.

The proposed model is firm specific and depends on distance-to-default and
migrating signal duration. Using the idea of Gordy and Heitfield (2001), distance-
to-default is mapped into different rating categories by partitioning the distribution
of empirical data. The proposed model is able to capture the slow-to-respond
features of rating agencies. Such a time-lagged response to new information can
be interpreted as an extra rating criterion to reflect the market reputations of
a rated company. If the distance-to-default is assumed to follow a symmetric
distribution, then migrating probabilities generated from the model can still be
skewed on one side. There are several desirable features of the model. Rating
agencies can use it to explain changes in firm ratings in relation to current and
historical credit performance. The proposed model also allows the overlap of EDPs
across different letter grades, and offers a means to reconcile the empirical findings
of Kealhofer et. al (1998). Analytical formula for calculating migrating probability
can also be obtained.

3. Résumé

Dans cet article, on développe un modèle structurel pour la migration de crédit.
On propose un modèle pour chaque entreprise dépendant de deux paramètres: le
temps avant la faillite de l’entreprise et l’histoire du crédit. Le temps avant la
faillite est défini comme le rapport logarithmique standardisé entre l’actif et la
dette, et est modelisé par un mouvement Brownien. L’histoire du crédit est mod-
elisée par une durée variable. En examinant les propriétés de ce temps variable, la
performance du cred́it d’une entreprise donnée peut être analysée. Ce modèle per-
met non seulement d’obtenir l’expression de la probabilité de transition du crédit,
mais il explique aussi les chevauchements des probabilités de faillite pour differents
taux. Le modèle peut aussi être utilisé pour reévaluer l’idée subjective donnée par
une agence chargée de l’estimation de la performance d’un crédit.
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Stochastic Volatility Models for Ordinal Valued Time Series
Claudia Czado

(joint work with Gernot Müller)

Our aim is to model the intraday development of stock prices, in particular the
development of the price change process. The price changes have some specific
features which we want to be covered by our model. One important feature is that
price changes only occur in integer multiples of a certain amount, the so-called
tick size. In modelling the price changes we therefore have to take into account
that we observe a discrete time series. Also other important features of such time
series are covered by the following model:

yobs
t = k ⇐⇒ yt ∈ [ck−1, ck) k ∈ {1, . . . , K}(1)
yt = x′

tβ + exp(ht/2)εt t ∈ {1, . . . , T}(2)
ht = µ + z′

tα + φ(ht−1 − µ − z′
t−1α) + σηt(3)

A modified version of the underlying stochastic volatility model (2) and (3) for
continuous responses was considered by Chib, Nardari and Shephard (2002). Ob-
served are only the variables yobs

t , which are discretized versions of the latent
continuous variables yt. xt and zt are vectors of covariates, εt and ηt are assumed
to be i.i.d. N(0, 1). We fix c1 and µ for reasons of identifiability.

For the estimation of the parameters in this model we develop a MCMC algo-
rithm, which is based on the algorithm presented in Chib, Nardari and Shephard
(2002) for the underying continuous model. However, standard Gibbs MCMC
steps for the additional discretization in Equation (1) lead to bad convergence be-
haviour of the resulting MCMC iterations. Figure 1 shows the cutpoint chains for
simulated data, where the dotted lines indicate true values, when starting values
are chosen to be 1.5, 3.0, 4.5, 6.0, 7.5, respectively.
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Therefore we develop additional grouped move (GM) steps to speed up the
convergence especially for the chains of the cutpoints ck. The idea of GM steps
is based on a theorem of Liu and Sabatti (2000) which states: If Γ is a locally
compact group of transformations defined on the sample space S, L its left-Haar
measure, w ∈ S follows a distribution with density π, and γ ∈ Γ is drawn from
π(γ(w))|Jγ(w)|L(dγ), with Jγ(w) = det (∂γ(w)/∂w), ∂γ(w)/∂w the Jacobian
matrix, then w∗ = γ(w) also has density π (Liu and Sabatti (2000), Theorem 1).

Commonly π is considered to be the interesting posterior distribution. The diffi-
culty in the choice of a suitable transformation group is to find one where on the one
hand the problematic parameters are transformed and on the other hand the distri-
bution
π(γ(w))|Jγ(w)|L(dγ) allows to draw samples very fast. We apply this theorem
only for the conditional distribution of w := (y1,. . ., yT , c3,. . ., cK−1, β0, . . . , βp)
given all the observations and all the remaining parameters. This conditional
distribution can be computed iteratively. In order to get an easy sampling dis-
tribution we now use the scale group, Γ = {γ > 0 : γ(w) = (γw1, . . . , γwd)}, with
γ−1dγ as left-Haar measure. This finally leads to a Gamma distribution for γ2.
Therefore, after each iteration of our MCMC sampler, we insert the corresponding
GM-step, which consists of drawing a γ2 from the resulting Gamma distribution
and update w to γ · w. As Figure 2 shows, this significantly speeds up the con-
vergence of the algorithm. Here we used the same simulated data as in Figure 1
and the same starting values. By using the GM steps the chains reach the area
around the true values within about 50 iterations.

Standard sampler: Extremely slow convergence of cutpoints.

iteration

0 200 400 600 800 1000

0
2

4
6

8 estimated

true

Figure 1. First 1000 MCMC iterations for cutpoints produced
by standard Gibbs sampler. The dotted lines indicate the true
values.
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GM−MGMC sampler: Extremely fast convergence of cutpoints.

iteration

0 200 400 600 800 1000

0
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4
6

8

estimated

true

Figure 2. First 1000 iterations of chains for cutpoints produced
by GM-MGMC sampler. The dotted lines indicate the true values.

Finally we fit the model to IBM intraday data collected in January 2001. We
show that a positive price jump increases the probability that the next price jump
will be negative and vice versa. Furthermore, the time between transactions has
an impact on the log-volatility in Equation (3): The more time elapses between
two subsequent transactions, the higher is the probability for a big price jump
(upwards or downwards).
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Data Driven Local Coordinates for Linear State Space Systems
M. Deistler

(joint work with T. Ribarits)

The topic of the lecture is embedded in a larger research program at our de-
partment concerning identification of ARMA(X) and state space (SS) systems, in
particular stressing the multivariate case. The motivation for this program is that
in many applications in econometrics and engineering, AR(X) type models are
still preferred in modelling linear systems, despite the fact that ARMA(X) and SS
models are more flexible. The reasons for this are that parametrization and esti-
mation is much simpler in the AR(X)case, in particular the (maximum likelihood)
estimators are of least squares type, they are explicitly given, numerically fast and
have no problems of local optima.

In making ARMA(X) and SS systems more competitive, one direction we follow
is to look for better parametrizations, in particular for the SS case. Note that
ARMA(X) and SS systems represent the same classes of transfer functions, but SS
systems in general have larger classes of observationally equivalent systems. The
latter fact should be considered as an advantage, because this allows for selection
of more suitable representatives.
We consider a state space system

xt+1 = Axt + Bεt

yt = Cxt + εt

where εt is the s–dimensional white noise innovation, xt is the n–dimensional state
and yt is the s–dimensional output; (A,B,C) are the system matrices.

We consider two approaches: The first approach, data driven local coordinates
(DDLC), has been originally introduced by McKelvey and Helmersson. Here
(A,B,C) is embedded in Rn2+2sn. For minimal (A,B,C), the equivalence classes
are n2–dimensional manifolds. Commencing from an initial estimator (A,B,C),
the orthocomplement to the tangent space to this manifold at (A,B,C) is taken as
a parameter space. The likelihood function then is optimized over this parameter
space and the procedure is iterated with the new estimate. We analyse the topo-
logical and geometrical properties of this parametrization which are relevant for
identification. In particular we show that this parametrization is locally homeo-
morphic, but globally, problems, e.g. of nonidentifiability, arise.

The second approach is separable least squares DDLC (slsDDLC). Here first a
least squares step is performed in order to concentrate out B. The concentrated
likelihood then only depends on (A,C) and for this reduced parameter space, again
DDLC is performed. We again analyse the topological and geometrical properties
of this parametrization.
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Finally, the numerical properties of the maximum likelihood estimation paramet-
rized by the ‘classical’ echelon form, by DDLC and by slsDDLC are investigated
in a simulation study. slsDDLC is found to be superior to DDLC and both give
much better results than echelon forms.

Estimation in Semi-parametric Volatility Models
Feike C. Drost

The availability of large data sets is rapidly growing, especially in finance. In
discrete time models, ARMA models with GARCH type errors are quite suitable
to pick up the time-varying nature of the first two conditional moments with only
a few parameters. However the implications of parametric volatility models for
higher order conditional moments, are not reflected in the data. More precisely
formulated, the conditional error distribution cannot be described by just a func-
tional form of the conditional volatility and a fixed nonparametric distribution.
To avoid this kind of misspecification we use a semi-parametric model where the
conditional error distributions are treated as a nuisance parameter. In continuous
time models, stochastic volatility models are used to model similar stylized facts.
Since the volatility of volatility functions in these models do not affect the first
two conditional moments, a nonparametric approach is advised here as well.

Usually, from a practitioners point of view, some finite dimensional parameter
is of interest, for example, the mean or median as a measure of location, the
Value at Risk as a measure of risk, etc. The question arises how to efficiently
estimate such quantities in general semi- and nonparametric models. To study
what is best asymptotically, one needs a bound on the asymptotic performance
of estimators in the presence of an infinite dimensional nuisance parameter. For
the i.i.d. case, a comprehensive account on the present theory along these lines
is given in Bickel, Klaassen, Ritov, and Wellner (1993). In financial data, of
course, the time dimension also plays an important role. Drost, Klaassen, and
Werker (1997) and Koul and Schick (1997) have developed a unified theory for time
series models with independently and identically distributed innovations. This
covers, for example, semi-parametric ARMA models (Kreiss (1987)). Recent work
in applied financial econometrics shows that the assumption of i.i.d. innovations
does not hold when using standard semi-parametric time series models, see Engle
and Russell (1998).

Based on the first two conditional moments, a popular method to estimate the
parameters is the Quasi Maximum Likelihood (QML) approach. This method
applies the Maximum Likelihood (ML) procedure to the data as if the conditional
distributions are normal. Under some regularity conditions this approach leads to
consistent and asymptotically normal estimators, but the efficiency may be quite
low.

An alternative to QML, is the Generalized Method of Moments (GMM). Here
the conditional moments are used together with a suitably chosen instrument. It
is well-known that the QML estimator can be obtained by a suitable choice of
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the instruments. However, these QML instruments are not optimal since they do
not use the possible time varying character of the third and fourth moment of the
conditional error distribution. Optimal instruments are easily derived along the
lines in Wefelmeyer (1996).

Although the GMM estimator is optimal in the class of estimators based on the
first two conditional moments, it is not necessarily the optimal estimator. As in
the aforementioned literature, additional information can be gained by estimating
the conditional error distribution. In several applications it is known that the
conditional error distribution (given the total past) equals the conditional error
distribution given some restricted information set Ht. Special cases are:

• i.i.d. errors: choose the restricted information set Ht to be the trivial
sigma field.

• Markov errors: choose the restricted information set Ht = σ (εt), the
information set generated by the last error.

• general case: do not put any restrictions on Ht, and choose the restricted
information set to be the full information set.

Since the first two conditional moments are of particular interest in finan-
cial applications, we present the score functions for QML, GMM, and the Semi-
parametric (SP) approach in the following example. The estimator based on the
SP score performs best.

Example 1. Consider the semi-parametric location-scale model,

Yt+1 = µt + σtεt+1, EGtεt+1 = 0, EGtε
2
t+1 = 1, Gt ≡ L (εt+1|Ht) ,

with location-scale score

l̇ (εt+1; Gt) =
[
−g′t

gt
(εt+1) ,−1

2

{
1 + εt+1

g′t
gt

(εt+1)
}]T

.

Apart from the model assumptions and some regularity conditions, nothing is
known about the conditional error distributions. Put γt = EGtε

3
t+1, κt = EGtε

4
t+1,

then the score functions of the QML/GMM/SP/ML estimators are given by, re-
spectively,

l̇QML
t+1 =

[
µ̇t

σt
,
σ̇2

t

σ2
t

] [
1 0
0 2

]−1 [
εt+1

ε2
t+1 − 1

]
,

l̇GMM
t+1 =

[
µ̇t

σt
,
σ̇2

t

σ2
t

] [
1 γt

γt κt − 1

]−1 [
εt+1

ε2
t+1 − 1

]
≡
[
µ̇t

σt
,
σ̇2

t

σ2
t

]
l̇∗ (εt+1; Gt) ,

l̇SP
t+1 =

{[
µ̇t

σt
,
σ̇2

t

σ2
t

]
− E

([
µ̇t

σt
,
σ̇2

t

σ2
t

]∣∣∣∣Ht

)}
l̇ (εt+1; Gt)

+ E
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µ̇t

σt
,
σ̇2

t

σ2
t

]∣∣∣∣Ht

)
l̇∗ (εt+1; Gt) ,

l̇ML
t+1 =

[
µ̇t

σt
,
σ̇2

t

σ2
t

]
l̇ (εt+1; Gt) .
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Note that the implied information is strictly increasing: the SP score is closest (in
L2-sense) to the unattainable ML score.
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Modelling Dependence for High–Frequency Data in Finance
Paul Embrechts

(joint work with W. Breymann and A. Dias)

Based on high-frequency data for US$/DM and US$/Yen, stylised facts for
extremal dependence in financial data are investigated. Starting with 5’ data,
through deseasonalisation, data are investigated at the (1 hr, 2 hr, 4 hr, 8 hr,
12 hr, 1 day) frequencies. Dependence is modelled throughout based on the con-
cept of copula. In order to get close to iid bivariate residual vectors, several
stochastic models are fitted at the various frequencies. These models include mar-
ginal ARMA-GARCH, CCC-GARCH, VECH and DCC-GARCH. The following
tests/statistical techniques are performed on the residuals:

- tests for ellipticity
- copula fitting
- dynamic dependence parameters
- comparison of high (low) quantile fitting procedures (leading to the Clay-

ton model)
- spectral measure estimation
- change point analysis.

This work is done jointly with W. Breymann and A. Dias (see [1]) and A. Dias (see
[2]). Further references and related work are to be found under www.math.ethz.ch/
∼embrechts. We also would like to thank Olsen and Associates for providing the
data.
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Extremal Behaviour of Continuous-Time Moving Average Processes
Vicky Fasen

We consider a stationary continuous-time moving average (MA) process

Y (t) =
∫ t

−∞
f(t − s) dL(s) for t ≥ 0 ,

where f is a deterministic kernel function and L is a Lévy process whose incre-
ments, represented by L(1), are subexponential and in the domain of attraction of
the Gumbel distribution. Examples are Weibull-like distributions with α ∈ (0, 1).
The extremal behaviour of subexponential MA processes in the domain of attrac-
tion of the Fréchet distribution are well studied Rootzén (1978) and Rosinski and
Samorodnitsky (1993). A good overview about subexponential distributions can
be found in Embrechts et al. (1997) and about Lévy processes in Sato (1999).

