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Introduction by the Organisers

The purpose of this meeting was to introduce the participants to calculus of
functors, a theory aimed at “approximating” functors in algebra and topology.
The focus of the talks was on two related branches of the theory, homotopy and
manifold calculus.

The organizers, Thomas Goodwillie and Randy McCarthy, scheduled 16 talks.
The first was given by Goodwillie who introduced the main ideas and outlined
the plan for the rest of the meeting. In talks 2—5, speakers explained the most
important terminology, techniques, and results used in both versions of the theory.
In talks 6—8, participants learned about manifold calculus and how it applies to
spaces of knots (talk 8), while talks 9—15 dealt with homotopy calculus. In the
last four of those lectures, some applications, elaborations on results established
in previous talks, and different versions of certain ideas and proofs encountered so
far were given. Goodwillie explored some connections between the two versions of
calculus of functors (as they apply to the embedding and identity functors) and
gave the concluding remarks in the last talk.

It should be noted that a third version of the theory, orthogonal calculus, was
not discussed due to time constraints, but Goodwillie explained some of its most
salient features in an extra evening session. Other evening events took place as well,
such as Rainer Vogt’s elaboration of an aspect of his talk and informal research
reports given by some participants.
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Abstracts

1. Introduction

Thomas Goodwillie

This workshop is about two related sets of ideas: the homotopy calculus and the
manifold calculus. Each of them is a method of describing spaces (or other objects)
up to weak homotopy equivalence by making heavy use of categories, functors, and
naturality. In a typical application of the method, one gains information about
a space by viewing the space as a special value of a suitable functor, analyzes
the functor using “calculus”, and then specializes. Thus the principal objects of
study become some rather broad category of functors. A constant theme is the
systematic approximation of these functors by functors of much more special kinds.

The homotopy calculus deals with homotopy functors from, for example, the
category of topological spaces to itself. Here a homotopy functor’is a functor that
preserves (weak) equivalences. An optional additional axiom is that the functor
is continuous on morphisms, in the sense that for any finite complex K and space
X the canonical map from K×F (X) to F (K×X) is continuous. Another option
is the limit axiom: the functor preserves filtered homotopy colimits. The main
sources for the general theory are [4][5][6].

The manifold calculus deals with contravariant functors from the partially or-
dered set of open subsets of a fixed smooth manifold M to, for example, the
category of spaces. Again the functors must satisfy a kind of homotopy invari-
ance; roughly speaking, if U ⊇ V is a collar then the map F (U) → F (V ) is an
equivalence. The main sources for the general theory are [24] [11].

Because of time constraints we have not planned any talks about a third theory,
the orthogonal calculus, which deals with functors, continuous on morphisms, from
the category of finite-dimensional real Hilbert spaces and isometric linear injections
to the category of spaces. See [25].

The central idea in the homotopy calculus is approximation of functors by
“linear” functors, just as in the ordinary differential calculus the central idea is
the approximation of functions by linear functions. Linearity means the following.
Call the homotopy functor F excisive if it takes homotopy pushout squares to
homotopy pullback squares and call it reduced if the unique map F (∗) → ∗ is a
weak equivalence. Call it linear if it is both excisive and reduced. A typical linear
functor from based spaces to based spaces will, up to natural equivalence, have
the form L(X) = Ω∞(C ∧X), at least on finite CW complexes X . Here C is some
spectrum, which can be called the coefficient of the linear functor.

There is a standard process, which is sometimes called stabilization and here
is called linearization, for turning a reduced functor F into a linear functor L.
Roughly speaking, there is a natural map from F (X) to ΩF (ΣX) and one iterates
this to make the stabilization, the homotopy colimit of ΩkF (ΣkX) as k goes to
infinity. If the functor is continuous on morphisms and is reduced in the strong
sense that F (∗) ' ∗, then one literally has such a map F to ΩFΣ. In general
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we prefer not to assume this much. Instead we apply F to the pushout diagram
that makes a suspension from two cones and consider the map from F (X) to the
homotopy limit of the other three spaces in the resulting square diagram

F (X) → F (CX)
↓ ↓

F (CX) → F (ΣX)

(This homotopy limit is equivalent to ΩF (ΣX) if F is reduced.) If F is linear then
L is (equivalent to) F , and in general L is the universal example (in an appropriate
up-to-homotopy sense) of a linear functor under L. The coefficient of L is called
the derivative of F at the one point space.

More generally the derivative ∂yF (Y ) of F at the space Y and basepoint y can
be defined as the coefficient of the stabilization of the functor

Z 7→ hofiber(F (Y ∨y Z)→ F (Y ))

from based spaces to based spaces.
There is another useful generalization. The excision condition concerns the

behavior of a functor on two-dimensional cubical diagrams. We call a functor
n-excisive if it satisfies a cerain condition involving (n + 1)-dimensional cubical
diagrams, so that 1-excisive means excisive. It turns out that again for any F
there is a universal n-excisive functor under F . We call it PnF and think of it as
the nth Taylor polynomial of F . There are maps PnF → Pn−1F , and F maps
into the limit of this “Taylor tower”.

The nth layer of the tower, meaning the homotopy fiber of PnF → Pn−1F , is
analogous to a homogeneous polynomial; it is an n-excisive functor whose (n− 1)-
excisive approximation is trivial. Such things turn out always to have the form
Ω∞(C ∧ X∧n)hΣn

, at least on finite CW complexes X . Here the coefficient C is
a spectrum with an action of the symmetric group Σn, and it is called the nth
derivative of F (at ∗).

Most functors encountered in practice are not n-excisive for any n, but are
stably n-excisive. F is called stably 1-excisive if for a homotopy pushout square

X → X1

↓ ↓
X2 → X12

the functor always yields a square diagram such that the map from the first space
F (X) to the homotopy limit of the other three is k1 + k2 − c1 connected, where
ki is the connectivity of the map X → Xi and c1 is a constant depending only on
F . F is called stably n-excisive if it satisfies a similar condition involving (n + 1)-
dimensional cubes. If F is stably n-excisive for all n and the associated sequence
of constants cn has slope ρ, then the functor is called ρ-analytic.

If F is ρ-analytic then for ρ-connected spaces X the canonical map from F (X)
to PnF (X) has a connectivity that tends to infinity with n. (“The Taylor series
converges to the function” within a “radius” determined by ρ.)
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If F is ρ-analytic and ∂yF (Y ) ' ∗ for all (Y, y) then F is locally constant: any
(ρ − 1)-connected map X → Y of spaces, or at least of finite complexes, induces
an equivalence F (X) → F (Y ). This can be proved using Taylor towers. It was
proved in [5] by a more direct method.

So much for the homotopy calculus. We now turn more briefly to the manifold
calculus. The most important example is the functor Emb(−, N) which takes an
open set U of M to the space of smooth embeddings of U in another manifold N .

Here again there is a notion of n-excisive functor, and there is a way of building
a universal n-excisive functor TnF under F . It can be defined in a few words:
(TnF )(U) is the homotopy limit of F (V ) over all open sets V in U that are tubu-
lar neighborhoods of sets having at most n elements. Once again, if F satisfies a
kind of analyticity (stable excision) condition then the resulting tower converges
for a large class of objects. Again there is a classification theorem for homoge-
neous functors (n-excisive functors with trivial (n− 1)-excisive part). The functor
Emb(−, N) is sufficiently analytic that these methods give very strong information
about the space of embeddings of M in N if the codimension dim(N)-dim(M) is
at least three. In fact, in some useful but complicated sense the homotopy type
of Emb(M, N) is determined by the family of spaces Emb(U, N), where U ranges
through those open sets of M that are tubular neighborhoods of finite sets.

The talks at this workshop will deal mostly with the general results mentioned
above and some generalizations. Of course important examples will be introduced,
but we will not venture very far into serious applications of the theory, such as
applications of homotopy calculus to algebraic K-theory and to classical homotopy
theory.

Homotopy calculus and manifold calculus can be presented as separate and
parallel subjects, but in fact the former had its genesis in the latter and there is
an ongoing interplay between the two. This will be the subject of the final talk.

2. Cubical diagrams and n-th order excision

Konstantin Salikhov

Let T be the be the category of based spaces and C be a small category.

Definition ([5]). A diagram of spaces is a functor X : C → T . If C is the
category P (n) of subsets of the n-element set n = {1, . . . , n} with the morphisms
given by inclusions, we call such a diagram cubical, or simply n-cube.

For any diagram X of spaces we can talk about its homotopy limit [1]. Since
a cubical diagram has the initial object, holimP (n)(X ) will not give us anything
new. Instead, consider holimP0(n)(X ) over the subcategory P0(n) of non-empty
subsets of n.

Definition ([5]). A cube X is called homotopy cartesian, or just cartesian, if
the natural map X (∅) → holimP0(n)(X ) is a weak equivalence. By tfiber(X ) we
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denote the homotopy fiber of this map. If this map is k-connected, the cube X is
called k-cartesian.

There are dual notions of co-cartesian and k-co-cartesian cubes, and also of
tcofiber(X ). Note that we can look at an (n + 1)-cube X as a componentwise
map X1 → X2 between two n-cubes. Then tfiber(X ) ' hofiber(tfiber(X1) →
tfiber(X2)).

Proposition ([5]). For any map X1 → X2 of n-cubes and the corresponding
(n + 1)-cube X
(i) If X and X2 are k-cartesian, then X1 is k-cartesian.
(ii) If X1 is k-cartesian and X2 is (k + 1)-cartesian, then X is k-cartesian.

