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Introduction by the Organisers

As the theme of the conference indicates, one of the organizers’ main goals was
to put together a group of participants with a wide range of interests in and
around the complex geometric side of the representation theory of Lie groups
and algebras. It is their belief that a hybrid approach to representation theory, in
particular interaction between complex geometers and harmonic analysts standing
on a strong foundation of finite- and infinite-dimensional Lie theory, will open up
new avenues of thought and lead to progress in a number of areas.

Since the previous Oberwolfach conference (Represention Theory and Complex
Analysis, April 2000), there has been quite a positive development toward these
goals. A number of breakthroughs were achieved, and of course these were re-
ported at this year’s conference. More than half of the 47 participants (from 15
countries) are now working in some middle ground between complex geometry and
representation theory. Furthermore, it was clear from the discussions both after
the talks and in the evenings that most participants now understand each other’s
language well enough to discuss high level research projects.

A basic new component, infinite-dimensional complex geometry and related repre-
sentation theory, was added this year. This quickly developing subject is already
attracting wide attention. A goal for the future is to better integrate this with the
more classical finite-dimensional theory.

One consequence of the broad range of backgrounds of the participants is that,
without prodding by the organizers, virtually all speakers gave quite comprehensive
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introductions to their subjects before going into their most recent results. This
was greatly appreciated by all!

Instead of attempting to summarize these talks we will let the following abstracts
speak for themselves.
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Hardy spaces for the most continuous spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 303

Ivan Dimitrov
Structure of gl(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
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Abstracts

Visible actions on complex manifolds and multiplicity-one theorems
Toshiyuki Kobayashi

Multiplicity-free representations appear in various contexts such as Fourier
transforms, Taylor series expansions, the Peter-Weyl theorem, branching laws for
GLn ↓ GLn+1, Clebsch-Gordan formula, Pieri’s law, GLm − GLn duality, the
Plancherel formula for Riemannian symmetric spaces G/K, etc.

The aim of this talk is to report a simple principle based on complex geometry
that explains the multiplicity-free property of various representations as above and
more.

Suppose V → D is an H-equivariant holomorphic vector bundle. Then, a
representation of the group H is naturally defined on the Fréchet space O(D,V)
of holomorphic sections. One asks:

“When does O(D,V) become multiplicity-free?”
We present a sufficient condition which comprises of a ‘balance’ of the base

space D and fibers Vx. To be more precise, let P → D be an H-equivariant
principle K-bundle, µ : K → GLC(V ) a finite dimensional unitary representation,
and V � P ×K V . Suppose we are given automorphisms of Lie groups H and
K, and a diffeomorphism of P , for which we use the same letter σ, satisfying the
following two conditions:

σ(hpk) = σ(h)σ(p)σ(k)(h ∈ H ; p ∈ P ; k ∈ K),

The induced action of σ on D(� P/K) is anti-holomorphic.

For a subset B in P σ, we define the following σ-stable subgroup

M := {k ∈ K : bk ∈ Hbforanyb ∈ B}.
Theorem. Assume that there exist σ and a subset B of P σ satisfying the following
three conditions:

a) HBK contains an interior point of P .
b) The restriction µ|M decomposes as a multiplicity-free sum of irreducible

representations of M .

We shall write the decomposition as µ|M � ⊕
i ν

(i).

c1) µ ◦ σ is isomorphic to µ∗ (the contragredient representation of µ) as rep-
resentations of K.

c2) ν(i) ◦ σ is isomorphic to (ν(i))∗ as representations of M for every i.

Then, for any (abstract) unitary representation π of H which can be realized as a
subrepresentation of O(D,V), π is multiplicity-free as an H-module.
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Loosely speaking, our theorem asserts that the multiplicity-free property prop-
agates from the smaller group M acting on fibers (see (b)) to the larger group H
acting on holomorphic sections under a suitable condition (see (a)) on the H-action
on the complex manifold D.