Extremes of {Y (t)}t≥0 are caused by big jumps of the driving Lévy process in
combination with large values of the kernel function f . This means that discrete
time points {tn}n∈N chosen properly to incorporate the times where big jumps
of the Lévy process and the extremes of the kernel function occur characterise
the extremal behaviour of the continuous time process. We restrict ourselves to
kernel functions with a finite number of local extremes. Examples for Y include
a Weibull-Ornstein-Uhlenbeck process, certain shot noise processes and CARMA
processes (Brockwell (2001)).

The extremal behaviour of the discrete-time process {Y (tn)}n∈N is described
by the weak limit of a sequence of marked point processes, i.e.

– by the point processes of exceedances over high thresholds, and
– by marks, which are stochastic processes themselves, and characterize the

behaviour of {Y (t)}t≥0, if Y (tn) exceeds a high threshold.
The limiting distribution of such a sequence of marked point processes is a Pois-
son process with deterministic marks represented by a scaled version of the kernel
function. Further we can compute the normalising constants of the maxima to
converge weakly to the Gumbel distribution. The results are similar to the ex-
tremal behaviour of discrete MA processes (Davis and Resnick (1988), Rootzén
(1986)).
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Nonparametric Value-at-Risk Estimates
Jürgen Franke

(joint work with Mabouba Diagne and Peter Mwita)

We consider a financial time series St with returns Rt = (St − St−1)/St−1,
and we want to estimate the conditional Value-at-Risk, the conditional α-quantile

qα(r, x) ≡ VaR(r, x) of Rt+1 given past returns
→
Rt

(p)

= (Rt, . . . , Rt−p+1) = r and
exogeneous market information Xt = x ∈ Rd (returns of index or other stock, FX
or interest rates etc.), i.e. we have

pr(Rt+1 ≤ qα(r, x)|
→
R

(p)

t = r, Xt = x) = α.

First, we model the returns as a nonlinear ARX-ARCHX-process

(1) Rt+1 = m(Rt, . . . , Rt−p+1, Xt) + σ(Rt, . . . , Rt−p+1, Xt)Zt+1

with i.i.d. innovations Zt having mean 0 and variance 1 and a known distribution.
We can estimate the local trend and volatility functions m, σ nonparametrically
by

• kernel estimates or local polynomials for either lowdimensional argu-
ments or under restrictions on the functions m, σ (e.g. additive or gener-
alized additive structure)

• neural networks for highdimensional arguments
where, for estimating σ2(s, x), we use the residual-based estimator of Fan and

Yao (98). Both nonparametric approaches lead to asymptotically normal and, for
tuning parameter (bandwidth for local smoothers and number of neurons for neural
networks) changing appropriately for increasing sample size, consistent estimates
if the time series (Rt, Xt) satisfies some mixing condition (Franke and Diagne,
2002, Franke, Kreiss and Mammen, 2002, Franke et al., 2002, Franke, Neumann
and Stockis, 2004). Using estimates for m, σ, we get as a nonparametric VaR-
estimate q̂α(r, x) = m̂(r, x) + σ̂(s, x)qZ

α , where qZ
α denotes the α - quantile of

the law of Zt. An example for a German stock price illustrates the feasibility
of the nonparametric approach and the usefulness of incorporating exogeneous
information in the calculation of VaR.

Instead of starting from model (1), we can also estimate the quantile function
qα(r, x) directly, either by a nonparametric version of the Koenker-Bassett (1978)
regression quantile approach exploiting that

qα(r, x) = arg min
q∈R

E

(
|Rt+1 − q|α

∣∣∣∣→R(p)

t = r, Xt = x

)
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with |y|α = (1 − α)y− + α y− or by first estimating the conditional distribution

function F (y|r, x) = E(1(−∞,y](Rt+1)|
→
R

(p)

t = r, Xt = x) nonparametrically and
inverting it. Again, we get consistent nonparametric estimates q̂α(r, x) based on
neural networks (Diagne, 2002) or on local smoothing (Abberger, 1996, Franke
and Mwita 2003) if we assume the returns to follow a quantile ARX-model

(2) Rt+1 = qα(Rt, . . . , Rt−p+1, Xt) + ηt+1.

The innovations ηt may depend on the past Rn, n < t, and may have infinite
variance, and, in contrast to the VaR estimates based on (1), we do not have to
assume their distribution to be known. To get a notion of local variability like
volatility which does not require moment assumptions we may specify (2) to the
following quantile ARX-ARCHX-model

Rt+1 = qα(Rt, . . . , Rt−p+1, Xt) + σα(Rt, . . . , Rt−p+1, Xt)Wt+1

where the α - scale of Rt+1 given
→
R

(p)

t = r, Xt = x is the α - quantile of |Rt+1 −
qα(r, s)|α. The i.i.d. innovations Wt are standardized to have α - quantile 0 and
α - scale 1 (compare also Koenker, 1999). Similar as in the familiar model (1),
qα(r, x) and σα(r, x) may be estimated simultaneously (Mwita, 2003).
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Gibbs Sampling for State Space Modelling of Time Series of Counts
Sylvia Frühwirth-Schnatter

(joint work with Helga Wagner)

For applied statisticians it is not unusual to have to deal with time series of
counts. As such data are necessarily non-negative integers, it is often appropriate
to assume the observed process yt follows a Poisson distribution: yt ∼ Poisson(λt).
To capture the effect of exogenous variables zt, for independent observations a log-
linear model could be applied where λt = exp(z

′
tβ), with λt being the mean of the

time series observation yt given β, and β being a vector of unknown coefficients
to be estimated from the data.

To account for the dependency likely to be present in time series data of counts,
various extensions of the log-linear model have been suggested which, following Cox
(1981), may be classified into parameter-driven and observation-driven models. In
an observation driven model the conditional distribution of yt is specified as a
function of the past observations yt−1, yt−2, . . ., see for instance Kaufmann (1987).
While observations-driven models are easy to estimate, their theoretical properties
can be difficult to derive in comparison to parameter-driven models.

Here we consider parameter-driven models, where the conditional distribution
of yt is allowed to change over time and this change is driven by a latent process.
This latent process could be a hidden Markov chain as in Leroux and Puterman
(1992), or random effects as in Albert (1992). Smooth changes of the conditional
distribution of yt through state-space models have been considered e.g. in West et
al. (1995) and Harvey and Fernandes (1989), whereas a latent stationary autore-
gressive process has been introduced into the generalized linear model by Zeger
(1988).

Estimation of parameter-driven Poisson time series models is known to be a
challenging problem. In fact, estimation of these models using maximum likeli-
hood estimation is hampered by the fact that the marginal likelihood, where the
latent process is integrated out, is in general not available in closed form. Each
evaluation of the likelihood function requires to use some numerical method for
solving the necessary high-dimensional integration. One particular useful method
in this respect is importance sampling which was applied in Durbin and Koopman
(2000) to state space modelling of counts data.

Alternatively, estimation of these models is also feasible within a Bayesian
framework using data augmentation as in Tanner and Wong (1987) and Markov
chain Monte Carlo (MCMC) methods, as illustrated first by Zeger and Karim
(1991). Since this seminal paper, a number of authors have contributed to MCMC
estimation of these models. We mention here in particular Shephard and Pitt
(1997) and Gamerman (1998) for non-Gaussian time series models based on distri-
butions from the exponential family, and Chib et al. (1998) and Chib and Winkel-
mann (2001) for more general count data models.

A major difficulties with any of the existing MCMC approaches is that practical
implementation requires the use of a Metropolis-Hastings algorithm at least for
part of the unknown parameter vector, which in turns make it necessary to define
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suitable proposal densities in rather high-dimensional parameter spaces. Single-
move sampling for this type of models is known to be potentially very inefficient,
see e.g. Shepard and Pitt (1997). The main contribution of this article is to show
that straightforward Gibbs sampling of all parameters, involving only sampling
from simple distributions such as multivariate normal, inverse Gamma, exponen-
tial and low-dimensional discrete distributions, is feasible for practical Bayesian
estimation of most of the parameter-driven models for time series of counts sug-
gested in the literature so far. This rather unexpected result is achieved by intro-
ducing two additional sequences of latent variables through data augmentation.
One of these sequences are the unobserved inter arrival times of the events under
investigation. The introduction of this first sequence eliminates the non-linearity
of the observation equation whereas the non-normality of the error term remains
which follows a log exponential distribution. As the mean of the exponential dis-
tribution is equal to 1, this distribution is independent of any parameter and may
be approximated by a mixture of normal distribution in a similar way as in Kim et
al. (1998) who used a mixture approximation to the density of a log χ2-distribution
in the context of stochastic volatility models. By introducing the component indi-
cator as a second sequence of missing data, the resulting model may be thought of
a partially Gaussian state space model as in Shephard (1994). This is particularly
useful for state space models for Poisson time series, as multi-move-sampling of the
whole state process through forward-filtering backward sampling as in Frühwirt-
Schnatter (1994), Carter and Kohn (1994) and de Jong and Shephard (1995) is
now possible.

References

[1] Albert, J.H. (1992): A bayesian analysis of a poisson random-effects model for home run
hitters. Amer. Statist. 46, 246-253.

[2] Carter, C.K. and R. Kohn, R. (1994): On Gibbs sampling for state space models. Biometrika
81, 541-553.

[3] Chib, S., Greenberg, E. and Winkelmann, R. (1998): Posterior simulation and Bayes factors
in panel count data models. J. Econometrics 86, 33-54.

[4] Chib, S. and Winkelmann, R. (2001): Markov Chain Monte Carlo analysis of correlated count
data. J. Bus. Econom. Statist. 19, 428-435.

[5] Cox, D.R. (1981): Statistical analysis of time series: Some recent developments.
Scand. J. Statist. 8, 93-108.

[6] de Jong, P. and Shephard, N. (1995): The simulation smoother for time series models.
Biometrika 82, 339-350.

[7] Durbin, J. and Koopman, S.J. (2000): Time series analysis of non-Gaussian ob-
servations based on state space models from both classical and Bayesian perspec-
tives.J. R. Stat. Soc. Ser. B 62 (1), 3-56.
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Estimation and Change Point Detection
with a Hidden Markov Model in Finance

X. Guo

Consider a probability space (Ω,F , P ) and t ∈ [0, T ] for some T > 0. Suppose
that α(t) is a finite-state continuous time Markov process with state space M =
{z1, . . . , zm} and generator Q = (qij) ∈ Rm×m.

Assume that the Markov process α(t) is observed with the process y(t) such
that

(1)
{

dy(t) = µα(t)dt + σα(t)dw(t),
y(0) = 0 w.p. 1,

where w(·) is a standard one-dimensional Brownian motion independent of α(t),
and the drift µ and diffusion σ take different values when α(t) is in different states.

Given Eq. (1), we are primarily interested in the parameter estimation prob-
lem that is motivated by checking the validation of this Markov modulated (or
regime switching) model in the financial time series data. The critical issue is the
identification of the Markov chain α(·)

The problem is trivial when σ’s are all distinct and the observation is contin-
uous: the quadratic variation of Ito’s calculus will easily reveal the state of α(t).
Therefore, we are mostly interested in two cases: (A) when σ’s are independent of
α(t) and the observation is continuous, and (B) when the observation is discrete.
In a joint work with G. Yin [2], we address (A) under the (more general) framework
of Wonham filters; In a joint work with D. Chan (included in the summary report
[3]), we address (B) and propose a statistical estimation method for applying this
regime switching model to analyze financial time series data. Here, we suggest a
notion of “regime shift” and a detection method based on a case study of AT&T
stock price.

The optimality of Wonham filter is a direct corollary of a result of independent
interest concerning the relationship between choices of error functions and the
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optimality of conditional expectations. This is joint work with A. Banerjee and
H. Wang [1].

1. Wonham filters

Assume that the Markov process α(t) is observed with the process y(t) such
that

(2)
{

dy(t) = α(t)dt + σ(t)dw(t),
y(0) = 0 w.p. 1,

as in Eq. (1) where σ(·) : R �→ R, is a continuously differentiable function with
σ(t) ≥ c for all t ∈ [0, T ] and some c > 0.

In this framework, suppose we assume that the values of the states z1, · · · , zm

and the generator Q are known a priori and fixed. Then, a classical result states
that the posterior probability p(t) = (p1(t), . . . , pm(t)) ∈ R1×m, with pi(t) =
P (α(t) = zi|y(s), 0 ≤ s ≤ t), pi(0) = pi

0, (i = 1, . . . , m) satisfies the following
system of stochastic differential equations:

(3)
dpi(t) =

∑m
j=1 pj(t)qjidt − σ−2(t)α(t)[zi − α(t)]pi(t)dt

+σ−2(t)[zi − α(t)]pi(t)dy(t), i = 1, . . . , m.

Here, α(t) = 〈z, p(t)〉, z = (z1, . . . , zm)′, and v′ denotes the transpose of v. This
is known as the Wonham filter, which is the first finite dimensional filter for non-
Gaussian processes. It is known to be optimal under the mean square error.

1.1. Optimality of conditional expectation as BLFs. We first show the opti-
mality of Wonham filter under a general class of loss functions known as Bregman
loss functions (BLFs) (including L2-loss functions). This is a direct corollary of
our study [1], where we provide necessary and sufficient conditions for general loss
functions under which the conditional expectation is the unique optimal predictor.

Theorem 1 (Optimality Property). Let φ : Rd �→ R be a strictly convex, differ-
entiable function. Let (Ω,F , P ) be an arbitrary probability space and G a sub-σ-
algebra of F . Let X be any F-measurable random variable taking values in Rd for
which both E[X ] and E[φ(X)] are finite. Then

arg min
Y ∈G

E[Dφ(X, Y )] = E[X |G].

Theorem 2 (Exhaustiveness of BLFs). Let F : R × R �→ R be a non-negative
function such that F (x, x) = 0, ∀x ∈ R. Assume that F and Fx are both continuous
functions. If for all random variables X, E[X |G] is the unique minimizer for
E[F (X, Y )] over random variables Y ∈ G, i.e., argminY ∈G E[F (X, Y )] = E[X |G],
then F (x, y) = Dφ(x, y) for some strictly convex, differentiable function φ : R �→
R.

Here the BLF Dφ : Rd × Rd �→ R is defined as Dφ(x, y) = φ(x) − φ(y) − 〈x −
y,∇φ(y)〉, for any (strictly) convex and differentiable function φ : Rd �→ R.

For further properties of BLFs and corresponding exhaustiveness results for
higher dimensions, see [1].
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1.2. Wonham filter with random parameters. Now, assume that zi’s (or
(qij)) are not available, and that only their noisy/corrupted measurements/obser-
vations/distributional information are at our disposal. We propose approximated
(suboptimal) filters and prove their (exponential rate) of convergence to the desired
Wonham filter under simple ergodic conditions.

For instance, if we assume that a sequence of observations of the form ẑn =
(ẑ1

n, . . . , ẑm
n )′ ∈ Rm×1 such that Eẑn = z can be obtained, then by defining

zn = 1
n

∑n
j=1 ẑj , we can construct a sequence of approximations pn(t) by

(4){
dpn(t) = pn(t)Qdt − σ−2(t)αn(t)pn(t)An(t)dt + σ−2(t)pn(t)An(t)dy(t),
pn(0) = p0,

where αn(t) = 〈pn(t), zn〉, An(t) = diag(z1
n − αn(t), . . . , zm

n − αn(t)).
Let en(t) = pn(t) − p(t). Now, if we assume that {ẑn} is a stationary ergodic

sequence with Eẑn = z, uniformly bounded, and that the sequence {ẑn} is inde-
pendent of α(·) and the Brownian motion w(·), then we have:

Theorem 3. As n → ∞, sup0≤t≤T E|en(t)|2 → 0.