There is, of cause, the corresponding dual proposition for k-co-cartesian cubes.
Note that we can use all the above constructions to define diagrams of spectra
(tfiber of a diagram is understood as the spectrum of tfiber’s). Such cubes of
spectra will be heavily used in the next sections. If X : P (n) → Sp is an n-cube
of spectra, then X is k-cartesian iff it is (k + n− 1)-co-cartesian.

We say that a cube X is strongly co-cartesian, if all of its faces of dimension at
least two are co-cartesian.

Definition ([5]). A functor F : T → T is called n-excisive if for any strongly
co-cartesian (n + 1)-cube X , the composition cube F ◦ X is cartesian.

The basic example of a 1-excisive functor is L(X) = Ω∞(C ∧ X), where C is
a spectrum. We can also talk about a functor of several variables M : T r → T .
We say that M is (n1, . . . , nr)-excisive if it is ni-excisive in i-th variable, with the
other variables fixed.

Proposition ([5]). If M : T r → T is (n1, . . . , nr)-excisive, then the composi-
tion M ◦∆ with the diagonal map ∆ : T → T r is (n1 + · · ·+ nr)-excisive.

Definition ([6]). For a functor F : T → T we define the nth cross-effect
crn(F ) : T n → T by crn(F )(X1, . . . , Xn) = tfiber(S 7→ F (∨i/∈SXi)) where S ⊂ n.

Proposition ([6]). If F : T → T is n-excisive, then crn(F ) : T n → T is
1-excisive in each variable.

Let us remind that in the manifold calculus we study contravariant functors
from the category of open subsets of a smooth manifold M without boundary to
spaces. Here the notion of n-excisiveness looks like



Arbeitsgemeinschaft: The Goodwillie Calculus of Functors 881

Definition ([24]). A cofunctor F is called polynomial of deg ≤ n, if for any
open subset V ⊂ M , and pairwise disjoint closed subsets A1, A2, . . . , An+1 ⊂ V ,
the (n + 1)-cube S 7→ F (V \ ∪i∈S Ai), with S ⊂ n + 1, is cartesian.

The basic example of a cofunctor of deg ≤ 1 is F (V ) = Γ(p, V ), the space of
sections of a fibration p : E →M . In particular, F (V ) = {Immersions of V in N}
for some fixed manifold N , is a cofunctor of deg ≤ 1. An example of a cofunctor
of deg ≤ n can be constructed in the same way. In M (n) = M ×M × · · · ×M
(product of n copies of M) consider the fat diagonal ∆n, consisting of all n-

tuples (x1, . . . , xn) with xi = xj for some i 6= j. Denote by
(

M
n

)

the orbit space

(M (n) − ∆n)/Σn. If p : E →
(

M
n

)

is a fibration, then F (V ) = Γ(p,
(

V
n

)

) is a
cofunctor of deg ≤ n.

3. Analyticity and homotopy excision

Rainer Vogt

We say a homotopy functor F : C → D is in En(c, κ) if for any strongly cocarte-
sian cube χ : P(S) → C, |S| = n + 1, such that χ(∅)→ χ(s) is ks-connected with
ks ≥ κ, the cube F (χ) is (−c + Σs∈Sks)-cartesian.

Definition A homotopy functor F : C → D is called
• stably n-excisive if F ∈ En(c, κ) for some c and κ
• ρ-analytic if there is an integer q such that F ∈ En(nρ − q, ρ + 1) for all

n ≥ 1.

The aim of this talk is to prove the following analyticity results.

Theorem 1:
(1) The identify functor T op→ T op is 1-analytic.
(2) Let K be a finite CW -complex. Then the functors

T op −→ Spectra, X 7→ Σ∞(Map(K, X)+)
T op −→ T op, X 7→ Ω∞Σ∞(Map(K, X)+)

are (dim K)-analytic.

Part (1) is consequence of homotopy excision:

Theorem 2 (Ellis-Steiner): Let χ : P(S) → T op be a strongly cocartesian
S-cube, |S| ≥ 1, such that χ(∅) → χ(s) is ks-connected. Then χ is k-cartesian
with k = (1 − |S| + Σks). Moreover, πk(fiber(aχ)) has an algebraic presentation
in terms of the groups πks

(fiber(χ(∅)→ χ(s))). Here fiber(aχ) is the total fiber of
the cube χ.

This result has an Eckmann-Hilton dual.

Theorem 3: Let χ : P(S)→ T op be a strongly cartesian S-cube, |S| ≥ 1, and
let Fs = fiber (gs : χ(S − s) → χ(S)). Then fiber(bχ) is the join of the Fs, s ∈ S.
Here bχ : hocolimχ|P1(S) → χ(S) is the canonical map, where P1(S) ⊂ P(S) is
the full subcategory of proper subsets of S.
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Corollary: If χ : P(S)→ T op is a strongly cartesian S-cube, |S| = n ≥ 1, and
χ(S − s)→ χ(S) is ks-connected, then χ is at least (n− 1 + Σks)-cocartesian.

For the proof of Part (2) of Theorem 1 we need partial refinements of Theorems
2 and 3.

Let χ : P(S) → C be an S-cube, |S| ≥ 1. For ∅ 6= T ⊂ S let ∂T χ be the
T -subcube with initial vertex χ(∅) and terminal vertex χ(T ), and let ∂S−T χ be
the T -subcube with initial vertex χ(S − T ) and terminal vertex χ(S).

Theorem 2∗: Let χ : P(S)→ T op be an S-cube, |S| = n ≥ 1. Suppose that

(i) for all T , ∅ 6= T ⊂ S, the T -cube ∂T χ is k(T )-cocartesian
(ii) k(U) ≤ k(T ) for all U ⊂ T .

Then χ is k-cartesian with

k = min{1− n + Σαk(Tα)}

over all partitions {Tα} of S into non-empty subsets.

Theorem 3∗: Let χ : P(S)→ T op be an S-cube, |S| = n ≥ 1. Suppose that

(i) for all T , ∅ 6= T ⊂ S, the T -cube ∂S−T χ is k(T )-cartesian
(ii) k(U) ⊂ k(T ) for all U ⊂ T .

Then χ is k-cocartesian with

k = min{n− 1 + Σkk(T )α)}

over all partitions {Tα} of S into non-empty subsets.

We prove Theorem 1 in detail using Theorems 2, 3, 2∗, 3∗. We then indicate
how those can be proved.

4. Disjunction and excision for spaces of embeddings

Tibor Macko

In this talk we consider good contravariant functors F : O(M) → Spaces from
the partially ordered set O(M) of open subsets of a fixed smooth mani-fold M
to the category of spaces. Typical example of such a functor is U 7→ Emb(U, N),
where N is some fixed smooth manifold. We define analytic functors in this setting.
Analyticity of a given functor F has a consequence that the Taylor tower of F
converges to F within the radius of convergence.

Definition 1 ([11]). A good contravariant functor F : O(M) → Spaces is ρ-
analytic with excess c if for all k ≥ 1 the k + 1-cube

S 7→ F (VS)

is (c +
∑k

i=0(ρ− qi))-cartesian, whenever S 7→ VS is a k + 1-cube such that

Vi = V∅ ∪ {handles of index ≤ qi},

and ρ > qi for all i. For S ⊆ k + 1 the symbol VS denotes VS = ∪i∈SVi.
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In the rest of the talk we concentrate on the functor U 7→ Emb(U, N). The
main result is:

Theorem 2 ([9],[3],[7],[8]). In the situation as described above the k + 1-cube

S 7→ Emb(VS , N)

is ((3 − n) +
∑k

i=0(n − qi − 2)) cartesian, where n = dim(N). Hence the functor
U 7→ Emb(U, N) is (n− 2)-analytic with excess (3− n).

A consequence is that the Taylor tower converges to Emb(M, N) whenever
dim(M) ≤ n− 3.

There is a weaker statement which can be proved using much less sophisticated
methods than are those used to prove the previous statement.

Theorem 3 ([8]). In the situation as described above the k + 1-cube

S 7→ Emb(VS , N)

is ((3− n) +
∑k

i=0(n− 2qi − 2)) cartesian, where n = dim(N).

A consequence of this statement is the convergence of the Taylor tower to
Emb(M, N) whenever 2 dim(M) ≤ n− 3.

The proof of the weaker statement consists of converting the excision statement
into the multiple disjunction statement which is proved using general position
arguments and the generalized higher Blakers-Massey theorem (see [8]).

The proof of the stronger statement is much more difficult. We sketch a proof
of a slightly weaker version presented in [8]. It first converts the statement from
Theorem 2 to a statement about the cubes of spaces of diffeomorphisms. After
that the main ingredients are the following:

• the proof of a corresponding statement about the cubes of spaces of ho-
motopy equivalences given in [7],

• a multiple disjunction lemma for smooth concordance embeddings which
is a content of Goodwillie’s thesis [3], and

• an application of two theorems from surgery theory given in [8].

5. n-excisive functors

Andrew Blumberg

In this talk we develop and make precise the slogan “n-excisive functors are
determined by their restrictions to sets with n elements or fewer, and the restric-
tion can be arbitrary”. Let Fn denote the category of finite pointed sets with ≤ n
elements. In the setting of the homotopy calculus, we prove the following theorem:
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Theorem 1 Let F and G be n-excisive functors from based spaces to spectra,
and t : F → G a natural transformation. Then t : F (X)→ G(X) is a weak equiv-
alence for all finite dimensional CW-complexes X provided that t : F (U)→ G(U)
is a weak equivalence for U ∈ obj(Fn). (Note that in the presence of a limit axiom
for F and G, this result can be extended to all CW-complexes).