In light of the geometric condition (a) given in Theorem, we introduce the
following notion:
Definition. The action of a Lie group H on a connected complex manifold D is
visible if there exists a totally real submanifold N which meets generic H-orbit
on D and satisfies

J(TxN) ⊂ Tx(H · x) for all x ∈ N.

Example. 1) The natural action of Tn on the projective space Pn−1C is visible.
2) The natural action of the direct product group U(n1) × U(n2) × U(n3) on

the Grassmann variety Grp(Cn)(n = n1 + n2 + n3 = p+ q) is visible if min(n1 +
1, n2 + 1, n3 + 1, p, q) ≤ 2.

3) Let G be a compact Lie group, and GC its complexification. Then the action
of G×G on GC is visible.

4) Let N be a nilpotent orbit of GL(n,C) corresponding to a partition 2p1n−2p.
Then the action of U(n) on N is visible for any p.

5) Let G/K be a Riemannian symmetric space of the non-compact type, and
Ω its crown in GC/KC. Then the action of G on Ω is visible.

The above examples lead us to various kinds of multiplicity free representa-
tions. For example, (1) gives rise to the multiplicity-free property of the restric-
tion GLn ↓ GLn−1 as well as the Pieri rule for tensor product representations;
(2) does to the list of all multiplicity-free tensor product representations of GLn,
which Stembridge found by a completely different method based on combinatorial
argument; (3) does to the multiplicity-free property of the Peter-Weyl theorem
of L2(G); (4) does to spherical nilpotent orbits whose complete list was recently
given by Panyushev.

References

[1] T. Kobayashi, Multiplicity-free branching laws for unitary highest weight modules, Proceed-
ings of the Symposium on Representation Theory held at Saga, Kyushu 1997 (ed. K. Mimachi)
(1997), 9–17.
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A new look at the Maslov index
Bent Ørsted

The Maslov index is an invariant that appears several places in mathematics;
roughly speaking it encodes qualitive aspects of solutions to certain variational
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problems - this includes asymptotic solutions to partial differential equations and
flows of Hamiltonian systems. It also appears in the study of Lagrangian subspaces
of a fixed symplectic vector space, where it gives an integer invariant for each triple
of such subspaces. In this lecture we give several new ways of looking at the Maslov
index, generalizing to the setting of bounded symmetric domains and defining a
Maslov index for transversal triples of points in the Shilov boundary. This is done
by integrating the canonical Kähler form over geodesic triangles in the domain
and taking a limit to the boundary. We also extend to the infinite-dimensional
situation and define a Maslov map from transversal triples on an appropriate
Shilov boundary to the first homotopy group of the stabilizer of a base point in
the domain. A crucial identity is shown in the context of Jordan triple systems,
which gives a good algebraic framework for the infinite-dimensional case of such
generalized flag manifolds and their invariants. This represents joint work, partly
in progress, with J.-L. Clerc, K-H. Neeb, and W. Bertram.
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Groups Vol. 6, pp. 303-320, 2001.
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Analysis on the crown of a Riemannian symmetric space
Jacques Faraut

The crown of a Riemannian symmetric space X = G/K of non-compact type
is a domain D in its complexification XC = GC/KC, which has been intoduced by
Akhiezer and Gindikin [1990]. It is also called the Akhiezer-Gindikin domain. It is
interesting from various points of view: Riemannian geometry, complex geometry,
analysis. From the analytic viewpoint it has the following remarkable property: All
eigenfunctions of the invariant differential operators have a holomorphic extension
to the crown D, and the domain D is maximal for this property.

Consider the Cartan decomposition of g = Lie(G), g = k + p, and let a ⊂ p be
a Cartan subspace. Define

ω = {H ∈ a | ∀α ∈ ∆(g, a), |α(H)| < π

2
}.

The crown can be described as

D = G exp iω · o (o = eKC).

On the other hand consider an Iwasawa decomposition X = NA · o, and define

Ξ =
⋂

k∈K

kNCAC · o.