Theorem 4.

(5) sup
0≤t≤T

E|eκ
n(t)|2 =

{
o(1), 0 < κ < 1/2,
O(1), κ = 1/2,

as n → ∞.

Theorem 5. (i) For any positive integer � > 1,

(6) sup
0≤t≤T

E|eκ
n|2� =

{
o(1), 0 < κ < 1/2,
O(1), κ = 1/2,

as n → ∞.

(ii) As n → ∞, sup0≤t≤T E exp(|e1/2
n (t)|) = O(1).

Similar results are obtained for the error bound estimates in the case when the
generator Q is not known a priori. For more details, see [2].

2. Statistical estimation and change point detection in financial

time series data

Given discrete feature of financial time series data, a natural statistical problem
is the estimation of the states of the Markov chain α(t) when the stock price is
observed at discrete time intervals t = 1, 2, . . . , n, i.e.,

yt = µα(t) + σα(t)et, et ∼ N(0, 1),(7)

In statistical literature, a model of the above form falls under the umbrella of a
more generic class of models called hidden Markov models (HMMs). Within a
Bayesian framework, we propose a recursive approach for parameter estimation,
together with model selection strategies.

A case study of AT&T stock price data indicates that in the financial markets,
a given pattern change is more gradual and takes time before its pattern is more
sustainable. In this regard, the regime switching model captures this feature well;
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our recursive algorithm can be a promising tool in identifying this type of regime
change.

For more details of the estimation procedure and on the pros and cons of regime
switching models, together with related research problems, see [3].
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Estimation in Discretely Observed Diffusions:
Two Examples of Using Small ∆-Optimality

M. Jacobsen
(joint work with M.L. Østerdal)

Consider a d-dimensional diffusion,

dXt = bθ (Xt) dt + σθ (Xt) dBt

driven by a standard d-dimensional Brownian motion and with bθ a d-dimensional
drift function and σθ a d × d-matrix valued diffusion function, where both bθ

and Cθ := σθσ
T
θ are allowed to depend on an unknown p-dimensional parame-

ter θ ∈ Θ. It is assumed that for all θ ∈ Θ, X has an invariant distribution µθ

and is ergodic and suitably ‘nice’. The task is then to estimate θ based on the
observation of Xt1 , . . . , Xtn where 0 < t1 < · · · < tn. With the likelihood func-
tion typically untractable, this may be done using unbiased estimating functions
gt,θ (x, y) =

(
gk

t,θ (x, y)
)

1≤k≤p
where the gt,θ are given in an explicit analytic form

and unbiasedness means that (the µθ signifying that X0 has distribution µθ)

Eµθ
gk

t,θ′ (X0, Xt) = 0 iff θ = θ′.

The estimator θ̂n for θ is now found by solving the equations Gk
n (θ) = 0 (1 ≤ k ≤ p) ,

where

Gk
n (θ) =

n∑
i=1

gk
∆i,θ

(
Xti−1 , Xti

)
,

writing ∆i = ti − ti−1. If ti = i∆ for some ∆ > 0, it often holds that if θ is the
true parameter value, then

√
n
(
θ̂n − θ

)
converges in distribution as n → ∞ to a

Gaussian limit N (0, var∆,θ (g)) . Good choices for gt,θ are obtained by minimising
the asymptotic covariance matrix var∆,θ (g) in a suitable sense.
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Some basic examples of unbiased estimating functions are (i) the simple esti-
mating functions, see Kessler (2000),

gk
t,θ (x, y) = Aθh

k
θ (x) ,

with Aθ =
∑d

i=1 bi
θ ∂xih + 1

2

∑d
i,j=1 Cij

θ ∂2
xixj

h the infinitesimal generator for X,

and (ii) the martingale estimating functions introduced by Bibby and Sørensen
(1995),

gk
t,θ (x, y) =

r∑
�=1

φk�
θ (x)

(
f �

θ (y) − πt,θf
�
θ (x)

)
.

where πt,θf
�
θ (x) = Eθ

[
f �

θ (Xt) |X0 = x
]

is known explicitly. The number r is the
dimension of the base

(
f �

θ

)
for the estimating functions.

The concept of small ∆-optimality (S∆-O), Jacobsen (2001, 2002), aims at
minimising var∆,θ (g) as ∆ → 0: (I) if Cθ does not depend on θ, typically

var∆,θ (g) = ∆−1v−1,θ (g) + O (1)

and there is a universal lower bound for v−1,θ and g is S∆-O if it achieves this
lower bound. With g simple, this is possible only if X is reversible (automatic for
d = 1); for g a martingale estimating function, S∆-O may be obtained using a
base of dimension r = d. (II) By contrast, if Cθ depends on all the p parameters,

var∆,θ (g) = ∆−1v−1,θ (g) + v0,θ (g) + O (∆)

and g is S∆-O provided v−1,θ (g) = 0 (!) and v0,θ (g) attains its universal lower
bound. In this case (II) it is not possible to find simple g that are S∆-O and mar-
tingale estimating functions that are S∆-O require a base of dimension d (d + 3) /2,
e.g. f � (x) of the form xi for 1 ≤ i ≤ d and xixj for 1 ≤ i ≤ j ≤ d.

The purpose of the present study is to find S∆-O estimation functions that
combine ‘simple’ with ‘martingale’ estimating functions,

(1) gk
t,θ (x, y) = tAθh

k
θ (x) +

d∑
i=1

φki
θ (x) (yi − πt,θxi)

for models where the first order conditional moments are known explicitly, i.e.
typically bθ an affine function of x. Such g are S∆-O provided there are functions
Φk

θ such that

hk
θ = Φk

θ , φki
θ = ∂xiΦ

k
θ ,(2)

∂2
xi,xj

Φk
θ =

d∑
i′,j′=1

(
∂θk

Ci′j′
θ

)(
Ci′i

θ

)(−1) (
Cj′j

θ

)(−1)

.

(Warning: for d ≥ 2, a special structure for C and its inverse is of course required
for Φk

θ that satisfy the last condition to exist at all!)
S∆-O estimating functions of the form (1) are simpler in structure and may be

easier to find than the pure martingale estimating functions needed for models of
type (II). To illustrate this, two examples are considered:
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Example 1. A model suggested in the finance literature as a generalization of the
Cox-Ingersoll-Ross process: let d = 1, p = 4, with b(x) = a + bx, σ (x) = σxγ .
Here πt,θx is known but not πt,θx

2, which makes it difficult to obtain S∆-O when
estimating σ2 and γ. But

(
g1

θ , g2
θ

)
of the form (1) with the hk

θ and φki
θ as in (2) is

S∆-O provided

∂xΦ1
θ (x) = x1−2γ , ∂xΦ1

θ (x) = x1−2γ ((1 − 2γ) log x − 1) .

Whether this works in practice, is currently being tested! For estimating a and
b also (type (I) model), one may combine with a S∆-O martingale estimating
function with base f1 (x) = x of dimension 1.

Example 2. Let d ≥ 2 and consider the d-dimensional Ornstein-Uhlenbeck process
with b(x) = bx, C(x) ≡ C. Here θ = (b, C) where b ∈ Rd×d while C ∈ Rd×d is
positive definite. The transition function and therefore the likelihood function is
known explicitly, but for ti that are not equidistant becomes most unpleasant to
maximize. Again, for estimating C, one may use (2) to find gi0j0 of the form (1)
that are S∆-O, viz.

Φi0j0
θ (x) =

∑
1≤i≤j≤d

xixj

[
C

(−1)
i0i C

(−1)
j0j + C

(−1)
i0j C

(−1)
j0i

]
.

For estimating b, combine with the S∆-O martingale estimating function for type
(I) models with base f i (x) = xi of dimension d: this still gives quite an unpleasant
set of equations for estimating the bij , but it is certainly simpler than the likelihood
equations.
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Lévy Copulas for General Lévy Processes
Jan Kallsen

(joint work with Peter Tankov)

Copulas constitute a popular tool to model the dependence of multivariate
random variables e.g. in financial and actuarial applications. By virtue of Sklar’s
theorem, the dependence structure can be considered completely separately from
the marginal laws. Various parametric families of Archimedean copulas allow for
flexible and parsimoneous modelling (cf. e.g. Nelsen 1999).
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In a continuous-time setup, Lévy processes are often applied successfully in
order to describe in particular univariate data in finance and insurance. Parametric
multivariate Lévy models, however, are scarce and typically very limited as far as
the dependence between the components is concerned.

This suggests to transfer the notion of copulas to Lévy processes. In order to ob-
tain a time-independent concept one works with the Lévy-Khinchine triplet. Since
the correlation structure of the Brownian motion part is completely determined
by the covariance matrix, it remains to consider the Lévy measure.

Tankov (2003) introduced a notion of copulas on the level of Lévy measures for
multivariate processes with only positive jumps. In Kallsen and Tankov (2004)
this concept of Lévy copulas is generalized to general Lévy processes X . Similarly
as for random vectors, they are defined as tail integrals of measures with uniform
marginals. An analogue of Sklar’s theorem states that the Lévy measure can be
recovered from the Lévy copula and the marginal Lévy measures. Conversely,
any Lévy copula and any univariate Lévy measures can be combined to yield a
Lévy measure. Archimedean Lévy copulas as e.g. the Clayton family are defined
similarly as in the case of random vectors.

Finally, two limit theorems are discussed which show how to obtain the Lévy
copula and also the Gaussian copula corresponding to the Brownian motion part
of X as a limit of properly rescaled copulas of the random vectors Xt for t → 0.
The proof of these results relies on a characterization of weak convergence in terms
of copula convergence by Lindner and Szimayer (2004).
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Forecasting Daily Variability of the S&P 100 Stock Index Using
Historical, Realised and Implied Volatility Measurements

Siem Jan Koopman
(joint work with Borus Jungbacker and Eugenie Hol)

abstract

The increasing availability of financial market data at intraday frequencies has
not only led to the development of improved volatility measurements but has also
inspired research into their potential value as an information source for volatility
forecasting. In this paper we explore the forecasting value of historical volatility
(extracted from daily return series), of implied volatility (extracted from option
pricing data) and of realised volatility (computed as the sum of squared high fre-
quency returns within a day). First we consider unobserved components and long
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memory models for realised volatility which is regarded as an accurate estimator of
volatility. The predictive abilities of realised volatility models are compared with
those of stochastic volatility models and generalised autoregressive conditional het-
eroskedasticity models for daily return series. These historical volatility models
are extended to include realised and implied volatility measures as explanatory
variables for volatility. The main focus is on forecasting the daily variability of the
Standard & Poor’s 100 stock index series for which trading data (tick by tick) of
almost seven years is analysed. The forecast assessment is based on the hypothesis
of whether a forecast model is outperformed by alternative models. In particular,
we will use superior predictive ability tests to investigate the relative forecast per-
formances of some models. Since volatilities are not observed, realised volatility is
taken as a proxy for actual volatility and is used for computing the forecast error.
A stationary bootstrap procedure is required for computing the test statistic and
its p-value. The empirical results show convincingly that realised volatility models
produce far more accurate volatility forecasts compared to models based on daily
returns. Long memory models seem to provide the most accurate forecasts.

Description of paper

Modelling and forecasting volatility in financial markets has gained much inter-
est in the financial and economic literature. The seminal paper of Engle (1982) has
started the development of a large number of so-called historical volatility models
in which a time-varying volatility process is extracted from financial returns data.
Most volatility models can be regarded as variants of the generalised autoregressive
conditional heteroskedasticity (GARCH) models of Bollerslev (1986), see Boller-
slev et al. (1994) for a review. A rival class of volatility models is associated with
the stochastic volatility (SV) model, see Taylor (1986) and Harvey et al. (1994).
The overviews presented in Shephard (1996) and Ghysels et al. (1996) provide
an excellent introduction to historical volatility models. A more recent review of
volatility models together with an assessment of their forecasting performances is
given by Poon and Granger (2003).

Both GARCH and SV models are regularly used for the analysis of daily, weekly
and monthly returns. ¿From a theoretical perspective these models can also be
applied to returns data measured at higher frequencies (intraday). However, it
is learned from empirical studies that these models can not accomodate all infor-
mation in high frequency returns. The initial work of Andersen and Bollerslev
(1998) and Barndorff-Nielsen and Shephard (2001) show that realised volatility
(a daily volatility measure) as computed by the cumulative sum of squared intra-
day returns is less subject to measurement error and therefore less noisy. This
empirical fact is supported by the theory that the measurement noise contained
in daily squared returns prevents the observation of the volatility process while it
is reduced as the sampling frequency of the return series from which volatility is
calculated is increased, see Andersen, Bollerslev, Diebold and Labys (2001) and
Barndorff-Nielsen and Shephard (2001, 2002). These results also justify the ear-
lier work of French et al. (1987), amongst others. Andersen and Bollerslev (1998)
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show that daily forecasts of exchange rates based on GARCH models, when eval-
uated against realised volatility, are far more accurate than had been previously
assumed. These findings were subsequently confirmed with regards to stock in-
dex data by Blair et al. (2001) and Hansen and Lunde (2003) who examined the
predictive accuracy of volatility forecasts based on GARCH models.

Volatility can be extracted from returns data but it can also be derived from
option pricing data in combination with an option pricing model. Early empiri-
cal studies have indicated that implied volatility, when compared with historical
standard deviations, can be regarded as a good predictor of future volatility. Im-
plied volatility is often referred to as the market’s volatility forecast and is said
to be forward looking as opposed to historical based methods which are by defi-
nition backward looking. Recent study by Blair et al. (2001) shows that accurate
volatility forecasts for returns on stock indices are often based on implied volatil-
ity. Moreover, their research strongly suggests that daily returns contain little or
no incremental information about future volatility.

In this paper we investigate the potential gains of different measures of volatility
and different ways of modelling these data for the purpose of volatility forecasting.
For example, it is suggested to incorporate realised volatility as an explanatory
variable in the variance equation of a daily GARCH model. They found a consid-
erable improvement in the forecasting performance in this way. Another possible
explanatory variable for volatility is implied volatility. We will explore this op-
tion further by incorporating such explanatory variables in both GARCH and SV
models.

Realised volatility can also be modelled directly which is reminiscent of the
methods adopted for monthly volatility in a number of earlier studies. The fore-
casting performance of realised volatility models has been studied, amongst oth-
ers, by Andersen, Bollerslev, Diebold and Ebens (2001) and Barndorff-Nielsen and
Shephard (2004). In the first paper, it is stressed that long memory features are
present in the logarithms of realised volatility and that the autoregressive frac-
tionally integrated moving average (ARFIMA-RV) model is effective in empirical
modelling. The second paper builds on Barndorff-Nielsen and Shephard (2002)
where volatility is represented as a continuous time series process, the sum of in-
dependent Lévy driven Ornstein-Uhlenbeck (OU) processes. This approach forms
the basis of an unobserved components (UC-RV) model for realised volatility that
consists of independent ARMA components with restricted parameters.