Working in the manifold calculus, we replace Fn by the category On(M) which
consists of all open subsets of M which are diffeomorphic to a disjoint union of
≤ n disks (copies of R

m, where m is the dimension of M). We have the analogous
theorem:

Theorem 2 Let F and G be “good” cofunctors from O(M) to spaces which are
polynomial of degree ≤ n, and t : F → G a natural transformation. Then t(X) :
F (X)→ G(X) is a weak equivalence for all X provided that t : F (U) → G(U) is
a weak equivalence for U ∈ obj(On(M)).

The proofs of theorems 1 and 2 are essentially similar and use induction over
cell attachment and handlebody decompositions respectively.

With these results in hand, we now proceed to describe stronger characteri-
zations of n-excisive (and polynomial of degree ≤ n) functors. Returning to the
homotopy calculus, given a functor F from Fn to spectra we can prolong this
via homotopical left Kan extension to a functor LF from finite CW-complexes to
spectra.

Definition For a functor F from Fn to spectra, define LF (X) to be the geo-
metric realization of the simplicial set with k-simplices given as

∐

x0,x1,...,xn

F (x0) ∧ (hom(x0, x1)× hom(x1, x2)× . . .× hom(xn−1, xn)×Xxn)+

As one would expect, for m ∈ Fn, there is a weak equivalence LF (m) ' F (m).
Now, given a functor F from based spaces to spectra, we can restrict down

to a functor with domain Fn and then use the homotopical left Kan extension
to prolong back up to a functor with domain finite CW-complexes. Call the
functor associated in this fashion to F , LFn. There is a natural transformation
l : LFn → F .

We establish the following theorem:

Theorem 3 If F is an n-excisive functor, the natural transformation l : LFn →
F is a weak equivalence.

In light of the first theorem we proved above and the observation that homo-
topical left Kan extensions are indeed prolongations up to homotopy, it suffices to
show:
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Proposition Given any functor G from Fn to spectra, LG is n-excisive.

This proposition is proved by analyzing the simplicial set LG and in particular
observing that homotopy cofibers commute with realization.

In the manifold setting essentially the same situation occurs. Specifically, given
any cofunctor from O(M) to spaces, we can restrict to a cofunctor from Ok(M)
to spaces. Such a cofunctor can be prolonged back up to a cofunctor with domain
O(M) using homotopical right Kan extension, and there is a natural transforma-
tion r : F → RFn.

Definition Given a cofunctor F from On(M) to spectra, define RF (X) to be
holimU∈Ok(X)F (U).

(Note that the definition of the homotopical left Kan extension could also have
been written in such a form as an appropriate homotopy colimit).

Finally, we state the following theorem:

Theorem 4 If F is an “good” cofunctor which is polynomial of degree ≤ n,
the natural transformation r : F → RFn is a weak equivalence.

Once again, this theorem follows immediately from theorem 2 above and the
following proposition (which is proved in the next talk):

Proposition Given any cofunctor G from Ok(M) to spectra, RG is a n-degree
polynomial cofunctor.

References for the material discussed in this talk are Goodwillie’s “Calculus
III : Taylor series” and Weiss’ “Embeddings from the point of view of immersion
theory: Part 1”.

6. Weiss’ Taylor tower in the manifold case, part I

Ben Wieland

In this talk, we construct polynomial approximations of (good) contravariant
functors from the partially ordered set O(M) of open sets of a manifold M to the
category of spaces. Everything is taken from the papers of Weiss and Goodwillie
[23, 24, 11]. From the previous talk, we know that polynomials of degree n are
determined by their values on the subposet On(M) of disjoint unions of at most n
disks, so a natural candidate is the homotopy Kan extension. Since the property of
being a polynomial functor involves a limit, the right Kan extension is the correct
choice.

Definition. For a good functor F : O(M) → Spaces, the nth Taylor polynomial
TnF is the homotopy right Kan extension of the restriction of F to O(M). Since
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Kan extensions are pointwise limits, this is given by TnF (U) = holim
V ∈On(U)

F (U).

They come with maps F → . . .→ TnF → Tn−1F → . . .

Lemma. TnF is n-excisive, or a polynomial of degree n.

Theorem. F → TnF is the universal map from F to a polynomial of degree n.
An interpretation is that any natural transformation F → G to a polynomial of
degree n canonically factors (in the homotopy category) as F → TnF → TnG←∼ G.

The theorem follows from the lemma by formal properties of the Kan extension.
In particular, sinceOn(M) is a full subcategory of O(M) the Kan extension is truly
an extension: if we restrict back to the subcategory, the values do not change
(up to equivalence). Thus the Kan extension of a polynomial agrees with it on
On(M) and both are polynomial, so they are equivalent. Thus we may, through
the Kan extension, identify the (homotopy) category of polynomial functors of
degree n with the (homotopy) category of functors on On(M). Then, the universal
property of the Kan extension assures us that the Kan extension of the restriction
of a functor is the universal approximation (on the right) of the functor by a
polynomial.

Remark. Weiss’s notion of a good functor [23, 2.2] [24, 1.1] involves two parts:
that the functor is locally constant in that it takes isotopy equivalences to ho-
motopy equivalences and a mild sheaf condition that its value on an increasing
union is the homotopy limit. The first part is all that is needed to define the
polynomial approximation, since that requires only that the restriction to On(M)
be locally constant. The second condition is needed only if we wish our polyno-
mial approximations, which are good, to tell us about the values that the original,
nongood functor takes on infinite manifolds. But if we only care about its values
on manifolds with finite handle decompositions, we might as well replace it with
its universal good approximation. This may be constructed as the Kan extension
of its restriction to the full subcategory O′(M) of manifolds with finite handle
decompositions. Finally, I should warn that if we drop the mild sheaf condition of
goodness, the polynomial concept becomes ambiguous. Two definitions of polyno-
mials, as (almost) locally constant homotopy sheaves for a particular Grothendieck
topology and the right Kan extensions of locally constant functors on On(M) au-
tomatically satisfy the mild sheaf condition, but the definition involving cubes
does not.

An analytic functor is one that is stably n-excisive for all n. Such a functor
is well-approximated by its Taylor polynomials. We see this by Mayer-Vietoris
induction, which shows how a polynomial is determined by its values on On(M).
The analytic functor is only approximately determined, in that each n + 1-cube
which for the polynomial is cartesian is for the analytic functor only highly con-
nected. Thus each cube tells us that analytic functor is uniformly approximated
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by the polynomial. The connectivity of the approximation depends on the degree
of the polynomial and on the handle dimension of the domain. With the handle
dimension inside a radius of convergence, the connectivity grows linearly with the
degree n of approximation. Good approximations are made on manifolds with low
handle dimension, which is quite different from the homotopy calculus, where good
approximations are made on spaces with high connectivity. A relation between
the two notions is that an inclusion of manifolds having low handle dimension is
equivalent to the inclusion of their complements having high connectivity.

Definition. A good functor F onO(M) is ρ-analytic with excess c if for all U ⊂M
and pairwise disjoint closed subsets Ai ⊂ U with dimension qi, for i = 1 . . . r, the
r-cube S 7→ F (U\

⋃

i∈S Ai) is c+
∑

ρ− qi-connected. One might require this only
for qi < ρ.

Theorem. If F is ρ-analytic with excess c and U ⊂ M has handle dimension
q < ρ, then F (U) → TnF (U) is c + n(ρ − q)-connected. In particular, F (U) →∼

holim TnF (U)

It remains to prove the lemma that TnF is n-excisive. This is proved by re-
placing the category On(V ) with a slightly smaller category εOn(V ) of those open
sets U subordinate to the open cover ε, in the sense that each component (which
is a disk) U must be contained in one of the open sets of ε. Restricting to this
smaller category does not lose information because our functors preserve isotopy
equivalences and every collection of big disks is isotopic to a collection of small
subdisks. Moreover, restricting a functor εOn(M) and right homotopy Kan ex-
tending back to On(M) preserves the property of sending isotopy equivalences
to homotopy equivalences, so this does not change the functor, up to equivalence.
Since Kan extension is compatible with composition εOn(M)→ On(M)→ O(M),
this shows that we may define TnF using either On(M) or εOn(M).

The key to polynomial properties is usually a pigeonhole argument. Here we
wish to make our n disks completely miss one of the n + 1 closed sets used to test
the polynomial property. Given an open set U and n + 1 disjoint closed sets Ai,
we wish to show that the cube S 7→ TnF (US) is cartesian, where US = U\AS and
AS =

⋃

i Ai. We choose our cover ε so that no open set in ε touches more than
one of the Ai. For example, we could choose the sets M\A{j 6=i}. Then an open
set in εOn(V ) having only n components, each of which may hit only one of the
Ai, must have all of them miss some Ai. Thus the category εOn(V ) is the union of
the categories εOn(V \Ai) and in fact the colimit of the cube of their intersections.
Since these subcategories are ideals, not only is their union the whole category,
but the union of their nerves is the nerve of the whole category. This enables us to
pull the colimit out of the indexing set and make it a limit of spaces. All together:

holim
S 6=∅

TnF (VS) = holim
S

holim
εOn(VS)

F = holim
hocolimS εOn(VS)

F

' holim
colimS εOn(VS)

F = holim
εOn(V )

F = TnF (V )
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The one equivalence which is not a homeomorphism is the step that uses that the
subcategories are ideals.

7. Weiss’ Taylor tower in the manifold case, part II

Brian Munson

We continue a discussion of the Taylor tower of a good cofunctor from the poset
O(M) of open subsets of a smooth manifold M to the category of spaces. The
main point of this talk was to classify the kth layer of the Taylor tower for a good
cofunctor F , defined as the cofunctor Ek(V ) = hofiber(TkF (V ) → Tk−1F (V )),
which makes sense if we choose a basepoint in Tk−1F (M). This functor has the
property that it is k-excisive (because it is the homotopy fiber of two functors
which are k-excisive), and its (k−1)st Taylor approximation is contractible. With
this in mind, we call a cofunctor E : O(M)→ Spaces homogeneous of degree k if
E is k-excisive and Tk−1E(V ) ' ∗ for all V ∈ O(M).

Interesting examples are the cofunctors Emb(−, N), Imm(−, N), Map(−, X),

and Γ(p,
(

−
k

)

), where p : Z →
(

M
k

)

is some fibration over the space of unordered
configurations of k points in M . They are, respectively, the functors which assign
to each open subset of V in M the space of embeddings of V in a smooth manifold
N , the corresponding space of immersions, the space of maps of V into any space
X , and the space of sections of the fibration p. Except for the space of embeddings,
all of these cofunctors are l-excisive for some l. Moreover, the space of sections
example is very general, as we can think of Map(V, X) as the space of sections of a
trivial fibration over V with fiber X , and Imm(V, N) as a section of a bundle over

V whose fiber is a Stiefel manifold. This suggests the example Γ(p,
(

V
k

)

) deserves
further study.

A related example is the functor V 7→ Γ(p, ∂
(

V
k

)

), the space of sections “near
infinity”. One can more properly define this as the homotopy colimit over all
neighborhoods Q of the fat diagonal in V k/Σk of Γ(p,

(

V
k

)

∩Q). It turns out that
this functor is (k − 1) excisive, and is the (k − 1)st Taylor approximation to the

k-excisive functor Γ(p,
(

V
k

)

). Hence if we pick a basepoint in Γ(p, ∂
(

M
k

)

), and define

Γc(p,
(

V
k

)

) = hofiber(Γ(p,
(

V
k

)

) → Γ(p, ∂
(

V
k

)

), then this is homogeneous of degree
k, as observed above. The classification theorem for homogeneous cofunctors says
that this is the only example. More precisely,

Theorem: Given E : O(M) → Spaces a homogeneous cofunctor of degree k,

there exists a fibration p : Z →
(

M
k

)

and an equivalence E(V )→ Γc(p,
(

V
k

)

) for all
V ∈ O(M), natural in V .

One constructs the fibration from the cofunctor E by restricting E to a suit-
able subcategory I(k)(M) of O(M) whose geometric realization is the space of
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unordered configurations of k points in M , and on which E takes all morphisms
to homotopy equivalences. The subcategory I(k)(M) has as its objects those open
subsets of M which are diffeomorphic to a disjoint union of k balls, with mor-
phisms the inclusions which are isotopy equivalences. Then the homotopy colimit
of E over this subcategory quasifibers over its realization, and this produces the
desired fibration. The fiber over a given V ∈ I(k)(M) is just E(V ), and if one
thinks of making E by taking the kth layer of the Taylor tower of some good co-
functor F , then one can go further to obtain a description of the fibers in terms
of F alone. It is through this description that one can see the symmetric group
Σk acting, which is an important observation if we are trying to make an analogy
between derivatives in the homotopy calculus (spectra with Σk action built from
the functor in question), and in the manifold case (the total fiber of a k-cube built
from the cofunctor in question).

The reference for this talk is sections 7 and 8 of Michael Weiss’ paper titled
“Embeddings from the point of view of immersion theory, Part I”, published in
Geometry and Topology.

8. Spaces of long knots from the calculus of embeddings viewpoint

Pascal Lambrechts

In this talk we give an application of Goodwillie-Weiss embedding calculus to
the space of knots. Another summary of these ideas can be find in [10, Section
5.1] and there is also a discussion around this theme in [11, Section 5]

The space of long knots. Set I = [0, 1] and let M be a smooth manifold with
non empty boundary. Fix two unit tangent vectors α ∈ STM (resp. β ∈ STM)
located on ∂M and pointing inward (resp. outward). A lonk knot in M is a smooth
embedding f : I ↪→M such that df(0) = α, df(1) = β, and f is transverse to ∂M .
We assume also that ‖f ′(t)‖ = 1 for each t ∈ I , i.e. the module of the speed is
constant. We denote by Emb(I, M ; ∂) the space of long knots in M ; sometimes
we will replace I by some open subset V ⊂ I containing ∂I .

When M = Rn−1× [0, 1], this space of long knots is closely related to the usual
space of knots Emb(S1, Sn). Indeed it is fairly easy to check that Emb(I, Rn−1×
[0, 1]; ∂) is homotopy equivalent to the fibre of the map

Emb(S1, Sn)→ V2(R
n+1) = SO(n + 1)/SO(n− 1) , g 7→ (g(1), g′(1)/‖g′(1)‖)

Since we are considering embeddings with boundary conditions, the general
framework for the Goodwillie-Weiss tower has to be slightly adapted (see [24,
Section 10].) Here O is the poset of open subsets of I that contain ∂I = {0, 1}.
We define the contravariant functor

F : O → Spaces , V 7→ F (V ) = Emb(V, M ; ∂).

This functor is good (in the sense of [24, Definition 1.1]) and we can study its
Taylor tower. For k ≥ 1 let O(k) be the subposet of elements of O consisting of a
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disjoint union of a collar of ∂I with at most k open balls inside I . Following [24,
p.84], the k-th stage of the Taylor tower of F is given by, for U ∈ O,

TkF (U) = holimV ∈O(k),V ⊂UF (V ).

Fix k ≥ 1 and set k = {0, 1, · · · , k}.
Fix k + 1 disjoint subintervals A0, A1, · · · , Ak ⊂ int(I). For S ⊂ k define

ES = Emb(I \ ∪s∈SAs, M ; ∂).

If S′ ⊂ S we have an obvious restriction map ρS′,S : ES′ → ES . This defines a
diagram of spaces, S 7→ ES , indexed by the poset P0(k) of non empty subsets
S ⊂ k. We have the following

Proposition 1. (TkF )(I) ' holim∅6=S⊂kES .

The proof of Proposition 1 is easy: just use the fact that TkF is k-excisive, that
I \ ∪s∈SAs ∈ O(k), and that the restrictions to O(k) of TkF and F are naturally
homotopy equivalent.

Configuration spaces. We relate now the spaces ES to certain configuration
spaces. Elements of STM are denoted by ξ = (x, v) with x ∈ M and v ∈ TxM
with ‖v‖ = 1. Define the configuration space C ′

q(M ; ∂) consisting of (q +2)-tuples

(ξ0 = (x0, v0), ξ1 = (x1, v1), · · · , ξq+1 = (xq+1, vq+1)) ∈ (STM)q+2

such that ξ0 = α, ξq+1 = β, and xi 6= xj for i 6= j.
Let S ⊂ k be a subset of cardinality q + 1. Then I \ ∪s∈SAs is a disjoint union

of a collar about ∂I with q disjoint open subintervals J1, · · · , Jq . Let ti be the
middle point of Ji. The following proposition is not difficult to prove, the key
argument being the fact that the space of free (i.e. without boundary conditions)
embeddings of I in M is homotopy equivalent to STM .
Proposition 2. Let q = |S| − 1 ≥ 0. We have a homotopy equivalence

φ : ES
'
→ C ′

q(M ; ∂) , f 7→ (df(0), df(t1), · · · , df(tq), df(1)) .

The latter proposition suggests that in the homotopy limit of Proposition 1 we
could replace the spaces ES by these configuration spaces. For this we would also
need maps corresponding to the restriction maps ρS′,S . This can only be done
after replacing the configuration spaces C ′

q(M, ∂) by a suitable compactification
C ′

q [M, ∂], à la Fulton-MacPherson. The intuitive idea is that elements of C ′
q [M, ∂]

consist of “virtual” configurations

(ξ0 = (x0, v0), ξ1 = (x1, v1), · · · , ξq+1 = (xq+1, vq+1))

where xi and xj may be equal, in wich case some extra data serves to distinguish
these two points infinitesimally. A precise definition of C ′

q [M, ∂] is given in [20,
Definitions 4.1 and 4.12]. It turns out that this compactification has the same
homotopy type as the configuration space itself. We can define also doubling maps
di, for 0 ≤ i ≤ q,

di : C ′
q−1[M ; ∂]→ C ′

q [M ; ∂], (ξ0, · · · , ξi = (xi, vi), · · · , ξq) 7→ (ξ0, · · · , ξi, ξ
′
i, · · · , ξq)
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where ξ′i = (x′
i, vi) with xi = x′

i but “infinitesimally” x′
i − xi = vi (see [20,

Definitions 4.1 and 4.12].) The following generalization of Proposition 2 express
the fact that these doubling maps correspond to the restriction maps on ES :

Proposition 3 ([20, Proposition 5.14]). The diagrams of spaces

{ES , restriction maps}S∈P0(k)

and
{C ′

|S|−1[M ; ∂], composite of doubling maps}S∈P0(k)

are homotopy equivalent.