The empirical investigation is for the Standard & Poor’s 100 (S&P 100) stock
index series over the period 6 January 1997 to 14 November 2003 with 1725 trading
days. Opening and closure prices for all trading days in the sample are available
in this period together with all price quotes within the days (tick by tick). Further
we have obtained the S&P 100 implied volatility index from the Chicago Board
Options Exchange Market volatility index (VIX) which is known to be a highly
liquid options market. The forecasting performance of various volatility models
for the last 525 days of the data set is the focus of the empirical study. We com-
pare the forecasts of ARFIMA-RV, UC-RV, SV and GARCH volatility models;
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the latter two models are considered with and without explanatory variables. The
forecasts are generated by a rolling-window of 1200 observations through the last
525 daily observations. Forecast comparison is based on four different loss func-
tions including the mean squared error and the mean absolute error statistics.
The fact that a particular loss criterion is smallest for a particular model does
not provide any information about its forecast superiority in other samples of the
data set and in future samples of the data. The results in White (2000) and the
important refinements in Hansen (2001) constitute a framework that constructs
a formal test for superior prediction ability (SPA) of a benchmark or base model
relative to a set of rival models. Since volatility can never be observed, realised
volatility is taken as a proxy for actual volatility and used for determining the
forecast error. This may introduce inconsistencies in the ranking of forecast mod-
els but it is argued that the occurrence of such inconsistencies are unlikely in our
study. The method of computing the SPA test statistic and its p-value requires
bootstrap samples obtained by, for example, the stationary bootstrap procedure
of Politis and Romano (1994). The construction of the test and some details of
implementation are discussed.

The findings of this extensive empirical study are presented by reporting a se-
lection of the most interesting results. The maximum likelihood estimates for the
coefficients of the considered models are reported for the full sample. Although
these estimates are not used for forecasting since all models are re-estimated for
each rolling window sample (starting from 17 October 2001), the reported estima-
tion results provide insights about the S&P 100 data set and the effectiveness of
models to capture volatility information from the data. A selection of the fore-
casting results is also presented but most attention is paid to the SPA results.
It has become clear that the realised volatility models are overwhelmingly supe-
rior and therefore making comparisons between, say, GARCH and ARFIMA-RV
is not useful. We therefore concentrate on the comparison of models within the
two classes of realised volatility models and historical volatility models. It will be
concluded that both the ARFIMA-RV and the SV model with realised volatility
as the explanatory variable are superior within their classes for the forecasting of
S&P 100 volatility. To get some insight in how forecasts evolve over time in our
study, in Figure 1 we present one-step ahead forecasts for the S&P 100 volatility
between 9 September 2002 and 18 November 2002 (51 trading days).

References

[1] Andersen, T.G. and Bollerslev, T. (1998): Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts. Internat. Econom. Rev. 39, 885–905.

[2] Andersen, T.G., Bollerslev, T., Diebold, F.X., and Ebens, H. (2001): The distribution of
realized stock return volatility. Journal of Financial Economics 61, 43–76.

[3] Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2001): The distribution of
exchange rate volatility. J. Amer. Statist. Assoc. 96, 42–55.

[4] Barndorff-Nielsen, O.E. and Shephard, N. (2001): Non-Gaussian OU based models and some
of their uses in financial economics (with discussion). J. R. Stat. Soc. Ser. B 63, 167–241.

[5] Barndorff-Nielsen, O.E. and Shephard, N. (2002): Econometric analysis of realised volatility
and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B 64, 253–280.



Statistics in Finance 147

2.5

5.0

7.5

Sep 2002 Nov 2002

2.5

5.0

7.5

Sep 2002 Nov 2002

2

4

6

2

4

6

Figure 1. Realised volatility (as dots) and one-day ahead volatil-
ity forecasts from (i) GARCH (solid) and GARCH with RV
(dashed), (ii) SV (solid) and SV with RV (dashed), (iii) UC-RV1
(solid) and UC-RV2 (dashed) and (iv) ARFIMA-RV (solid) and
log ARFIMA-RV (dashed) models for the period between 9 Sep-
tember 2002 and 18 November 2002 (day 225 to 275).
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Leroux’s method for General Hidden Markov Models
and Stochastic Volatility Models

Catherine Larédo
(joint work with Valentine Genon-Catalot)

Parametric inference for Hidden Markov Models (H.M.M.) has been widely in-
vestigated, especially in the last decade. The observed process (Zn) is modelled
via an unobserved Markov chain (Un). When studying the statistical properties of
H.M.M.s, a difficulty arises since the exact likelihood cannot be explicitly calcu-
lated. As a consequence, many authors have studied approximations by means of
numerical and simulation techniques (see for instance Del Moral et al., 2001; Pitt
and Shephard, 1999; Durbin and Koopman, 1997).

The theoretical study of the exact maximum likelihood has been investigated
for finite state space (see Leroux, 1992; Bickel and Ritov, 1996; Bickel et al., 1998)
and for compact state space (see Jensen and Petersen, 1999; Douc and Matias,
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2001). In previous papers (Genon-Catalot et al., 1998, 1999, 2000, 2003), we have
investigated some statistical properties of discretely observed Stochastic Volatility
models (S.V.). When the sampling interval is fixed, stochastic volatility models
are H.M.M.s, for which the hidden chain has non-compact state space.

We extend here a method of Leroux (1992) to study the likelihood and related
contrast processes for general hidden Markov models. We define the entropy asso-
ciated to these models and characterize the limit of the loglikelihood and related
processes, under specific assumptions.

Generic examples of such processes are obtained setting Zn = G(Un, εn), where
G : U ×Rl → R is a known function, (Un) is a strictly stationary Markov chain on
U , and (εn) a sequence of i.i.d random variables on Rl, independent of (Un) with
known density. These methods are applied to the Kalman filter (G(u, v) = u + v
and (Un) is AR(1)), to stochastic volatility models (G(u, v) =

√
u × v and (Un) a

Markov chain in R2), and to the multiplicative explicit filter proposed by Genon-
Catalot and Kessler (2004).

This research was supported in part by Dynstoch European Network.
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A Continuous Time GARCH(1,1) Process
Alexander Lindner

(joint work with Claudia Klüppelberg and Ross Maller)

1. Introduction

Discrete time GARCH(1,1) models are commonly used to model financial time
series like asset prices and exchange rates. They capture many of the so-called styl-
ized features such as heavy tails and uncorrelatedness without being independent.
The latter is e.g. manifested in the nonzero autocorrelation of the squared sequence.
Various attempts have been made to capture these features in a continuous time
model such as diffusion approximations (see e.g. Duan (1996) or Nelson (1990))
and other stochastic volatility models, as e.g. in Anh et al. (2002) or Barndorff-
Nielsen and Shephard (2001). These models have in common that they are driven
by two random processes. Here, we propose a continuous time GARCH(1,1) model
with only one source of randomness, capturing the stylized features by the depen-
dence structure alone. The talk is based on results of Klüppelberg et al. (2004).

2. From discrete to continuous GARCH

The discrete time GARCH(1,1) process is given by

Yn = σnεn, n ∈ N0, where σ2
n = β + λY 2

n−1 + δσ2
n−1

with constants β, δ > 0, λ ≥ 0 and an iid sequence (εn)n∈N0 , independent of σ2
0 .

Then σn can be written as

σ2
n = β

n−1∑
i=0

n−1∏
j=i+1

(δ + λε2
j ) + σ2

0

n−1∏
j=0

(δ + λε2
j)

= β

∫ n

0

exp

 n−1∑
j=�s	+1

log(δ + λε2
j)

 ds + σ2
0 exp

n−1∑
j=0

log(δ + λε2
j )

 , n ∈ N.(1)

This suggests, in continuous time, to replace the noise variables εn by the incre-
ments ∆Lt = Lt−Lt− of a Lévy process (Lt)t≥0. Keep β, δ > 0, λ ≥ 0, and define
the process (Xt)t≥0 by

Xt = −t log δ −
∑

0<s≤t

log(1 +
λ

δ
(∆Ls)2), t ≥ 0.

Then, in analogy with (1), for a finite random variable σ0 ≥ 0, independent of
(Lt)t≥0, define the left-continuous volatility process (σt)t≥0 by

(2) σ2
t =

(
β

∫ t

0

eXsds + σ2
0

)
e−Xt , t ≥ 0,
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and the continuous time GARCH (“COGARCH”) process (Gt)t≥0 as the cádlág
process satisfying

(3) dGt = σt dLt, t ≥ 0, G0 = 0.

Thus G jumps as the same times as L does, and has jumps of size ∆Gt = σt∆Lt.

3. Properties of the model

In this section we give some of the properties of model (2), (3). First, we note
that (Xt)t≥0 defines a spectrally negative Lévy process of bounded variation with
drift γX,0 = − log δ. For the volatility process, it holds:

Proposition 1. The process (σ2
t )t≥0 satisfies the stochastic differential equation

dσ2
t+ = βdt + σ2

t eXt−d(e−Xt) , t > 0 ,

and we have

σ2
t = βt + log δ

∫ t

0

σ2
sds + (λ/δ)

∑
0<s<t

σ2
s(∆Ls)2 + σ2

0 , t ≥ 0.

Denote by ΠL the Lévy measure of (Lt)t≥0, and assume that it is nonzero.
Then we can give necessary and sufficient conditions for strict stationarity of the
volatility process (σ2

t )t≥0.

Theorem 2. The volatility process (σ2
t )t≥0 is a time homogeneous Markov process.

The random variable σ0 can be chosen such that (σ2
t )t≥0 is strictly stationary, if

and only if ∫ ∞

−∞
log(1 +

λ

δ
y2)ΠL(dy) < − log δ.

In that case, for any k ∈ N, σ2
t has finite k’th moment if and only if EL2k

1 < ∞
and

Ψ(k) := k log δ +
∫ ∞

−∞

(
(1 +

λ

δ
y2)k − 1

)
ΠL(dy) < 0.

If EL4
1 < ∞ and Ψ(2) < 0, then the autocovariance function of σ2

t decreases
exponentially with the lag.

Using Theorem 2, it can be shown that for any Lévy process (Lt)t≥0 the station-
ary version of the volatility process (σ2

t )t≥0 has certain infinite moments. In that
sense, the volatility process is heavy tailed. For the COGARCH process (Gt)t≥0

itself, we have:

Theorem 3. Assume (σ2
t )t≥0 is the strictly stationary volatility process. Then

the integrated GARCH(1,1) process (Gt)t≥0 has stationary increments. Assume
further that EL8

1 < ∞ and Ψ(4) < 0, that (Lt)t≥0 is a quadratic pure jump process
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(i.e. has no Gaussian component) and that EL1 = 0,
∫

R
y3ΠL(dy) = 0. Let r > 0

be fixed. Then there exists a positive constant Cr such that for any t ≥ 0 and
h ≥ r:

Cov(Gt+r − Gt, Gt+r+h − Gt+h) = 0,

Cov((Gt+r − Gt)2, (Gt+r+h − Gt+h)2) = Cre
hΨ(1).

Theorem 3 shows, in analogy with the discrete time GARCH model, that the
increments of (Gt)t≥0 are uncorrelated, but that their squares are not.
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The Large-Sample Distribution of the Sharpe Ratio
R. A. Maller

1. Introduction and Summary

In the Markowitz efficient portfolio paradigm, we maximise the expected return
on a portfolio of assets for a given level of “risk”, as measured by the standard
deviation of the portfolio return. Among the set of portfolios derived in this way,
we can select the one which has the maximum return to risk tradeoff, as measured
by the ratio of expected return (excess over the risk-free rate) to standard deviation
of return, that is, the portfolio with maximum Sharpe ratio. This portfolio has
desirable optimality properties and is important both for purposes of allocation of
resources and for the performance evaluation of portfolios.

Given sample estimates of the mean vector and covariance matrix of the excess
returns which are asymptotically normally distributed, we might expect to get as-
ymptotic normality of the maximised Sharpe ratio. But because the maximisation
procedure means that we are not dealing with just a simple ratio of mean to stan-
dard deviation, this is not true in general, though it is in some cases. We are able
to give a complete description of the large-sample behaviour of the Sharpe ratio for
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a wide class of portfolios, and (when there are restrictions on short-selling), a par-
tial solution which still covers some useful situations – but we merely summarise
the results here. (For details see Maller, 2004.)

Although not always asymptotically normal, the Sharpe ratio is in the domain
of attraction of the normal in the cases we study, so the usual kinds of statistical
analyses which are applied to the Sharpe ratio are valid, at least in large samples.

2. Background – the Markowitz paradigm

We are given a d–vector µ̃ of expected asset returns and an associated d × d
positive definite covariance matrix Σ. The excess returns are:

µ = µ̃ − ri,

where r is the risk-free rate and i is a d-vector each of whose elements is 1. The
optimisation problem is to choose a d–vector x of asset weights such that the
portfolio standard deviation

σp =
√

xT Σx

is minimised for a specified expected return,

µp = xT µ

(or, equivalently, µp is maximised for a specified level of risk, σp.) ¿From pairs
(µp, σp) constructed in this way we can trace out an efficient frontier, representing
portfolios whose return/risk tradeoff is optimal in the mean–variance sense.

The vector x will be further restricted to a class C, say, which must include
{iT x = 1} (the “total allocation constraint”). We only consider C of the form

CA = R
d ∩ {x : iT x = 1

}
,

or
C+ = R

d ∩ {x : x ≥ 0, iT x = 1
}

.

In CA, the components of x may be negative – short sales of assets are allowed. In
C+, the components of x are non-negative – short sales of assets are not allowed.

The Sharpe ratio (SR) of a portfolio (or a single asset) is its expected (ex-
cess) return divided by its standard deviation. We ask for the portfolio with the
maximum SR along the efficient frontier. This is the portfolio with the highest
return/risk tradeoff achievable from the assets: the optimal risky portfolio.

The basics of the optimisation problem have been well understood since the
seminal work of Markowitz (1952, 1991). When short sales are allowed and

(1) iT Σ−1µ > 0,

the optimal risky portfolio is located at the point of tangency of a line from the
origin (since we have excess returns) to the efficient frontier. But when

(2) iT Σ−1µ < 0

following this method gives a portfolio with the minimum SR. Maller and Turk-
ington (2002) showed how to find the portfolio with the maximum SR achievable
in this case. The case in (2) is not by any means pathological.
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Suppose first that C = CA, so we wish to maximise the function

f(x) =
xT µ√
xT Σx

for variations in x, under the sole constraint that iT x = 1. An easy analysis gives

sup
iT x=1

|f(x)| ≤
√

µT Σ−1µ,

and, supposing now that (1) holds, we get

sup
iT x=1

f(x) = +
√

µT Σ−1µ.

This is achieved for the allocation

xmax =
Σ

−1
µ

iT Σ−1µ
.

This is a textbook solution (e.g., Elton and Gruber, 1995).
By contrast, when (2) holds, the maximum of f(x) occurs at infinite values of

x, having value (Maller and Turkington, 2002)

(3) +
√

µT Σ−1µ − (iT Σ−1µ)2/iT Σ−1i.

The term under the square root sign of (3) is non-negative, and is zero if and only
if µ is proportional to i, i.e., if the excess returns of all N assets are equal. Thus
we can expect to achieve a positive SR regardless of the value of iT Σ−1µ.