Combining this with Proposition 1 we get the following

Corollary 4 ([20, Lemma 5.18]). (TkF )(I) ' holim∅6=S⊂kC ′
|S|−1[M ; ∂].

A cosimplicial space. One can also define forgetting maps, sj , for 1 ≤ j ≤ q,

sj : C ′
q [M, ∂]→ C ′

q−1[M, ∂] , (ξ0, · · · , ξi, · · · , ξq) 7→ (ξ0, · · · , ξ̂i, · · · , ξq).

A natural guess would be that this gives a cosimplicial space with di as cofaces and
sj as codegeneracies. This is not true because certain cosimplicial identities are
not satisfied. However it is possible to replace C ′

q [M, ∂] by a homotopy equivalent
quotient C ′

q〈[M, ∂]〉 for which the induced map satisfy the cosimplicial identities.
We get then a cosimplicial space ([20, Definition 6.1]):

X• := {C ′
q〈[M, ∂]〉, di, sj}q≥0.

To such a cosimplicial space one can associate its partial k-th totalisation, TotkX•,
which is also homotopy equivalent to the homotopy limit of the cofaces maps on
the k-coskeleton. Therefore we get

Proposition 5. TkF (I) ' Totk(X•).

If we work in codimension at least 3 the Goodwillie-Klein excision result implies
that the Taylor tower converges to the embedding space. In our case this yields
to the following

Theorem 6 ([20, Theorem 6.2]). If dim M ≥ 4 then Emb(I, M ; ∂) ' Tot(X•).

The latter theorem is very effective because Bousfield-Kan have constructed
spectral sequences to compute the homotopy groups or cohomology of the total-
ization of a cosimplicial space and because configuration spaces are fairly well un-
derstood. For example Scanell and Sinha have used Theorem 6 to compute certain
homotopy groups of the space of long knots in Rn ([19]). Also, using the Kontse-
vich’s theorem on the formality of configuration space in Rn, we have proved that
the rational cohomology Bousfield-Kan spectral sequence for computing Tot(X•)
when M = Rn−1×I , n ≥ 4, collapses at the E2-term. This determines completely
the rational homotopy type of Emb(I,Rn−1 × I ; ∂) (see [17].)

A difficult open question is whether Theorem 6 still holds under the weaker hy-
pothesis dim M = 3. This is of course of great interest since when M = R2×I the
space of long knots is closely related to the space of usual knots Emb(S1, S3). This
question is in fact very much related to the conjecture that the Vassiliev invariants
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separate all knots. Indeed Ismar Volic has proved that a certain algebraization
of the cohomology Bousfield-Kan spectral sequence contains in its E2-term the
Vassiliev invariants. More precisely E2p,−2p

2 is isomorphic to Vassiliev invariants

of order p. Note that E2p,−2p
2 is strongly related to the cohomology of the 2p-th

layer of the Taylor tower for this embedding space. We refer the reader for more
details to the very interesting work [21].

9. and 10. Goodwillie’s Taylor tower in the homotopy case,
parts I and II

Gerald Gaudens and Christian Ausoni

We explain the construction and the basic properties of the Taylor tower of a
homotopy functor, as developed in [Goodwillie, Calculus III]. This amounts to the
first three sections of the paper.

Let Y be a fixed topological space. By UY we denote the category of spaces
over Y and by TY we denote the category of sectionned spaces over Y . Let Sp be
the category of spectra. When Y = ∗, we simply suppress it from the notation.
Let C ∈ {UY , TY } and D ∈ {T ,Sp}. We consider homotopy functors

F : C −→ D,

namely functors which preserve weak homotopy equivalences. The aim is to study
such a functor F by means of polynomial approximations. More precisely, we
explain how to construct a natural tower of functors under F , called the Taylor
tower of F , as diplayed below :

...

qn+2F

Pn+1F

qn+1F

F

pn+1F

pnF

p0F

PnF

qnF

...

q1F

P0F ' F (Y )

This Taylor tower is characterized by the following universal property. For all
n ∈ N,
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(i)n PnF is n-excisive (it takes strongly cocartesian (n + 1)-cubes to cartesian
cubes), and

(ii)n PnF : F −→ PnF is initial as a map from F to an n-excisive functors, in
the homotopy category of homotopy functors.

Although properties (i)n and (ii)n always hold (see abstract for talk XV), we prove
them only for stably n-excisive functors (see abstract for talk III). Furthermore,
we show that if F is ρ-analytic and X is (ρ + 1)−connected then the natural map

F (X) −→ holimn∈NPnF (X)

is a weak homotopy equivalence. See talk III for the definition of a ρ-analytic
functor. A space X is (ρ + 1)−connected if the structural map X → Y is.

We break down the study of the Taylor tower of a functor F by introducing the
layers

DnF = hofiber(qn : PnF −→ Pn−1F ).

For technical reasons, we need to assume that C is a pointed category, so we will
restrict ourselves to functors TY → D. It follows from the definition that DnF is
n-homogeneous : for n ≥ 1, we call a functor H n-homogeneous if

- H is n-excisive,
- H is n-reduced : Pn−1H ∼ ∗.

Let us denote by Hn(TY ,D) the category of n-homogeneous functors TY → D. In
order to classify n-homogeneous functors, we introduce symmetric n-multilinear
functors. A functor

L : T n
Y −→ D

is n-multilinear if L is 1-homogeneous in each variable. Such a functor L is sym-
metric provided that for any permutation of n elements σ ∈ Σn there exists a
natural isomorphism

L(σ) : L(X1, . . . , Xn) −→ L(Xσ(1), . . . , Xσ(n))

such that L(σσ′) = L(σ′)L(σ). We denote by Ln(TY ,D) the category of symmetric
multilinear functors T n

Y → D.

The next aim is to construct a diagram

Hn(TY , T )
B∞

crn

Hn(TY ,Sp)

crn

Ω∞

Ln(TY , T )
B∞

Ln(TY ,Sp)
Ω∞

∆n

The mth cross-effect of a homotopy functor F : TY → D is the symmetric
m-multifunctor defined by

crmF (X1, . . . , Xm) = total homotopy fiber of F (S(X1, . . . , Xm)) .
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Here S(X1, . . . , Xn) is the n-cube

S 7−→
∨

i∈n\S
Xi

with the obvious projection maps (the one point sum ∨ is meant as ‘sum over Y ’).
If F is n-homogeneous, then crnF is not only symmetric but also multilinear. On
the other hand, one can define a functor ∆n from Ln(TY ,Sp) to Hn(TY ,Sp)

∆nL(X) = F (X, . . . , X)hΣn
.

One can also build natural deloopings B∞ of homogeneous functors TY −→ T
and symmetric multilinear functors T n

Y −→ T .
We show that all (bottom, top, and left) pairs of functors in the diagram induce

equivalences at the level of homotopy categories, hence crn is also an equivalence
on the left hand side.

It follows from talk II that for any L ∈ Ln(TY ,Sp) and for n-tuple (X1, . . . , Xn)
of finite complexes, one has a natural equivariant weak homotopy equivalence

L(X1, . . . , Xn) ' L(S0, . . . , S0) ∧X1 ∧ . . . ∧Xn .

Here L(S0, . . . , S0) is a Σn equivariant spectrum in the naive sense, making the
right hand side a symmetric multilinear functor. Thus this equivalence extends to
an equivariant weak homotopy equivalence of functors in presence of suitable limit
axioms.

To sum up, for any homotopy functor from C to D, one can describe (at least
on finite complexes) DnF as

DnF (X) ' (Cn ∧X∧n)hΣn

where Cn is some fixed spectrum with Σn action. This spectrum Cn is called the
nth derivative of F at S0. One should compare this with the fact that in (ordinary)
calculus, the nth-homogeneous part of the Taylor expansion of a C∞ function f is

(Pnf − Pn−1f)(x) =
f (n)(0)

n!
· xn .

11. The derivatives of the identity functor

Carl-Friedrich Bödigheimer

For a functor F : TOP0 → TOP0 we studied the layers

DnF : hfiber(qnF : PnF→ Pn−1F)

and their n-th cross-effect, the n-th derivative

D(n)F := crn(DnF),

which is a functor of n variables. Such a functor can be multilinearized to

MultLin(G)(X1, . . . , Xn) := hocolimk1,...,kn
Ωk1+...+knG(Σk1X1, . . . , Σ

knXn).
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We used the following easily proved facts :

crn(DnF) ' crn(PnF)(1)

D(n)F is symmetric(2)

DnF (X) ' D(n)F (X, . . . , X)hΣn
(3)

MultiLin(crnF) ' D(n)F(4)

The following proposition is together with the last equivalence above the im-
portant tool to recognize the n-th derivative of a functor.

Proposition 1
Let G, G′ be two reduced, symmetric functors of n variables and let T : G→ G′ be
a Σn-equivariant natural transformation. If there exists a constant c such that for
any k and all k-connected spaces X1, . . . , Xn the map

TX1,...,Xn
: G(X1, . . . , Xn)→ G′(X1, . . . , Xn)

is ((n + 1)k − c)-connected, then

MultiLin(T) : MultiLin(G)→ MultiLin(G′)

is an equivalence.

The strategy to identify D(n)F is (1) to find a reduced, symmetric functor
MnF of n veriables, (2) a Σn-equivariant transformation T : crnF →MnF , which
satisfies the connectivity condition of the Proposition.

Following the work of Brenda Johnson [13] we did (a) describe a space C̄n with
a Σn-action, and (b) define the functor

MnF (X1, . . . , Xn) := map0(C̄n,

n
∧

i=1

F(Xi)),

and a Σn-equivariant transformation T : crnF → MnF. Furthermore, we deter-
mined the homotopy type of C̄n to be a bouquet of (n− 1)! spheres of dimension
n− 1.

To give some more details for (a) note that a point in crnF(X1, . . . , Xn) is a
collection of maps ΦU : IU → F (XU ) for each U ⊂ n, where XU =

∧

i/∈U Xi.
These maps satisfy certain boundary conditions and coherence conditions. This
turns out to be the same as a map from C̄ to

∧n
i=1 F (Xi). We describe the space

C̄ as a subspace of an n-fold configuration space, and we showed in several steps

that C̄ '
∨(n−1)!

Sn−1 Thus

MnF (X1, . . . , Xn) '

(n−1)!
∏

Ωn−1
n
∧

i=1

F (Xi).

The transformation T is straightforward.
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Only now do we spezialize to F = Id being the identity functor and prove the
connectivity condition of the proposition. We used here fact that Id and ΩΣ have
the same derivatives. The main ingredient is the

Hilton-Milnor-Theorem

ΩΣ(X1 ∨ . . . ∨Xn) '
∞
∏

α=1

ΩΣ
∧

j∈wα

Xj ,

where wα denotes the α-th basic word in a (Hall) basis of the free non-associative
algebra on the symbols x1, . . . , xn.

The cross-effect, defined as the total fiber of a cube consisting of the projection
maps, is now seen to be a subproduct, consisting of all the factors wα containing
each symbol x1, . . . , xn at least once.

Proposition 2
If X1, . . . , Xn are k-connected, then

πm(

(n−1)!
∏

X1 ∧ . . . ∧Xn) ' πm(crnΩΣ(X1, . . . , Xn))

is an isomorphism for 0 ≤ m ≤ (n + 1)(k + 1)− 1.

The final result is now

Id(n) '

(n−1)!
∨

Ω∞Σ∞(S1−n)

.

12. The Taylor towers of X 7→ Σ∞Map∗(K, X) and X 7→ Σ∞Ω∞X

Hal Sadofsky

We wish to describe Goodwillie’s Taylor tower for the functor from based spaces
to spectra given by

X 7→ F (X) = Σ∞Map∗(K, X).

Here K is a CW-complex with finitely many cells, and Map∗ is the space of
basepoint preserving maps.

Our main source is Arone’s paper A generalization of Snaith-type filtration
(Trans. Amer. Math. Soc. 351 (1999), no. 3, 1123–1150). Other sources
are Goodwillie’s Calculus II (K-Theory 5 1991/92), no. 4, 295-332), Calculus III
(Geom. Topol. 7, (2003), 645-711), and Ahearn-Kuhn’s Product and other fine
structure in polynomial resolutions of mapping spaces (Algebr. Geom. Topol. 2
(2002), 591–647).

By Calculus II, the functor F (X) is analytic, and the Taylor tower converges if
the connectivity of X is at least the dimension of K. We describe the k-th excisive
approximation Pk(X), and the kth level, Dk(X).



Arbeitsgemeinschaft: The Goodwillie Calculus of Functors 897

Arone’s main theorem is that

(5) PkF (X) ' NatMk
(K∧, X∧).

Here Mk is the category with objects the integers 0 through k where 0 is the
empty set and j = {1, . . . , j} and with morphisms surjections. Note that there is
a natural map

NatMk
(K∧, X∧)→ NatMk−1

(K∧, X∧)

by restricting the functors on Mk to Mk−1. Thus the functors NatMk
(K∧, X∧)

fit together into a tower.
If Y is a pointed space, Y ∧ :Mk → Spectra is the functor that associates j to

the j-fold smash product of Y , and associates a surjection j → i to the evident

“diagonal” map X∧i → X∧j .
First, assuming (5), we follow the argument from Arone’s paper to describe the

right hand side explicitly so that we can determine the kth layer combinatorially.
To be precise,

DkF (X) = MapSpectra(K(k), Y ∧k)Σk .

Then we sketch the proof of (5) in the special case K = Sn using the argument
provided in Ahearn-Kuhn. This relies on three main ideas.

(1) We can reduce to considering X = ΣnY for Y connected. This is true by
Calculus II, or by an ad-hoc argument involving induction over cells.

(2) In the case X = ΣnY , the classical combinatorial model for ΩnΣnY has
a filtration which splits on applying Σ∞. The pieces of the splitting are
homogeneous functors, so this gives the Taylor tower in that case.

(3) We map the tower determined by 2. above to the tower described by using
the functors in the right hand side of (5). We check that we get a weak
equivalence at the kth level by assuming we have such an equivalence at
the k − 1st level, and calculating the effect of the kth cross effect. This
involves calculating the kth cross effect on both sides, and the effect on
the map.

Finally, following (for example) Ahearn-Kuhn we can calculate the Taylor tower
of Σ∞Ω∞X for X taking values in spectra by taking the hocolim of the Taylor
towers for

ΩnXn → Ωn+1(ΣXn)→ Ωn+1Xn+1 → . . .

An example conclusion from this is

Dk(Σ∞Ω∞)(X) = E(Σk)+ ∧Σk
X∧k.

13. Homotopy calculus via cotriples

Andrew Mauer-Oats

The purpose of this talk is to explain the relationship between the (n+1) cross
effect and the n-excisive approximation for a functor from spaces to spectra, stated
carefully as Theorem 3 below.
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As a consequence of Theorems 3 and 4, the cross-effect cotriple can be used to
study the n-excisive approximation to a functor F anywhere inside the radius of
convergence (which is to say, anywhere that the calculus of functors itself gives
information about F ). One advantage of this approach is that to define cross
effects requires only finite coproducts in the source category and homotopy fibers
in the target category; not even “connectivity” is needed, hence the construction
can be applied to functors with a wide variety of source and target categories.

Definition. ([n], Cn): Let [n] denote the set {0, 1, 2, . . . , n} with basepoint
0. Let Cn denote the full subcategory of pointed spaces generated by the objects
{[0], . . . , [n]}.

For any continuous functor F , there is a categorical map

|F (X·)| → F (|X·|)

from the realization of F applied dimensionwise to a simplicial space to F applied
to the realization (that is from, hocolimF ()→ F (hocolim)).

To avoid any confusion, when we use the word “equivalence”, it means “weak
homotopy equivalence.” The symbol “'” denotes an equivalence.

Definition. A functor commutes with realizations if the above map is a weak
equivalence.

Theorem 1. (Goodwillie) If F ' Pn+1F and crn+1F ' 0, then F ' PnF .
Theorem 2. If F commutes with realizations and crn+1F ' 0, then F ' PnF .
Examples:

• The integral homology functor, F (X) = HZ ∧X commutes with realiza-
tions.

• The functor to Eilenberg-MacLane spectra given by π2F (X) := H2(X ;Z)
does not commute with realizations. On S3 it is zero, but applied dimen-
sionwise to S2 wedged with a discrete model for S1 it produces K(Z, 3).

Definition (LnF ). Given a functor F from spaces to spectra, let LnF denote
the homotopy invariant left Kan extension of F along the inclusion of Cn into the
category of spaces. One formula for LnF (X) involves the realization of a simplicial
space that in dimension [n] is:

∨

A0,...,An∈Cn

F (A0)×
(

MapCn
(A0, A1)× · · · ×MapTop(An, X)

)

+

Notice that MapTop(An, X) is a product of copies of X because An is a finite set
of points [i] = {0, . . . , i} ∈ Cn.

Facts about left Kan extensions of functors from spectra to spectra:

(1) If F ' PnF , then LnF → F is an equivalence. (This was shown in an
earlier talk.)

(2) LnF commutes with realizations for all n. (Using the above definition,
because finite products commute with realizations.)

(3) L∞F ' F if and only if F commutes with realizations.
(4) If crn+1F ' 0, then LnF → Ln+1F is an equivalence.
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The last fact is a little more involved: one way to show it is by arguing that
crn+1Ln+1F is excisive in each variable, and hence is determined by smashing with
the spectrum crn+1Ln+1F ([1], . . . , [1]), which is the same as crn+1F ([1], . . . , [1]),
and hence is contractible.

We then use these facts to prove Theorem 2.
Theorem 3. Let F be a functor from spaces to spectra that commutes with

realizations. Then there is a homotopy fiber sequence

cr∗n+1F → F → PnF,

where the fiber is a simplicial spectrum built from the iterated cross effects (which
form a cotriple).

The argument for Theorem 3 is to show that Theorem 2 produces an equivalence
on the homotopy fibers of a cube:

cr∗n+1F F

Pn(cr∗n+1F ) PnF

Theorem 4. Let F be an r-analytic functor from spaces to spectra. The functor
F commutes with realizations of dimensionwise r-connected simplicial spaces.

Analyticity means that the Taylor tower converges on r-connected spaces, so
this follows by approximating F by some large PNF and then using the facts that
LNF ' PNF and LNF commutes with realizations.