3. Sample Statistics

In practise we will have estimates

µ̂n = (µ̂n1, . . . , µ̂nd),

of the mean (excess) returns calculated from a sample of size n, and an estimate
Σ̂n = (σ̂nij) of a positive definite matrix. We carry out a Markowitz (1952) optimal
allocation of funds among the securities. For our analysis Σ̂n need not be related
to the covariance matrix of the returns, though in practise it usually is. (We keep
d ≥ 2 from now on.)

The sample Sharpe ratio is defined as

ŜRn = sup
x∈C

 xT µ̂n√
xT Σ̂nx

 .

Note that we maximise the ratio with regard to sign, as advocated, eg. by Sharpe
(1994), rather than taking the absolute value or square, as is occasionally done.
The statistic ŜRn provides one way of summarising the risk/return tradeoff of
the optimal portfolio. Comparisons between portfolios can be made by comparing
their Sharpe ratios. So it’s natural to ask how the precision of estimation of µ̂n

and Σ̂n is transferred to ŜRn.
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It is relatively easy to show that the estimator is consistent for any choice of
C if based on consistent estimators of µ and Σ. (This is not quite trivial to prove
since the supremum can occur at infinite values of x. But we omit details here.)
We might further guess that asymptotic normality of µ̂n and Σ̂n, i.e., assuming

√
n
(
µ̂n − µ, vech(Σ̂n − Σ)

)
D→ N(0, ζ),

where ζ is a positive definite matrix, will imply asymptotic normality of ŜRn.
This is not the case in general, even for the class CA, though it is sometimes.
Specifically, when C = CA = Rd ∩ {iT x = 1

}
, and µ �= 0, then we can show that,

as n → ∞, √
n(ŜRn − SR) D→ N(0, σ2

CA
)

for some σ2
CA

> 1 (depending on µ, Σ, and ζ), where SR is the population Sharpe
ratio. When µ = 0 the limit of

√
n(ŜRn − SR) can be explicitly worked out for

CA, and is not normal (in fact it is a non-negative random variable and depends
on the unknown Σ). Heuristically, what happens when µ = 0 is that the sample
estimate µ̂ can oscillate around zero, alternately bringing into play the situations
in (1) and (2).

Finally, when C = C+, and further assuming that Σ is diagonal, the limit of√
n(ŜRn−SR) can again be worked out, and again is not normal in all situations.

Especially, the case µ = 0 leads to non-normality, but so do some other values of
µ, in the C+ case.

Although not always asymptotically normal, the Sharpe ratio is in the domain
of attraction of the normal in the cases we study. Details of these results, together
with some practical implications of the analyses, are in Maller (2004).
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The t Copula and Related Copulas
Alexander J. McNeil

(joint work with Stefano Demarta)

The t copula (see for example Embrechts et al. (2001) or Fang and Fang (2002))
can be thought of as representing the dependence structure implicit in a multi-
variate t distribution. It is a model which has received much recent attention,
particularly in the context of modelling multivariate financial return data (for ex-
ample daily relative or logarithmic price changes on a number stocks). A number
of recent papers such as Mashal and Zeevi (2002) and Breymann et al. (2003)
have shown that the empirical fit of the t copula is generally superior to that of
the so-called Gaussian copula, the dependence structure of the multivariate nor-
mal distribution. One reason for this is the ability of the t copula to capture better
the phenomenon of dependent extreme values, which is often observed in financial
return data.

The objective of this talk is to bring together what is known about the t copula,
particularly with regard to its extremal properties, to present some extensions of
the t copula, and to describe copulas that are related to the t copula through
extreme value theory.

The two new extensions of the t copula are known respectively as the skewed
(or asymmetric) t copula and the grouped t copula. Both are constructed by
generalising the Gaussian mixture construction of the multivariate t distribution.
The skewed t copula is obtained as the copula of a mean-variance mixture of
multivariate normals using an inverse gamma mixing distribution, and is a member
of the family of generalised hyperbolic copulas. The grouped t copula is the copula
of a distribution that is obtained by mixing different subvectors of a Gaussian
vector with different inverse-gamma distributed mixing variables, all of which are
perfectly positively dependent. Both copulas are interesting for applied work as
they suggest ways of incoporating more heterogeneity into the modelling of tail-
dependent risks.

The two new copulas arising from extreme value theory are known as the t
extreme value (t-EV) copula and the t lower tail limit copula. The former is the
limiting copula of componentwise maxima of t distributed random vectors; the
latter is the limiting copula of bivariate observations from a t distribution that are
conditioned to lie below some joint threshold that is progressively lowered. Both
these copulas may be approximated for practical purposes by simpler, better-
known copulas, these being the Gumbel and Clayton copulas respectively. They
are thus of more theoretical than practical interest.

The finding that the Clayton copula may successfully approximate the t lower
tail copula provides some support for the empirical finding by Breymann et al. (2003)
that bivariate exchange rate return data are consistent with a t copula as over-
all model and a Clayton copula for the most extreme negative returns at many
different sampling frequencies.
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Stable Limits for GARCH Parameter Estimation
Thomas Mikosch

(joint work with Daniel Straumann)

This talk is based on joint work with Daniel Straumann (ETH Zurich); see [9].
We consider a GARCH(p, q) (generalized autoregressive conditionally hetero-

scedactic process of order (p, q)) given by the equations

Xt = σt Zt , Xt = α0 +
p∑

j=1

αj X2
t−j +

q∑
k=1

βk σ2
t−k , t ∈ Z ,(1)

for non-negative coefficients αj and βk. This process is one of the standard models
for returns of speculative prices. It is a well-known empirical fact that returns are
heavy-tailed. The GARCH model allows for modeling those tails either by heavy
tails of the σ- or Z-processes.

Regular variation and stochastic recurrence equations

A theoretical means to describe heavy tails in the univariate and multivariate
cases is regular variaton: a random vector X ∈ Rd and its distribution are regularly
varying with index α ≥ 0 if there exists Θ ∈ Sd−1 such that for any t > 0, S ⊂ Sd−1

with P (Θ ∈ ∂S) = 0,

lim
x→∞

P
(
|X| > tx , X̃ ∈ S

)
P (|X| > x)

= t−α P (Θ ∈ S) ,

where x̃ = x/|x|. The limiting distribution PΘ is the spectral measure of X.
The notion of multivariate regular variation is a very natural one. It is used

as necessary and sufficient domain of attraction condition for partial sums of iid
random vectors with infinite variance stable weak limits ([12]) and for component-
wise maxima of iid random vectors ([11]). Moreover, under mild conditions on the
sequence of iid non-negative random vectors ((Ai ,Bi)), the stationary solution
(Xt) to the stochastic recurrence equation

Xt = At Xt−1 + Bt , t ∈ Z .(2)
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is regularly varying in the sense that

P ((x̃ ,X) > x) ∼ c(x̃)x−α , x → ∞, , x̃ ∈ S
d−1 ,(3)

for some α > 0 ([7]). It is not difficult to verify that the vector

Xt =
(
σ2

t+1, . . . , σ
2
t−q+2, X

2
t , . . . , X2

t−p+2

)′
,

which is constructed from the GARCH(p.q) process (1) satisfies (2) and, hence, (3)
applies. See [8] for a review on GARCH models, regular variation and stochastic
recurrence equations.

Gaussian maximum likelihood estimation with heavy-tailed

innovations

Gaussian maximum likelihood for the GARCH parameters αi and βj is based on
the maximization of the log-likelihood function of a sample X1, . . . , Xn (assuming
the Zt’s iid standard normal)

Ln(θ) = − 1
n

n∑
t=1

[log(σ2
t (θ)) +

σ2
t (θ0)Z2

t

σ2
t (θ)

] ,

with respect to the GARCH parameter θ, where θ0 is the true parameter of the
GARCH model, underlying the observations, and θ̂n is the resulting Gaussian
maximum likelihood estimator. Taylor expansion of L′

n(θ̂n) at θ0 yields

θ̂n − θ0 = −(L′′
n(θn))−1 L′

n(θ0) ,

for some θn with |θ0 − θn| ≤ |θ0 − θ̂n|. By the ergodic theorem, L′′
n(θn) → B0 a.s.

for some deterministic matrix B0, and therefore weak limit theory for θ̂n reduces
to

L′
n(θ0) =

1
n

n∑
t=1

(σ2
t (θ0))′

σ2
t (θ0)

(Z2
t − 1) =

1
n

n∑
t=1

Gt Yt .

If EZ4
1 < ∞ the CLT for stationary ergodic martingale differences ([3]) gives

asymptotic normality for θ̂n

√
n (θ̂n − θ0)

d→ N(0,−E(Z4
1 − 1)B−1

0 ) .(4)

This was proved in [2]. An interesting observation as regards (4) is that the
GARCH structure is not essential for the limit theorem (4): as long as Gt =
(σ2

t (θ0))′/σ2
t (θ0) is stationary ergodic and predictable, and E|G0Y0|2 < ∞ the

CLT applies. In the GARCH context it is remarkable, that G0 has finite moments
of all orders (see [2]) and therefore the regular variation of the Xt’s (see the previous
section) is not essential for the asymptotic theory of θ̂n, even if var(X0) = ∞.

Recently, [6] have extended (4) to the case when EZ4
1 = ∞. Assuming that

Z1 is regularly varying with index α ∈ (2, 4), they show that infinite variance
stable limits appear in (4). In the paper [9] it is shown that such limits appear for
general models Xt = σtZt, if (σt) is predictable, stationary ergodic, β-mixing with
geometric rate, (Zt) is an iid sequence and regularly varying with index α ∈ (2, 4)
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and if E|G0|(α/2)+δ < ∞ for some δ > 0. The latter conditions are satisfied for
the GARCH model.

The results of [9] are based on an analogue to the CLT for stationary ergodic
sequences in the case of infinite variance summands Xt which was proved in [4, 5].
Assuming that (Xt) satisfies a mild mixing condition (milder than strong mixing)
and that its finite-dimensional distributions are regularly varying with index κ ∈
(0, 2), a−1

n

∑n
t=1 Xt (suitably centered) weakly converges to a stable limit, where

P (|X0| > an) ∼ n−1.
In particular, it applies to summands of the form Xt = GtYt for vector-valued

predictable stationary ergodic Gt with E|G0|κ+δ < ∞, some δ > 0, and reg-
ularly varying Zt with index α = 2κ ∈ (2, 4). Indeed, then regular variation
of the finite-dimensional distributions is conveniently verified. If one has a par-
ticular structure such as GARCH, the verification of the β-mixing condition for
Gt = ((σ2

t (θ0))′/σ2
t (θ0)) can be derived from β-mixing for ((σ2

t )′, σ2
t ). In the

GARCH case, this condition can be verified by applying a result of [10] on mixing
properties of solutions to stochastic recurrence equations (2): then (σ2

t , (σ2
t )′) can

be embedded in such a stochastic recurrence equation.
The CLT for the GARCH Gaussian maximum likelihood estimator of θ0 when

EZ4
1 < ∞ has

√
n-rates of convergence. This is in contrast to the case when

Z1 is regularly varying with index α ∈ (2, 4), where the rate of convergence is of
the order n1−2/α. This means that slow rates of convergence and unusually wide
confidence bands for the parameter estimators appear.
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The Effects of Random and Discrete Sampling when Estimating
Continuous-Time Diffusions

Per Mykland
(joint work with Yacine Äıt-Sahalia)

Diffusion models, and their extensions such as jump-diffusions and Markov mod-
els driven by Lévy processes, are essential tools for much of theoretical asset pric-
ing. Estimating these models from discrete time observations has become in recent
years an active area of research in econometrics and statistics. Beyond the choice
of inference strategy, an important debate in this area concerns the question of
what sampling scheme to use, if a choice is available, and in any event what to
do with the sampling times. The most straightforward thing to do, in accordance
with the usual low-frequency data collection procedures in finance, is to view the
sampling as occurring at fixed discrete time intervals, such as a day or a week.
In many circumstances, however, this is not realistic. In fact, all transaction-level
data are available at irregularly and randomly spaced times.

Not only are the data randomly spaced in time, but whenever a theoretical
model is spelled out in continuous time, its estimation necessarily relies on dis-
cretely sampled data. By now, there is a good understanding in the literature of
the implications of sampling discreteness, and how to design estimation methods
that correct for it. The objective in this work is to understand the additional
effect that the randomness of the sampling intervals might have when estimating
a continuous-time model with discrete data. Specifically, we seek to disentangle
the effect of the sampling randomness from the effect of the sampling discreteness,
and to compare their relative magnitudes. We also examine the effect of simply
ignoring the sampling randomness. We achieve this by comparing the properties
of three likelihood-based estimators, which make different use of the observations
on the state process and the times at which these observations have been recorded.
We design these estimators in such a way that each one of them is subject to a
specific subset of the effects we wish to measure. As a result, the differences in
their properties allow us to zero in and isolate these different effects.

Our main conclusion is that the loss from not observing, or not using, the sam-
pling intervals, will be at least as great, and often substantially greater, than the
loss due to the fact that the data are discrete rather than continuous. While cor-
recting for the latter effect has been the main focus of the literature in recent years,
our results suggest however that empirical researchers using randomly spaced data
should pay as much attention, if not more, to sampling randomness as they do to
sampling discreteness.

The second paper develops tools for analyzing similar problems in the context of
non-likelihood inference (estimating or moment equations), and studies specifically
the effect of using approximations such as the Euler scheme.

A further contribution of the work is the development of a set of tools that
allows these calculations to be performed in closed form.
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Tail Behaviour of the Stationary Distribution
of a Random Coefficient Autoregressive Model

Serguei Pergamenchtchikov
(joint work with Claudia Klüppelberg)

We consider the following autoregressive process with ARCH errors.

(1) xn = a1xn−1 + · · · + aqxn−q +
√

1 + σ2
1x2

n−1 + · · · + σ2
qx2

n−q εn , n ∈ N ,

where (εn) are i.i.d. N (0, 1). We are interested in the existence of a stationary
version of the process (xn)n∈N, represented by a random variable (rv) x∞ and its
properties. We investigate the tail behaviour

(2) P(x∞ > t) as t → ∞ .

This is, in particular, the first step for an investigation of the extremal behaviour
of the corresponding stationary process. For q = 1 the model (1) was investigated
in Borkovec and Klüppelberg [3] by direct analytic methods. For the general case
q > 1 it is not possible to apply this approach since in this case the model (1) is
a non-linear equation with respect to xn. One can, however, show (see Lemma
2.7 in [12]) that this model is in distribution equivalent to a random coefficient
autoregressive process

(3) yn = α1nyn−1 + · · · + αqnyn−q + ξn , n ∈ N ,

where the independent coefficient sequences (αin , n ≥ 1) are i.i.d. and αin ∼
N (ai, σ

2
i ) for each 1 ≤ i ≤ q. Moreover the noise variables (ξn)n∈N are an i.i.d.

N (0, 1) sequence independent of (αin , n ≥ 1)1≤i≤q. Consequently, the problem
(2) is equivalent to the investigation of the tail behaviour of a stationary version
of the process (3) represented by a random variable y∞.

To obtain the asymptotic behaviour of the tail of y∞ we embed (yn)n∈N into a
multivariate set-up.