14. Linear functors of spaces over a space

Morten Brun

The aim of this talk was to make sense of the right hand column of the following
table, that is to explain some versions of the chain rule in functor calculus. Our
main references are the papers “Calculus III” of Goodwillie and “A chain rule
in the calculus of homotopy functors” of Klein and Rognes, both published in
Geometry and Topology. However our chain rule is slightly different from the one
of Klein and Rognes.
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M smooth manifold UM for a space M

F : M → N smooth map F : UM → UN homotopy functor

X ∈M point in M X ∈ UM space over M

TXM vector space of 1-jets TXUM category of excisive
of smooth maps α : R→M functors L : T → TM with
with α(0) = X L(∗) = X

TXF : TXM → TY N TXF : TXUM → TY UN

TXF ([α]) = [Fα] TXF (L) = P1(FL)

Chain rule: Chain rule:
TX(GF ) = (TY G)(TXF ) TX(GF ) ' (TY G)(TXF ).

(TXF )ij =< TXF (ei), ej > ∂y
xF =
{n 7→ hofiby(F (Sn ∪x X)→ F (X))}

(TXGF )ij =
∑

k(TY G)ik(TXF )kj ∂z
x(GF ) =

∫

y∈Y ∂z
yG ∧ ∂y

xFdy.

1. ANALYTIC FUNCTORS

Given a space M , UM denotes the category of spaces over M , and TM denotes
the category of spaces over and under M . In case M is a one-point space, we
denote these categories U and T respectively.

We consider analytic functors F : UM → UN and G : UN → UQ. Note that the
composite functor GF also is analytic.

Given a space X over M we let Jn
XUM denote the category of analytic n-excisive

functors L : T → TX with L(∗) = X , and let Jn
XF : Jn

XUM → Jn
Y UN denote the

obvious functor taking L to the n-excisive approximation Pn(FL) of FL. (Working
with homotopy limits and -colimits in TY we can assure that Pn(FL) is an object
if Jn

Y UN .)

Proposition. The natural map Pn(GFL)→ Pn(GPn(FL)) is a weak equivalence
for every L ∈ Jn

XUM .

As a consequence we obtain a first chain rule: Jn
X (GF ) ' (Jn

Y G)(Jn
XF ).

2. SYSTEMS OF SPECTRA

From now on we require homotopy functors to be finitary and continuous. Work-
ing with homotopy limits and -colimits in TY , with Y = F (X), the definition of
TXF in the above table makes perfect sense!
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We want to explain our second chain rule: TX(GF ) ' (TY G)(TXF ). We
prefer to switch to parametrized spectra in order to explain this chain rule.

Remark. A linear functor L : T → TX naturally takes values in infinite fiberwise
loop spaces. The reason is the same as for X = ∗: since the square

L(S0) −−−−→ L(I)




y





y

L(I) −−−−→ L(S1)

is cartesian, there is a weak equivalence L(S0) ' ΩXL(S1) with the convention
ΩXZ = mapTX

(S1, Zf ), where Zf is a fibrant replacement of Z and mapTX
is the

internal hom-object in TX . (We must require X to be weak Hausdorff.)

Definition. A system of spectra on X consists of objects {En} of TX and maps
S1 ∧ En → En+1. This category is denoted Sp(X).

Here ∧ is the fiberwise smash-product in TX and S1 = (S1 × X) ∈ TX and
F : TX → TY induces Sp(F ) : Sp(X) → Sp(Y ) with (Sp(F )(E))n = F (En). The
structure map S1 ∧ F (En) → F (S1 ∧ En) → F (En+1) is constructed using the
adjoint to the map S1 → mapU (En, S1 ×En)→ mapU(F (En), F (En+1)).

Our third chian rule: Sp(GF ) = Sp(G)Sp(F ) follows directly from the defi-
nition of Sp(F ).

Definition. A morphism E → E ′ of Sp(X) is a stable equivalence if the induced
map hocolimnΩn

XEm+n → hocolimnΩn
XE′

m+n is a weak equivalence for every m ∈
Z.

Lemma. For a homotopy functor F : TX → TY , the morphism Sp(F )(E) →
Sp(P1F )(E) is a stable eqivalence for every E ∈ Sp(X).

There are functors αX : TXUM � Sp(X) : βX with αX(L) = Sp(L)(S) and
(βX(E))(Z) = Ω∞

X (E ∧ Z) Here S denotes the sphere spectrum in Sp(∗). Using
the following proposition, the second chain rule is a consequence of the third chain
rule.

Proposition. αX and βX induce inverse isomorphisms on homotopy categories.

3. PARAMETRIZED BROWN REPRESENTABILITY

Given a system of spectra E on A and f : A → B, the system of spectra f∗E
on B is given by

(f∗E)n = colim(B ← A→ En).
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In calculus notation the homotopy fibre over b ∈ B is

(f∗E)b =

∫

a∈f−1(b)

Eada.

Theorem. Let pX×Y
Y : X × Y → Y is the projection. For every linear functor

L : TX → TY there exists a system of spectra ∂L on X × Y with a natural stable
equivalence

η : (pX×Y
Y )∗(∂L ∧ (E × Y ))→ Sp(L)(E)

for E ∈ Sp(X).

4. THE PARAMETRIZED CHAIN RULE

F : TX → TY is a homotopy functor with Y = F (X) and x ∈ X .

Definition. ∂xF = Sp(F )(S ∪x X) ' Sp(P1F )(S ∪x X), where Sn ∪x X → X
maps Sn to x. Further we let ∂y

xF denote the homotopy fiber at y ∈ Y of the map
∂xF → Y .

Note that

(∂P1F )x0,y '

∫

x∈X

(∂P1F )x,y ∧ (S ∪x0
X)xdx

= ((pX×Y
X )∗(∂(P1F ) ∧ ((S ∪x0

X)× Y )))y

' (Sp(P1F )(S ∪x0
X))y = ∂y

x0
F.

Theorem. ∂x(GF ) ' (pY ×Z
Z )∗(∂G ∧ (∂xF × Z)).

Taking homotopy fibres over z ∈ Z the theorem gives a fourth chain rule:

∂z
x(GF ) ' (pY ×Z

Z )∗(∂G ∧ (∂xF × Z))z

=

∫

y∈Y

(∂z
yG ∧ (∂xF × Z)y,zdy

=

∫

y∈Y

∂z
yG ∧ ∂y

xFdy.

15. Calculus without estimates

Ben Walter

In previous talks (see talks 9-11), we constructed and analyzed the Taylor tower
for a homotopy functor assuming that the functor satisfied certain stable n-excision
hypotheses (these hypotheses ranged, depending on the property or construction
under consideration, from being stably n-excisive for a single n, to being ρ-analytic
– which implies stable n-excision for all n). The property of ρ-analyticity for a
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functor implies convergence of its Taylor tower (at all ρ-connected spaces) – which
greatly simplifies many proofs. Yet, just as the formal Taylor series for a function
can be written even when the series will not converge, the “formal” Taylor tower
for a functor can be constructed using the methods of the previous talks even in
the absence of ρ-analyticity, indeed even in the absence of stable n-excision for
any n. However, without any stable n-excision, some work is required in order
to justify the name “Taylor tower” for this formal object. In particular, three
fundamental properties of the tower are no longer clear. These are:

Theorem 1. If L(X1, . . . , Xn) is (1, . . . , 1)-multilinear, then (L ◦ ∆)(X) is
n-homogeneous. [6, 3.1]

Theorem 2. The multilinearization of the nth cross effect of F is equivalent
to the nth cross effect of Pn(F ). [6, 6.1]

Theorem 3. Pn(F ) is n-excisive. [6, 1.8]
Parts of these theorems have already been proven without stable n-excision. In

particular, the excisive half of Theorem 1 is proven in [5, 3.4] using only standard
properties of cartesian and cocartesian cubes – this proof was discussed in a previ-
ous talk. The proof of the reduced half of Theorem 1 – that L (1, . . . , 1)-reduced
implies L ◦∆ is n-reduced – relies on a property of homotopy limits. If D :I → C
is a diagram over the index category I and J is a full subcategory of I, then we
can consider the homotopy limit of the diagram D|J . It is a standard fact that a
map holimI D → holimJ D exists and is a weak equivalence if J is left cofinal in
I.

To show that Pn−1(L ◦∆) is weakly contractible, we show that the map tn−1 :
(L ◦ ∆) → Tn−1(L ◦ ∆) factors through a weakly contractible object. The map
tn−1 can be (essentially) displayed as a map of the type discussed above for the
diagram DX(U1, . . . , Un) = L(X ∗ U1, . . . , X ∗ Un) over the indexing categories
I = P(n)n, J = Diagonal (P0(n)n). We factor the map tn−1 by factoring the
restriction of categories map I → J . Given some other full subcategory ε of I,
let (J ∪ ε) denote the full subcategory of I generated by the objects of J and
the objects of ε. For any such category, we will get maps

holim
I

D → holim
J ∪ ε

D → holim
J

D

The theorem is proven by producing ε such that both holimε D is contractible,
and also ε is left cofinal in (J ∪ ε).

In Calculus III, Goodwillie uses εG = {~S ∈ P0(n)n | Sj = {j}, some j} – the
largest ε for which his argument will work. The smallest ε which can be chosen is

εW =

{

~S ∈ P0(n)n
∣

∣

∣
Sj =

{

B j /∈ A

{j} j ∈ A
, ∅ 6= A ⊂ B ⊂ n

}

.