Set Yn = (yn, . . . , yn−q+1)′. Then the multivariate process (Yn) can be consid-
ered in the much wider context of random recurrence equations of the type

Yn = AnYn−1 + ζn , n ∈ N ,(4)

where ζn = (ξn, 0, . . . , 0)′ and

(5) An =
(

α1n · · · αqn

Iq−1 0

)
, n ∈ N ,

where Iq−1 denotes the identity matrix of order q − 1.
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Such equations play an important role in many applications as e.g. in queueing;
see Brandt, Franken and Lisek [4] and in financial time series; see Engle [7]. See
also Diaconis and Freedman [5] for an interesting review article with a wealth of
examples.

If the Markov process defined in (4) has a stationary distribution and Y has
this stationary distribution, then certain results are known on the tail behaviour
of Y . In the one-dimensional case (q = 1) Goldie [8] has derived the tail behaviour
of Y in a very elegant way by a renewal type argument: the tail decreases like a
power-law. For the multivariate model for the matrix An with positive elements
Kesten [9] shows that for each non-zero vector x ∈ Rq there exists some λ > 0
such that limt→∞ tλ P(x′Y > t) < ∞.

However, our model (4) does not satisfy the positivity condition on the matrices
An. Consequently, we derived a new limiting theorem for the model (4) with the
matrix of special form (5) in the spirit of Kesten’s results. The following is our
main result.

Theorem 1. We assume that the eigenvalues of the matrix EA1⊗ A1 have moduli
less than one and a2

q + σ2
q > 0. Then the stationary distribution Y of the process

(4) satisfies

lim
t→∞ tλP(x′Y > t) = h(x) , x ∈ S = {z ∈ R

q : |z| = 1} .

The function h(·) is strictly positive and continuous on S and the parameter λ is
given as the unique positive solution of

(6) κ(λ) = 1 ,

where for some probability measure ν on S

κ(λ) := lim
n→∞

(
E|A1 · · ·An|λ

)1/n
=
∫

S

E |x′A1|λ ν(x. ) ,

and the solution of (6) satisfies λ > 2.
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[11] Klüppelberg, C. and Pergamenchtchikov, S. (2003): Renewal theory for functionals of a
Markov chain with compact state space. Ann. Probab. 31 (4), 2270 - 2300
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Multivariate Extremes, Max-Stable Processes and Financial Risk
Richard L. Smith

1. Introduction

Extreme value theory has become increasingly applied in mathematical finance,
especially in conjunction with “Value at Risk”calculations (Embrechts et al. 1997,
Finkenstädt and Rootzén, 2003). Univariate extreme value theory is fairly well
understood by now, with extensive development of the threshold approach, which
is based on the Generalized Pareto distribution (GPD) fitted to exceedances over
some high threshold (Davison and Smith 1991, Coles 2001). These methods are
applicable to financial time series provided some account is taken of volatility. One
approach to that is due to McNeil and Frey (1999), who proposed fitting a GARCH
model to financial time series with residuals from an unknown distribution, whose
tail was analyzed using threshold methods.

However, there has been relatively less work on dependence in the extremes,
by which we mean both temporal dependence in a single time series, and cross-
dependence between time series. Multivariate extreme value theory and its gener-
alization, the theory of max-stable processes, are natural candidates to model the
joint extremal behaviour of several financial time series. This is the subject of the
present paper.

2. Multivariate Extreme Value Theory

Suppose Yi = (Yi1, ...., YiD), i = 1, 2, ... is an i.i.d. sequence of D-dimensional
random vectors. For each d ∈ {1, ..., D}, let Mnd = max{Yid, 1 ≤ i ≤ n}.

If normalizing constants and, bnd and a D-dimensional distribution function G
exist such that as n → ∞,

Pr
{

Mnd − bnd

and
≤ xd, 1 ≤ d ≤ D

}
→ G(x1, ..., xD)

then G is called a multivariate extreme value distribution.
There are various representations of multivariate extreme value distributions

due to Pickands, de Haan and Resnick, Deheuvels, etc. (Resnick (1987) has a
comprehensive account) but these are too general to be directly applicable to
statistics. Some authors (e.g. Tawn, Coles) have used parametric subfamilies
while others (e.g. de Haan) used nonparametric approaches, but it is not easy to
apply any of the existing methods to series in very high dimensions. This motivates
an alternative approach.
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3. Max-Stable Processes

Max-stable processes are the infinite-dimensional generalization of multivariate
extreme value distributions. They are a natural framework within which to study
extremal properties of multivariate time series.

Suppose {Yid, i = 0,±1,±2, d = 1, ..., D} is a D-dimensional time series with
discrete time index i. Without loss of generality, we may assume Pr{Yid ≤ y} =
e−1/y for 0 < y < ∞ (the unit Fréchet distribution). In practice, this would be
achieved only above a given threshold, by first fitting a univariate threshold model
to the marginal distributions.

The process is max-stable if for any n ≥ 1, N ≥ 1, yid ≥ 0 for i = 1, ..., n, d =
1, ..., D,

PrN {Yid ≤ Nyid, 1 ≤ i ≤ n, 1 ≤ d ≤ D} = Pr {Yid ≤ yid, 1 ≤ i ≤ n, 1 ≤ d ≤ D} .

A subclass of max-stable consists of multivariate maxima of moving maxima
(M4 for short) defined by

Yid =
∞

max
�=1

∞
max

k=−∞
a�,k,dZ�,i−k,

where Z�,i are independent unit Fréchet for all �, i; a�,k,d ≥ 0; and∑∞
�=1

∑∞
k=−∞ a�,k,d = 1, d = 1, ..., D. For this process,

Pr {Yid ≤ yid, i = 1, ..., n, d = 1, ..., D} = exp

(
−

∞∑
�=1

∞∑
m=−∞

n−m
max

k=1−m

D
max
d=1

a�,k,d

ym+k,d

)
.

Smith and Weissman (1996), generalizing Deheuvels (1983), showed that subject
to some non-degeneracy conditions, any max-stable process may be approximated
arbitrarily closely by an M4 processes.

Statistically, however, these processes are hard to estimate, because of the pres-
ence of “signature patterns” of the form

Yid = a�∗,i−m∗,dZ�∗,m∗ , i = 1, ..., n, d = 1, ..., D,

which arise when a single very large value Z�∗,m∗ dominates all its neighbors. If
these relations hold, it is possible to derive very precise estimates of the coeffi-
cients (Zhang and Smith, 2004a) but this approach is not robust against even tiny
deviations from the model. For this reason, it is not a practical approach with real
data.

Some alternative estimation strategies include
(a): estimation based on the empirical distribution function (Hall, Peng and

Yao, 2002; Zhang and Smith, 2004b);
(b): assuming the observed process is of the form Xid = Yid + εid with

Y an M4 process and {εid} random noise; it may then be possible to
filter out the noise by Monte Carlo methods. In ongoing PhD research,
Francisco Chamú of the University of North Carolina has been exploring
this approach;



Statistics in Finance 165

(c): a more ad hoc method in which observed signature patterns are grouped
into clusters and the coefficients of the M4 process inferred from the cluster
centers (Smith 2003).

PF day 0 v. GE day 0
(35,107)

PF day 0 v. CI day 0
(31,91)

GE day 0 v. CI day 0
(31,122)

PF day 0 v. GE day 1
(35,36)

PF day 0 v. CI day 1
(31,33)

GE day 0 v. CI day 1
(31,47)

PF day 0 v. GE day -1
(35,43)

PF day 0 v. CI day -1
(31,41)

GE day 0 v. CI day -1
(31,42)

PF day 0 v. PF day 1
(35,39)

GE day 0 v. GE day 1
(36,43)

CI day 0 v. CI day 1
(27,35)

Figure 1. Scatterplots of standardized exceedances on unit
Fréchet scale. The three stocks are Pfizer (PF), General Electric
(GE) and Citibank (CI); plotted are the values on the current day
(day 0) versus current day, following day (day 1) and previous day
(day –1). The two numbers displayed on each plot are the actual
number of joint exceedances (second number), and the expected
value of the number of joint exceedances if the two variables were
independent (first number). It can be seen that for all three “day
0 v.day 0” plots, there is substantial dependence between the ex-
tremes of the two series. For plots of day 0 against day 1 or day
–1, however, the evidence for dependence is much less clear-cut.

4. Application to Financial Time Series

We consider 20 years of financial returns data from three stocks (Pfizer, GE and
Citibank). For each series, the GARCH(1,1) model is used to estimate volatility,
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and the process standardized by dividing returns by the estimated volatility. They
are then transformed to unit Fréchet margins (above a threshold) by applying uni-
variate extreme value technology. Pairwise correlation plots of the Fréchet stan-
dardized exceedances (Fig. 1) show substantial dependence among the three series,
which we model using an M4 process. In this application, we estimated coefficients
a�,k,d which are assumed non-zero for � = 1, 2, ..., 25 and k = −2,−1, 0, 1, 2.

Finally, a cross-validation exercise shows that the model provides good estima-
tion of some simple functionals of the joint extremes. One possible functional is
the probability that, over a window of 10 trading days (a typical time window in
Value at Risk calculations), at least one of the three series crosses a given target
value. Fig. 2 shows both an empirical crossing rate and a cross-validated model-
generated crossing rate (Smith, 2003) as the target value increases; the agreement
is excellent until the very highest target values, where neither method can be
expected to give accurate results.

Target Value
0.05 0.10 0.15 0.20

10

50
100

500
1000

Count of Exceedances

Figure 2. Plot of estimated number of expected exceedances of
a given target value for the maximumof the daily returns over
all 3 stocks over a 10-day window. Solid curve: cross-validated
model-based estimate. Dashed curve: empirical value.
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A Flexible Class of Stochastic Volatility Models of the Diffusion-Type
Michael Sørensen

Stochastic volatility models of the type

dXt = (α + βVt)dt +
√

VtdWt,

where Vt is a suitable positive stochastic process, are widely used in finance to
model the logarithm of the price of an asset. Several possible specifications of the
process V have been proposed. Barndorff-Nielsen and Shephard (2001) proposed
to model V as an Ornstein-Uhlenbeck process driven by a Lévy process or a sum
of such processes, which is a very flexible class of models. Here we present a class
of models with a similar flexibility where the volatility process is a sum of mean-
reverting processes driven by Wiener processes. The results given here are based
on the paper Bibby, Skovgaard and Sørensen (2003).

Let f be a given continuous, bounded, and strictly positive probability density
on (0,∞) that is zero when x ≤ 0 and has finite variance. Define a function v by

v(x) =
2θ
∫ x

l (µ − y)f(y)dy

f(x)
, x > 0,

where µ denotes the expectation of f . It is not difficult to see that v(x) > 0 for
x > 0. The stochastic differential equation

dVt = −θ(Vt − µ)dt +
√

v(Vt)dWt, t ≥ 0,

where W denotes a standard Wiener process, has a unique weak solution that is
ergodic with invariant density f . If V0 ∼ f , V is stationary, and its autocorrelation
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function is given by
Corr(Vs+t, Vs) = e−θt, s, t ≥ 0.

The diffusion V is the only ergodic mean-reverting diffusion with invariant density
f .

The function v can be found explicitly for a number of standard distributions on
(0,∞). For the gamma-distribution with shape-parameter α and scale-parameter
β

v(x) = 2θβx.

In this case the volatility model is the square root process, and the corresponding
volatility model is the Heston (1993) model. For the inverse Gaussian distribution
with density

f(x) =
(

λ

2π

) 1
2

x− 3
2 exp

(
−λ(x − µ)2

2µ2x

)
, x > 0,

we find that

v(x) = 4θµ

√
2π

λ
eλ/µx3/2 exp

(
λ

2µ2
x +

λ

2
x−1

)
Φ

(
−
√

λ

x
−
√

λx

µ2

)
,

where Φ is the standard normal distribution function.
Usually, the correlation function e−θt is too simple to fit the autocorrelation of

the volatility observed in financial time series. Therefore the following construction
is useful. Let f be a strictly positive, infinitely divisible probability density on
(0,∞) that is zero when x ≤ 0, and let C(t) denote the characteristic function of f .
Suppose the positive real numbers ϕi, i = 1, . . . , m, satisfy that ϕ1 + · · ·+ϕm = 1.
Then the functions C(t)ϕi , i = 1, . . . , m, are characteristic functions too. Assume
that the corresponding density functions fi, i = 1, . . . , m, satisfy the conditions
imposed on f earlier, and define

vi(x) =
2θi

fi(x)

∫ x

0

(ϕiµ − y)fi(y)dy.

Then the process
Vt = V

(1)
t + · · · + V

(m)
t ,

where

dV
(i)
t = −θi

(
V

(i)
t − ϕiµ

)
dt +

√
vi

(
V

(i)
t

)
dB

(i)
t ,

with B(1), . . . , B(m) denoting independent standard Wiener processes, has mar-
ginal density f , provided that V

(i)
0 ∼ fi, i = 1, . . . , m. The autocorrelation func-

tion of V is given by

Corr(Vs+t, Vs) = ϕ1 exp(−θ1u) + · · · + ϕm exp(−θmu).

For the gamma-distribution with shape-parameter α and scale-parameter β

vi (x) = 2βθix,
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and for the inverse Gaussian distribution

vi(x) = 4θiµ

√
2π

λ
eϕiλ/µx3/2 exp

(
λ

2µ2
x +

ϕ2
i λ

2
x−1

)
Φ

(
−ϕi

√
λ

x
−
√

λx

µ2

)
.

For distributions where the fi cannot be found explicitly, an approximation to vi

can be found in Bibby, Skovgaard and Sørensen (2003).
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Adaptive Estimation for a Varying Coefficient GARCH Model
Vladimir Spokoiny

(joint work with Jörg Polzehl)

Financial time series are often modelled by parametric ARCH or GARCH mod-
els under the assumption of stationarity. This approach is not flexible enough to
incorporate models with structural breaks and time varying parameters. This pa-
per presents a unified approach for modeling non (local) stationary time series
including change point and smooth transition models. The procedure is based on
the Adaptive Weights idea from Polzehl and Spokoiny (2000, 2002, 2003). The
paper discusses important theoretical properties of the method and illustrates its
numerical performance by mean of simulated examples and applications to real
data.
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Is GARCH(1,1) as good a model as the Nobel prize accolades would
imply

Cătălin Stărică

1. Abstract

This paper investigates the relevance of the stationary, conditional, parametric
ARCH modeling paradigm as embodied by the GARCH(1,1) process to describing
and forecasting the dynamics of returns of the Standard & Poors 500 (S&P 500)
stock market index.

A detailed analysis of the series of S&P 500 returns featured in Section 3.2 of
the Advanced Information note on the Bank of Sweden Prize in Economic Sciences
in Memory of Alfred Nobel reveals that during the period under discussion, there
were no (statistically significant) differences between GARCH(1,1) modeling and
a simple non-stationary, non-parametric regression approach to next-day volatility
forecasting.

A second finding is that the GARCH(1,1) model severely over-estimated the
unconditional variance of returns during the period under study. For example, the
annualized implied GARCH(1,1) unconditional standard deviation of the sample is
35% while the sample standard deviation estimate is a mere 19%. Over-estimation
of the unconditional variance leads to poor volatility forecasts during the period
under discussion with the MSE of GARCH(1,1) 1-year ahead volatility more than
4 times bigger than the MSE of a forecast based on historical volatility.

We test and reject the hypothesis that a GARCH(1,1) process is the true data
generating process of the longer sample of returns of the S&P 500 stock market
index between March 4, 1957 and October 9, 2003. We investigate then the alter-
native use of the GARCH(1,1) process as a local, stationary approximation of the
data and find that the GARCH(1,1) model fails during significantly long periods
to provide a good local description to the time series of returns on the S&P 500
and Dow Jones Industrial Average indexes.

Since the estimated coefficients of the GARCH model change significantly
through time, it is not clear how the GARCH(1,1) model can be used for volatility
forecasting over longer horizons. A comparison between the GARCH(1,1) volatil-
ity forecasts and a simple approach based on historical volatility questions the
relevance of the GARCH(1,1) dynamics for longer horizon volatility forecasting
for both the S&P 500 and Dow Jones Industrial Average indexes.

2. Figures

Figure 1 displays the estimated α1 +β1 under the assumption of non-stationary
data. The Garch(1,1) model has been initially estimated on the first 2000 ob-
servations of the sample corresponding roughly to the period 1957-1964, then
re-estimated every 50 observations on a sample containing 2000 past observations.
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The graph shows that the IGARCH effect significantly1 affects the GARCH(1,1)
models (estimated on a sample that ends) during the period 1997-20032. This fact
at its turn, is likely to cause the explosion of the estimated unconditional variance
of the GARCH(1,1) processes fitted on samples that end during this period.
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0.95
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0.99

1
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Figure 1. Top: Estimated α1+β1. Bottom: Estimated GARCH
(1,1) sd (dotted line) together with sample sd (both estimates are
annualized) (full line) for the S&P 500 log-returns. The time
mark corresponds to the end of the sub-sample that yields the
two standard deviation estimates. While most of the time the two
curves in the bottom graph are remarkably close to each other,
the GARCH(1,1) variance seems to explode towards the end of
the sample.

1The point estimate is close to 1 and, more importantly, 1 belong to the 95% confidence
interval.

2During the interval 1994-1996, the value 1 is the upper bound of the confidence interval.
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To see that indeed this is the case, let us take look at the bottom graph of
the same Figure 1 where the GARCH(1,1) unconditional sd (broken line) and the
corresponding sample sd (full line) are displayed. The GARCH(1,1) unconditional
sd is obtained from the values of the parameters estimated on a window of size 2000
moving through the data. The graph shows a good agreement between the two
estimates at all times except during the period when the IGARCH effect becomes
strongly statistically significant, i.e. samples that end in the interval 1997-20033,4.

The bottom graph in Figure 1 show that the GARCH(1,1) model fails to provide
a local stationary approximation to the time series of returns on the S&P 500
during significantly long periods.

An explanation for the strong IGARCH effect in the second half of the 90’s
can be the sharp change in the unconditional variance (see Mikosch and Starica
[1]). There it is proved, both theoretically and empirically, that sharp changes in
the unconditional variance can cause the IGARCH effect. Figure 2 displays non-
parametric estimates of the unconditional sd together with the 95% confidence
intervals5 for the S&P 500 returns (top) and the Dow Jones industrial index returns
(bottom). The two graphs show a pronounced increase of the volatility from
around 5% in 1993-1994 to three times as much (around 15%) in the period 2000-
2003.
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Pricing of Contingent Claims When Prices Are Perturbed:
An Elementary Example for Discussion

J. Michael Steele

The basic aim of this talk was to suggest consideration of a class of models
that one may view as perturbations of another (unobserved) price processes which
is either well-understood or which may be blessed with some special theoretical

3The analysis was also performed with smaller sample sizes of 1500, 1250 and 1000. As
expected, the confidence intervals in Figures 1 get wider and hence less meaningful. However,
for every sample sized mentioned, there is always a period between 1997 and 2003 where the
unconditional variance of the estimated model explodes. Estimation based on samples smaller
than 1000 observations is infeasible as it produces extremely unstable coefficients and renders
problematic the use of any asymptotic result.

4Contrast this finding with the statement on page 16 of the Advanced Information note:
“Condition α1+β1 < 1 is necessary and sufficient for the first-order GARCH process to be weakly
stationary, and the estimated model (on the short S&P 500, n.n.) satisfies this condition.”

5The method used to obtain the estimates is that of kernel smoothing in the framework of
non-parametric regression with non-random equi-distant design points. For more details on the
performance of this method on financial data see Mikosch and Starica [2].
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Figure 2. Estimated unconditional standard deviation (annual-
ized) with 95% confidence intervals for the S&P 500 returns. The
shaded areas correspond to bear market periods.

appeal. This discussion is part of a larger program which hopes to explain more
fully the costs and benefits of relying on misspecified models.

The example used in the talk was simply the Black-Scholes model where the
observed log prices are perturbed by a mean-zero mean-reverting process, and,
for specificity, we took the perturbing process to be an independent Ornstein-
Uhlenbeck process. Formally, we considered processes St and Ot which satisfy

dSt = µdt + σdWt and dOt = −αOtdt + εdW̃t

where the process (Wt, W̃t) is an uncorrelated Brownian motion in R2, and we
then considered a price process {Pt} which is specified by setting

(1) Pt = P0 exp(Yt) and Yt = St + Ot.

One reason to consider this model is that it contains as special cases both the
Black-Scholes model and the model of Lo and Wang (1995). Like the Lo and Wang
(1995) model, {Pt} exhibits aspects of predictability, but here it also captures
additional elements of economic reality. Specifically, we view P T

t ≡ exp St as a
“true” (but unobserved) price process, and we posit that market forces will drive
the observed price Pt back to PT

t after any random deviations from PT
t . The

model offers a practical compromise between a theoretically appealing model, and
one which manifests some modest predictability.

On interesting feature of {Pt} is that it is not a Markov process, so a priori one
might not expect that the PDE methods for pricing contingent claims would apply.
Nevertheless, in the case of European call options, easy calculations and ancient
recipes quickly bring one to an almost exact replicate of the Black-Scholes PDE
— only the volatility parameter is changed. Moreover, this heuristic derivation
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turns out to be theoretically justified; risk-neutral pricing theory leads one to the
same valuation formula.

A further instructive feature of the price process {Pt} is its relation to the notion
of viability which Bick (1990) introduced to addresses the consistency of a price
process with a certain economic equilibrium. He and Leland (1993) later developed
a PDE based criterion for viability, and, although it is not strictly applicable here,
one can check that the process {Pt} does not pass the He-Leland test (where, with
eyes closed, we pretend for a moment that {Pt} is Markovian!). It remains to
be seen if {Pt} is viable in the more general framework of Decamps and Lazrak
(2000), this also seems doubtful. Nevertheless, the practical motivation underlying
consideration of the process {Pt} remains in tact; it is, after all, a perturbation of
a process {PT

t } that passes anyone’s test of viability.
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Quasi-Maximum Likelihood Estimation and
Conditional Heteroskedastic Time Series

Daniel Straumann

By exploiting the techniques of stochastic recurrence equations, we develop a
general and unifying limit theory for the maximum likelihood estimator (MLE)
and quasi maximum likelihood estimator (QMLE) in a certain parametric class of
conditionally heteroscedastic processes, which contains widely used financial time
series models: (asymmetric) GARCH(1,1) and EGARCH. Our approach general-
izes and clarifies work of Lumsdaine (1996) and Berkes et al. (2003). We fur-
thermore discuss the issue of misspecification in the MLE and the behaviour of
the QMLE in the presence of a heavy-tailed noise distribution. This complements
work by Newey and Steigerwald (1997) and Hall and Yao (2003).
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A Multinomial Approximation of
American Option Prices in a Lévy Process Model

Alex Szimayer
(joint work with Ross A. Maller and David H. Soloman)

This paper examines the pricing of American options in models where the stock
price follows an exponential Lévy process. We propose a multinomial model ap-
proximating the stock price process which can be viewed as a generalisation of the
binomial model of Cox et al. (1979) adapted from Brownian motion to the broader
class of Lévy processes. Under mild conditions, it is proved that American option
prices obtained under the multinomial model converge to the corresponding prices
under the continuous time Lévy process model. Further, explicit schemes are given
for the jump diffusion model, the variance gamma model.

The Distribution of the LR Test for a Nonlinear Latent Variable
Model of Equity Returns

Mark Van De Vyver
(joint work with Ross A. Maller)

1. Abstract

This paper is devoted to deriving, under quite general conditions, the distribu-
tion of a likelihood ratio statistic for testing whether several versions of a gener-
alized autoregressive conditional heteroscedasticity (GARCH) model are superior
to a general random walk model, in depicting the true (unknown) data generating
process for the natural log of an equity price or their continuously compounded
returns. This is the statistic which the one sided LM test statistic approximates,
and provides a first check as to whether GARCH effects are in fact present in
the data. The application of these results is illustrated using equity market data
(contained in the full paper).

2. Introduction

This paper extends the results of [7] and provides new results in the subject of
latent variable model specification testing in the discrete time, continuous state
setting. Specifically, we consider models that naturally arise in the context of fi-
nancial modelling, and derive the distribution of the deviance statistic (negative
two times the quasi log–likelihood ratio), which is of use in testing for the reduc-
tion of the alternative model to a more parsimonious null model. The deviance
statistic is that which the more commonly used Lagrange Multiplier (LM) statis-
tic approximates ([5]). Initially the alternative model is specified quite generally,
and the parametrization we consider includes the nonlinear GARCH model. The
NGARCH-M model we consider is suitable for option pricing, and belongs to a
class for which [9] have developed an accurate and parsimonious option pricing
algorithm, capable of pricing American and exotic options. While less general, the
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null model is of special interest. This is a random walk with innovations that are
independently and identically distributed. When the innovations have the normal
distribution this model converges to the geometric Brownian motion model that
lies behind the celebrated Black-Scholes and Merton (BSM) option pricing model
([1] and [8]). The following is the model of an asset price series, which incorpo-
rates volatility clustering as well as an asymmetric correlation between returns
and volatility innovations:

(1)
Xi = φXi−1 +

(
µ − 1

2σ2
i + λσi

)
+ εiσi

σi =
√

ω + ασ2
i−1

(
εi−1 − c

)2 + βσ2
i−1.

Here Xi is the natural logarithm of the stock price, µ is a drift parameter that
frequently is interpreted as the risk free rate; φ is an autoregression coefficient (and
we are particularly interested in testing the hypothesis that φ is unity); λ is another
drift term interpreted as the market price of risk; ω is the instantaneous variance
of a Gaussian random walk when there are in fact no ARCH or GARCH effects
present; α and β are, respectively, the ARCH and GARCH terms that feedback
the effects of past observations into the variance equation; c is a generic parameter
in the variance equation which permits an asymmetric correlation between the
returns and volatility process (see [6] and [4]). We refer to the first two equations
as the price (or, when φ = 1, return) equation and volatility equation. We wish
to test two null hypotheses of interest, against different alternatives. Both null
models will have a common feature φ = 1, and α = β = 0. Then σi = σ = ω does
not depend on i and we can write (1) as:

(2) Xi = Xi−1 + µ − 1
2
ω + λ

√
ω + εi

√
ω, i = 1, 2, . . . , n

Notice that the parameter c is not present under the null (the term containing c
disappears from (1) when α = 0), and two other parameters, µ and λ, combine into
a single drift parameter and thus cannot be uniquely determined under the null.
To reflect this we introduce a drift parameter, ψ, in a simple reparameterization,
as ψ = µ + λ

√
ω − 1

2ω. Applying this to (1) introduces an additional parameter
that disappears under the null hypothesis. We handle these parameters using the
methods of [2] and [3].

3. Results

3.1. Testing for GARCH effects alone.

Theorem 1. Assume Xi satisfies (1) and that φ = 1, for i.i.d εi with expectation
0, variance 1 and finite third and fourth moments, µ3 and µ4. Suppose that the
null hypothesis holds; φ = 1, and α = β = 0. When evaluating the null and
alternate models, the deviance statistic, dn, has asymptotic distribution:

d(2)
n (τ)

D→ kN2(0, 1)I
(
N � 0

)
,
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where N is standard normal and k is

(3) k = 1 +
µ4 + 2µ3

(
λ0 −√

ω0

)− 3

2 +
(
λ0 −√

ω0

)2 .

I
(
Z � 0

)
is 1 if Z � 0 and 0 otherwise.

3.2. Testing for GARCH effects and a unit root.

Theorem 2. Assume Xi satisfies (1) for i.i.d εi with expectation 0, variance 1
and finite third and fourth moments, µ3 and µ4. Suppose that the null hypothesis
holds; φ = 1, and α = β = 0. When evaluating the null and alternate models, the
deviance statistic, dn, has asymptotic distribution:

d(1)
n (τ)

D→N2
1 + N2

2 I
(
N2 � 0

)
.

where Ni are normal random variables with some variance-covariance given in the
full paper.

4. Empirical Application

For each company in the S&P 500 index as at 8/8/2003, we select those which
have at least 1000 observations, leaving 481 firms. Using individual company
returns over this period we fit (1) and (2), and calculate the robust deviance as
set out in Theorem 1. The first box plot summarizes the lower range of values
of the robust deviances calculated using the 95% CI of the moments of the QML
estimated resdiuals. The second and third box plots summarize the range of values
of the robust deviance, and it’s upper range of values. The last box plot shows the
two sided lagrange multiplier test statistic’s empirical values. In each plot the box
spans the 25%-75% quantiles, the whiskers cover 3/2 of the interquantile range
from the edges of the box, individual points represent outlying observations and
the dashed line indicates the median value. The two horizontal lines indicate the
one-sided chi-square critical values, with one degree of freedom, at the 5% and
1% levels of significance. The upper and lower robust deviance values reflect the
range of values the deviance may take, using the 95% CI surrounding the null
model residuals’ moments, calculated using QML estimated residuals.
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Figure 1. GARCH vs. random walk hypothesis raw and robust
deviances of 481 companies in the S&P 500 index: 18/8/1999 to
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Figure 2. ARCH vs. random walk hypothesis raw and robust
deviances of 481 companies in the S&P 500 index: 18/8/1999 to
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Option Pricing and Statistics Inference for GARCH Models and
Diffusions

Yazhen Wang

Stock market modeling has two types of approaches. One is continuous-time
modeling that assumes a stock price to change with time continuously and obey a
continuous-time stochastic process. Historically continuous-time models based on
stochastic differential equations have been developed in financial economics, and
modern finance theory is much based on the continuous-time modeling. However,
in reality all data are recorded only at discrete intervals. Unknown parameters
in the continuous-time models need to be estimated and tested from the observed
discrete-time data. Due to the difficulty in statistical inference for the continuous
time model based on the discrete data, the validity of the continuous-time modeling
is not straightforward to check. Another approach is discrete-time modeling of
available discrete data. Successful discrete-time models are the autoregressive
conditionally heteroscedastic (ARCH) models. These discrete-time models often
provide parsimonious representations for the observed discrete-time data, and their
statistical inference is relatively much easier. The weak convergence of the discrete-
time ARCH model to continuous-time diffusion established first by D. Nelson in
early 1990 has generated a general belief that the ARCH model and diffusions are
more or less equivalent.