Theorem 2 asserts P1,...,1crnF ∼ crnPnF . To prove this, we note that the
distinction between functors of one variable and functors of many variables can be
blurred. To wit, there is a natural isomorphism between the categories CY1

×· · ·×
CYn

and CY1

‘

···
‘

Yn
. Thus, any functor of many variables F :CY1

× · · · × CYn
→ D

may be viewed, instead, as a functor of one variable F : CY1

‘

···
‘

Yn
→ D. This

allows us to consider the nth cross effect of F , crnF , as a functor of only one
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variable – so we can take PncrnF . Now the theorem may be proven in two steps,
first we show P1,...,1crnF ∼ PncrnF and then we show PncrnF ∼ crnPnF . The
first of these statements is shown by proving that P1,...,1crnF is n-excisive and
PncrnF is (1, . . . , 1)-excisive. The statement then follows from the universality
of Pn and P1,...,1. The second statement follows from the fact that the homotopy
limit and cross effect operations commute (because cross effects are homotopy
fibers, a type of homotopy limit).

The proof of Theorem 3 again involves the indexing categories I, J , ε, and
(J ∪ ε) from the proof of Theorem 1. To show Pn−1F is (n−1)-excisive, we prove
that for X :P(n) → CY any strongly co-cartesian (n − 1)-cube, the map of cubes
tn−1 :F (X ) → Tn−1F (X ) factors through a cartesian cube. Thus the colimit cube,
Pn−1F (X ) is itself cartesian. The proof relies on the construction of a new cube,

X̂ :P(n)×P(n)n → CY satisfying three properties:

X (T )
∼
−→ holim

T×I
X̂(6)

The cube holim
T×ε

F (X̂ ) is cartesian(7)

holim
T×J

X̂ → holim
U∈P0(n)

X (T ) ∗Y U(8)

This will complete the proof, since property (2) guarantees that the factorization

holimT×I X̂ → holimT×(J ∪ ε) X̂ → holimT×J X̂ induces a factorization through a
cartesian cube upon applying F , and properties (1) and (3) complete the induced

factorization to one of tn−1 :F (X )→ Tn−1F (X ). For the cube X̂ , we take iterated
unions along X (T ) of joins with the sets Us:

X̂ (T, U1, . . . , Un) =

n
⋃

X (T)

s=1

X (T ) ∗X (T∪{s}) Us

The map in property (1) is then the standard equivalence and the map in property

(3) is the fold map. Property (2) follows from the fact that the cubes X̃~U : T →

F (X̂ (T, ~U)) are cartesian for all ~U ∈ ε – in fact, for each ~U ∈ ε, the cube X̃~U is
merely a map between two identical subcubes.

The usefulness of being able to construct “formal” Taylor towers with all of
the important universal properties which a Taylor tower is expected to exhibit
has been shown, in particular, by recent work of Nick Kuhn on the effects of
localization with respect to Morava K-theories on Taylor towers. [15, 16]

16. Some relations between manifold calculus and homotopy calculus

Thomas Goodwillie

This talk is about relations between homotopy calculus and manifold calculus
and about some central examples.
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Example: The derivative of the identity functor ought to look like an identity
matrix. It does. Recall that if F is a homotopy functor from spaces to spaces and
Y = F (X) then F gives a homotopy functor from spaces over and under X to
spaces over and under Y . Recall from talk 14 that the linearization of the latter
functor can be encoded in a spectrum object in the category of spaces over and
under X×Y . This is something like an X by Y matrix of partial derivatives whose
(x, y) entry is the spectrum

k 7→ hofibery(F (X ∨x Sk)→ F (X)).

In the case when F is the identity (so Y = X) we obtain

k 7→ hofibery(X ∨x Sk → X) ' (Ωy
xX)+ ∧ Sk = Σ∞

+ Ωy
xX

where Σ∞
+ Z is the suspension spectrum of Z+ and Ωy

xX is the space of paths
from x to y in X , or in other words the homotopy fiber of the diagonal map
X → X ×X . It is reasonable to regard this matrix as a fibrant replacement for
a sort of Kronecker delta object, a spectrum object on X × X whose fiber over
(x, y) is the sphere spectrum or the point spectrum according as x = y or not.

This description of the derivative of the identity might also be written as i∗p
∗S

(taken in a suitable derived sense), where i : X → X×X is the diagonal inclusion,
p : X → ∗, and S is the sphere spectrum.

Rhetorical question: If the first derivative of the identity is the identity matrix,
why is the second derivative not zero? Answer: Some of the terminology of homo-
topy calculus works better for functors from spaces to spectra than for functors
from spaces to spaces. Specifically, since ”linearity” means taking pushout squares
to pullback squares, the identity functor is not linear and the composition of two
linear functors is not linear.

Attempted cryptic remark: Unlike the category of spectra, where pushouts are
the same as pullbacks, the category of spaces may be thought of has having nonzero
curvature.

Correction: After the talk Boekstedt asked about that remark. We discussed
the matter at length and found more than one connection on the category of spaces,
but none that was not flat. In fact curvature is the wrong thing to look for. There
are in some sense exactly two tangent connections on the category of spaces (or
should we say on any model category?). Both are flat and torsion-free. There
is a map between them, so it is meaningful to subtract them. As is well-known
in differential geometry, the difference between two connections is a 1-form with
values in endomorphisms (whereas the curvature is a 2-form with values in endo-
morphisms). Thus there is a way of discussing the discrepancy between pushouts
and pullbacks in the language of differential geometry, but it is a tensor field of a
different type from what I had guessed.
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Example: Let FK be the functor FK(X) = Σ∞
+ Map(K, X) determined by a

finite complex K. The nth derivative of FK at the one-point space was described
in talk 12. Here is a formula for its first derivative at an arbitrary space X [4]:

∂xFK(X) =

∫ κ∈K

Σ∞
+ Map((K, κ), (X, x))dκ.

The left-hand side may be defined as the spectrum

k 7→ fiber(FK(X ∨x Sk)→ FK(X)).

The notation in the right-hand side is as in section 6 of [6]; the integral sign denotes
cohomology spectrum of K with coefficients in a spectrum object whose fiber at k is
Σ∞Map((K, k), (X, x))+. Compact notation for the spectrum object on X would
be p!e∗π

∗S, where p and π are projections and e is given by e(k, f) = (k, f(k)):

K ×X ← K ×Map(K, X)
↓ ↓
X ∗

Example (a fundamental object in manifold calculus): According to talk 7, the
key to the kth layer (k > 1) of Weiss’ Taylor tower for embeddings of M in N
is the following. For a set S of k points in N , let ΦS(N) be the total homotopy
fiber of the k-cubical diagram that associates to each subset T ⊂ S the space of
embeddings of T in N . If N is n-dimensional Euclidean space then it is easy to
see that ΦS(N) is equivalent to

crk−1I(Sn−1, . . . , Sn−1),

the (k−1)st cross-effect of the identity evaluated at the (n−1)-sphere. Thus it is re-
lated to the (k−1)st layer of the Taylor tower of the identity in homotopy calculus.

Review of concordance theory: Let Diff(N) be the space of all diffeomor-
phisms from the compact n-manifold N to itself fixing the boundary pointwise.
Even when N is a disk, the homotopy type of Diff(N) is not very well under-
stood. Diff(Dn) is contractible when n < 4, but Diff(D4) is a big mystery. For
larger n π0Diff(Dn) is a finite group (isomorphic to the Kervaire-Milnor group
of exotic (n + 1)-spheres), understood by surgery theory. Information beyond π0

is gained mainly by downward induction on n, using spaces of concordances (or
pseudoisotopies).

The space C(N) of concordances of N is the space of diffeomorphisms from
N × I to itself fixing (N × 0) ∪ (∂N × I) pointwise. It fibers over Diff(N)
with fiber Diff(N × I) over the base point (and perhaps empty fibers over some
components). There is a canonical map C(N) → C(N × I). By [12] the map
is approximately (n/3)-connected, and by [22] the stable concordance space, the
homotopy colimit of C(N × Ik) as k tends to infinity, is closely related to Wald-
hausen’s algebraic K-theory space A(M). This has been used [2] to describe the
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rational homotopy groups of πjDiff(Dn)⊗Q in the range roughly j < n/3.

The derivative of stable concordance [4]: Stable concordance can be made into
a homotopy functor from spaces to spectra. Calculating its derivative amounts to
finding stable-range descriptions of spaces of concordance embeddings. If H is a
submanifold of N then a concordance embedding of H in N is an embedding of
H × I in N × I that fixes (H × 0)∪ ((H ∩∂N)× I) pointwise and takes H × 1 into
N ×1. The space of all such is CEmb(H, N). The key case is when H is a tubular
neighborhood of a p-disk with ∂P ⊂ ∂N . Using a few ideas from manifold calculus
one finds that the space CEmb(H, N) is (n − p− 3)-connected and that it has a
(2n− 2p− 5)-connected map to Ω2Σn−pΩN . In the end this becomes a proof that
the first derivative of stable concordance theory at (N, x) is Ω2Σ∞ΩxN , and thus
that ∂xA(X) is Σ∞

+ ΩxN . A neat way of expressing this is by saying that there is

a certain map A(X)→ (Σ∞
+ Map(S1, X))hT , where T is the circle group, and that

that map induces an equivalence from ∂xA(X) to

∂x(Σ∞
+ Map(S1, X))hT ' (

∫ κ∈S1

Σ∞
+ Map((S1, κ), (X, x))dκ)hT .
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