This talk presents asymptotic equivalence of the Garch, discrete stochastic
volatility (SV), and diffusion models with respect to option pricing, implied volatil-
ity, and statistical inferences based on option data (or implied volatility). As
discrete observation intervals shrink to zero, the GARCH and SV models weakly
converge to a bivariate diffusion. First we prove that the GARCH option price
converges to diffusion price at the speed near to the square root of the observa-
tion interval length. Second we show that under the three models, the prices of
a European option and their corresponding implied volatilites are equal up to the
order near to the square root of the observation interval length, and asymptot-
ically option based statistical inferences under the three models are statistically
equivalent. This shows that asymptotically the three models are equivalent in all
aspects regarding to option pricing, implied volatility and statistical inference for
option data. It presents a sharp contrast with nonequivalence of the GARCH and
its diffusion limit regarding to statistical inferences for historical time series price
data.
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Valuation of American Options via Basis Functions
Samuel Po-Shing Wong

(joint work with Tze Leung Lai)

Using the methodology of pricing and hedging American options proposed by
AitSahlia and Lai (2001), we apply the idea of neuro-dynamic programming to
develop

(1) nonparametric pricing formulas for actively traded American options, and
(2) simulation-based optimization strategies for complex over-the-counter op-

tions, whose optimal stopping problems are prohibitively difficult to solve
numerically by standard backward induction algorithms because of the
curse of dimensionality.

An important issue in this approach is the choice of basis functions, for which
some guidelines and their underlying theory are provided.

This paper is going to be published by IEEE Transactions in Automatic Control
in 2004.
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Approximating Volatilities by Asymmetric Power GARCH Functions
Qiwei Yao

(joint work with Jeremy Penzer and Mingjin Wang)

Let {Xt} be a strictly stationary process defined by the volatility model

(1) Xt = σtεt,

where {εt} is a sequence of independent random variables with mean 0, σt ≥ 0 is
Ft−1-measurable, and Ft−1 is the σ-algebra generated by {Xt−k, k ≥ 1}. Further-
more, εt is independent of Ft−1. The conventional ARCH/GARCH formulation
assumes that the conditional standard deviation σt is of the form

σ2
t = Var (Xt|Ft−1) = E(X2

t |Xt−1, Xt−2, · · · )

= c +
p∑

i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j .(2)

where c > 0 and bi, aj are non-negative. The above model also implies Var (εt) = 1.
Under the condition

∑
j aj < 1, (2) admits the representation

(3) σ2
t = E(X2

t |X2
t−1, X

2
t−2, · · · ) = d0 +

∞∑
j=1

djX
2
t−j ,

where di ≥ 0 are some constants. This suggests that σ2
t is the autoregressive

function of X2
t on its lagged values X2

t−1, X
2
t−2, · · · .
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On the other hand, there exists the abundance of empirical evidence indicating
that for some financial returns the autocorrelation of the squared returns {X2

t }, al-
though significant, is often not as strong as, for example the autocorrelation of the
absolute returns {|Xt|}. See, for example, Granger et al (1999) and Rydberg (2000)
and the references within. Therefore, instead of modelling the conditional second
moments as in (3), Ding, Granger and Engle (1993) proposed to model the condi-
tional γ-th absolute moment of Xt given Ft−1 by an asymmetric power GARCH
formula, with γ ∈ (0, 2] determined by the data; see (4) below.

In this paper, we do not impose any explicit form on σt which is merely as-
sumed to be Ft−1-measurable. Instead we seek for an index γ ∈ (0, 2] such that
a GARCH-like model for {|Xt|γ} provides the best approximation for σγ

t . More
specifically, we approximate σγ

t by an asymmetric GARCH function

ξt,γ ≡ c +
p∑

i=1

bi{|Xt−i| − diXt−i}γ +
q∑

j=1

ajξt−j,γ(4)

= c +
p∑

i=1

bi|Xt−i|γ{1 − di sgn (εt−i)}γ +
q∑

j=1

ajξt−j,γ ,

for any γ ∈ (0, 2], where the parameters c, bi, aj are non-negative, and di ∈ (−1, 1).
We then choose the γ such that the approximation is optimum in certain sense.
Equation (4) admits a unique strictly stationary solution

ξt,γ =
c

1 −∑q
j=1 aj

+
p∑

i=1

bi|Xt−i|γ{1 − di sgn (εt−i)}γ(5)

+
p∑

i=1

bi

∞∑
k=1

q∑
j1=1

· · ·
q∑

jk=1

aj1 · · ·ajk
|Xt−i−j1−···−jk

|γ(6)

{1 − di sgn (εt−i−j1−···−jk
)}γ

with E(ξt,γ) < ∞, provided that {Xt} is strictly stationary with E|Xt|γ < ∞,
and θ ≡ (c, b1, · · · , bp, a1, · · · , aq, d1, · · · , dp)τ ∈ Θ, where
(7)

Θ =
{

(c, b1, ..., bp, a1, ..., aq, d1, ..., dp)
∣∣∣ c, bi, aj > 0, di ∈ [−1+δ0, 1−δ0],

q∑
j=1

aj < 1
}
,

where δ0 > 0 is a small constant. We restrict di in a closed interval contained in
(−1, 1) for some technical convenience.

First we consider how to estimate θ, for a given γ. To make σt uniquely
defined in (1), we always assume that the median of |εt| is equal to 1, unless
specified otherwise. Now log(|εt|) = log(|Xt|)− γ−1 log(σγ

t ) are i.i.d. with median
0. Therefore it holds that

σγ
t = arg min

a>0
E
{∣∣ log |Xt| − 1

γ
log a

∣∣ ∣∣Ft−1

}
.
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This leads to an L1 estimator

θ̂1 ≡ θ̂
(γ)

1 = arg min
θ

n∑
t=ν

∣∣∣ log |Xt| − 1
γ

log{ξt,γ(θ)}
∣∣∣.

An approximate (conditional) Gaussian MLEs may also be entertained based on
an additional assumption that εt in (1) are independent N(0, 1) random variables.
This condition implies a different parametrisation since now the median of |εt| is
not 1. Note σt defined in (1) differs under the two parameterisations by a constant
independent of t. This impacts on the parameters in ξt,γ as follows; c and all bi

differ by a common constant under the two parametrisation while di and aj remain
unchanged. The resulting estimator is

(8) θ̂2 ≡ θ̂
(γ)

2 = arg min
θ

n∑
t=ν

[
X2

t /{ξt,γ(θ)}2/γ + 2γ−1 log{ξt,γ(θ)}].
We note that the method is based on approximating σt by ξ

1/γ
t,γ .

Now we consider the problem of estimating the power index γ. Since our goal
is to estimate volatility function σt, a good estimation should ensure the residuals
ε̂t = Xt/σ̂t behave like an i.i.d. sequence, or, contain little information on Ft−1,

where σ̂t denotes an estimator for σt. Let θ̂
(γ)

be a reasonable estimator for the
parameter θ ≡ θγ of ξt,γ . Define residuals

(9) ε̂
(γ)
t = Xt/{ξt,γ(θ̂

(γ)
)}1/γ , t = ν, · · · , n.

If ε̂
(γ)
t is a good estimator for εt, E{ε̂(γ)

t I(Xt−j ≤ x)} ≈ 0 for any j ≥ 1 and x.
This suggests to choose γ̂ ∈ [u0, 2] which minimises

(10) R(γ) ≡
k∑

j=1

sup
x

1
n

∣∣∣ n∑
t=ν

ε̂
(γ)
t I(Xt−j ≤ x)

∣∣∣,
where k ≥ 1 is an integer, u0 > 0 is a small constant. We restrict γ̂ to be bounded
away from 0 for technical convenience. The statistics of this type have been used
for model checking by, for example, Stute (1997) and Koul and Stute (1999). In

practice, we may use either the least absolute deviations estimator θ̂
(γ)

1 or the

Gaussian MLE θ̂
(γ)

2 as θ̂
(γ)

in (9), and we may also standardise ε̂
(γ)
t such that the

sample mean and variance are, respectively, 0 and 1.
Under some regularity conditions, we have establish the asymptotic normality

for the estimators θ̂1 and θ̂2, and the weak consistency for the estimator γ̂. The
method has also been illustrated with four sets of financial return data. It is
interesting to see that the estimated power index γ̂ is often around 1 for those real
data sets, leading to better estimation for the volatility function σt in comparison
with a conventional GARCH fitting.
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A Tale of Two Time Scales:
Determining Integrated Volatility with Noisy High-Frequency Data

Lan Zhang
(joint work with Per A. Mykland and Yacine Äıt-Sahalia)

In the analysis of high frequency financial data, a major problem concerns
the nonparametric determination of the volatility of an asset return process. A
common practice is to estimate volatility from the sum of the frequently-sampled
squared returns. Though this approach is justified under the assumption of a
continuous stochastic model in an idealized world, it meets the challenge from
market microstructure in real applications. We argue that this customary way of
estimating volatility is flawed in that it overlooks observation error. The usual
mechanism for dealing with the problem is to throw away some data, by sampling
less frequently or constructing “time-aggregated” returns from the underlying high
frequency asset prices. We propose here a statistically sounder device. Our device
is model-free, it takes advantage of the rich sources in tick-by-tick data, and to
a great extend it corrects the effect of the microstructure noise on volatility es-
timation. In the course of constructing our estimator, it becomes clear why and
where the “usual” volatility estimator fails when the returns are sampled at high
frequency.

Our interest lies in using high frequency intraday data to estimate the integrated
volatility over some time periods. To fix the ideas, let {St} denote the price process
of a security, and suppose the log-return process {Xt}, where Xt = log St, follows
an Itô process

(1) Xt = µtdt + σtdBt

where Bt is a standard Brownian motion. Typically, σ2
t , the instantaneous vari-

ance (or diffusion coefficient) of the return process {Xt}, will be stochastic. The
parameter of interest is the integrated (cumulative) volatility over one or successive
time periods,

∫ T1

0
σ2

t dt,
∫ T2

T1
σ2

t dt, .... A natural way to estimate the cumulative
volatility over, say, a single time interval from 0 to T , is to use the sum of squared
incremental returns,

(2)
∑
ti

(Xti+1 − Xti)
2 ≈

∫ T

0

σ2
t dt,

where the Xti ’s are all the observations of the return process in [0, T ]. The estima-
tor

∑
ti

(Xti+1 − Xti)2 is commonly used and generally called “realized volatility”
or “realized variance.” For a sample of the recent literature in integrated volatility,
see Hull and White (1987), Jacod and Protter (1998), Gallant et al. (1999), Cher-
nov and Ghysels (2000), Gloter (2000), Andersen et. al. (2001), Barndorff-Nielsen
and Shephard (2001), Mykland and Zhang (2002) and others.
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Under model (1), the approximation in (2) is justified by theoretical results in
stochastic processes which state that

(3) plim
∑
ti

(Xti+1 − Xti)
2 =

∫ T

0

σ2
t dt,

as the sampling frequency increases. In other words, the estimation error of the
realized volatility diminishes. According to (3), realized volatility computed from
the highest frequency data ought to provide the best possible estimate for

∫ T

0
σ2

t dt
the integrated volatility.

However, this is not the general viewpoint from the finance literature. It is
generally held there that the returns process Xt should not be sampled too often,
regardless of the fact that the asset prices can often be observed with extremely
high frequency, such as several times per second. It has been found empirically
that the estimator is not robust when the sampling interval is quite small. Issues
including bigger bias in the estimate and non-robustness to changes in sampling
interval have been reported (see e.g., Brown (1990), Campell et al. (1997), Bai
et al. (2000)). The main explanation for this phenomenon is a vast array of
issues collectively known as market microstructure, such as, but not limited to,
the existence of the bid-ask spread: see Aı̈t-Sahalia et al. (2003) for a description of
these phenomena and their grounding in the vast theoretical literature describing
the frictions inherent in the trading process. When prices are sampled at finer
intervals, microstructure issues become more pronounced. It is then suggested that
the bias induced by market microstructure effects makes the most finely sampled
data unusable for the calculation, and many authors prefer to sample over longer
time horizons to obtain reasonable estimates. The length of the typical choices in
the literature is ad hoc and ranges from 5 to 30 minutes for exchange rate data,
for instance.

This approach to handling the data poses a conundrum from the statistical
point of view. We argue here that sampling over longer horizon merely reduces
the impact of microstructure, rather than quantifying and correcting its effect for
volatility estimation. And it goes against the grain to throw away data. On the
other hand, market microstructure may pose so many problems that subsampling
is the only way out.

In this paper we analyze the trade-offs involved in the choice of sampling fre-
quency and develop a method to estimate integrated volatility in such a way as to
lessen this conflict. Our contention in the following is that the contamination due
to market microstructure is, to first order, the same as what statisticians usually
call “observation error”. We shall incorporate the observation error into the esti-
mating procedure for integrated volatility. In other words, we shall suppose that
the return process as observed at the sampling times is of the form

(4) Yti = Xti + εti .

Here Xt is a latent true, or efficient, return process, and the ε′ti
s are independent

noise around the true return. A similar structure was used in the parametric
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context where σt = σ is constant by Aı̈t-Sahalia et al. (2003). In that paper, due
to the parametric nature of volatility, we proposed likelihood-based corrections for
market microstructure.

We show in the paper that, if the data have a structure of the form (4), ignoring
microstructure noise would have a devastating effect on the use of the realized
volatility. Instead of (2), one gets

(5)
∑

ti,ti+1∈[0,T ]

(Yti+1 − Yti)
2 = 2nV ar(ε) + Op(n1/2)

where the errors εti ’s are i.i.d. with mean 0, and n is the number of sampling
intervals over [0, T ]. As we will show, ignoring market microstructure noise in the
context of stochastic volatility leads to an even more dangerous situation than
when σ is constant and T → ∞. The results from equation (5) suggest that the
realized volatility does not estimate the true integrated volatility, but rather the
variance of the contamination noise. In fact, we will show that the true integrated
volatility, which is Op(1), is even dwarfed by the magnitude of the asymptotically
Gaussian Op(n1/2) term in (5).

Of course, the model (4) may also not be correct. When made the basis of
inference, it could still occur that one does not wish to sample as frequently as the
data would permit. It may, however, make it possible to use substantially larger
amounts of data than what would be possible under (2).

In seeking to create an inference procedure under measurement error, we have
sought to draw some lessons from the empirical practice that one should not use
all the data, while at the same time not violating basic statistical principles. Our
approach is built on separating the observations into multiple “grids”. We found
that the best results can be obtained by combining the usual (“single grid”) realized
volatility with the multiple grid based device. This gives an estimator which is
approximately unbiased. We have also shown how to assess the (random) variance
of this estimator, and how to balance the effect in (5) and an effect due to the
sampling frequencies.

The theory, including asymptotic distributions, is developed mainly in the con-
text of finding the integrated volatility over one time period; at the end, we extend
this to multiple periods. Also, in the case where the noise can be taken to be al-
most negligible, we provide a way of optimizing the sampling frequency if one
wishes to use the classical “realized volatility” or its multi-grid extension.

One important message of the paper: Any time one has an impulse to sample
sparsely, one can always do better with a multi-grid method. No matter what the
model is, no matter what quantity is being estimated.
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