Theorem
The crown D is equal to the connected component Ξ0 of Ξ which contains X .
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The inclusion D ⊂ Ξ0 has been proved by Krötz and Stanton for classical groups
G [2001], and by Huckleberry in general [2002]. The reverse inclusion Ξ0 ⊂ D has
been proved by Barchini [2003].

If the symmetric space X is Hermitian, then D = X × X̄ ([Huckleberry,2002],
[Burns-Halverscheid-Hind,2003]). Let Aut(D) be the group of all holomorphic
automorphisms of the crown of D. In all cases G ⊂ Aut(D). In case of equality
one says that D is rigid. Then D is either rigid or Hermitian ([Burns-Halverscheid-
Hind,2003]).

Corollary
Every eigenfunction of all invariant differential operators has a holomorphic

extension to the crown D, and D is maximal for this property.

Such a joint eigenfunction f has a Poisson integral representation over the
maximal boundary B of X :

f(x) =
∫

B

Pλ(x, b)dT (b) (λ ∈ a∗C),

where T is an analytic functional on B = K/M (M is the centralizer of A in K).
The Poisson kernel Pλ(x, b) is related to the Iwasawa decomposition as follows. If
x = n expH · o (n ∈ N , H ∈ a) one writes H = A(x). Then

Pλ(x, b) = e〈ρ−λ,A(k−1x)〉 (b = kM).

By [Clerc,1988],

e〈λ,A(x)〉 =
�∏

j=1

ψj(x)λj ,

where ψj is a holomorphic function on XC which does not vanish on NCAC · o.
Since the crown D is simply connected, if follows that the function x 
→ Pλ(x, b)
has a holomorphic extension to D.

On the other hand, for any point z0 on the boundary of the crown D, one can
find λ ∈ a∗

C
and b ∈ B such that the function z 
→ Pλ(z, b) has a singularity at z0.
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Krötz, B.; Stanton, R.J. (2001), Holomorphic extension of representations: (I)
Automorphic functions, Preprint.

Hardy spaces for the most continuous spectrum
Bernhard Krötz

We report on joint work with Simon Gindikin and Gestur Ólafsson (cf. [GKÓ02]).
Holomorphic extensions and boundary value maps have been valuable tools to

solve problems in representation theory and harmonic analysis on real symmetric
spaces. Two of the best known constructions are Hardy spaces with their boundary
value maps and Cauchy-Szegö-kernels, and Fock space constructions with their
corresponding Segal-Barmann transform. It is in this flavour that we establish a
correspondence between eigenfunctions on a Riemannian symmetric spaces X =
G/K and a non-compactly causal (NCC) symmetric spaces Y = G/H in this talk.
In particular we, via analytic continuation, relate a spherical function φλ on G/K
to a holomorphic H-invariant distribution on G/H .

Let us explain our results in more detail. On the geometric level we construct a
certain minimal G-invariant Stein domain ΞH ⊆ XC = GC/KC with the following
properties: The Riemannian symmetric space X is embedded into ΞH as a totally
real submanifold and the affine non-compactly causal space Y is isomorphic to the
distinguished (Shilov) boundary of ΞH .

The minimal tube ΞH is a subdomain of the complex crown Ξ ⊆ XC of X
– an object first introduced in [AG90] which became subject of intense study
over the last few years. A consequence is that all D(X)-eigenfunctions on X
extend holomorphically to ΞH [KS01b]. Another key fact is that D(X) � D(Y ).
Thus by taking limits on the boundary Y we obtain a realization of the D(X)-
eigenfunctions on X as D(Y )-eigenfunctions on Y . Conversely, eigenfunctions on
Y which holomorphically extend to ΞH yield by restriction eigenfunctions on X .

It seems to us that the above mentioned transition between eigenfunctions on
X and Y is most efficiently described using the techniques from representation
theory. To fix the notation let (π,H) denote an admissible Hilbert representation
of G with finite length. We write HK for the space of K-fixed vectors and (H−∞)H

for the space of H-fixed distribution vectors of π. Using the method of analytic
continuation of representations as developed in [KS01a] we establish a bijection

HK → (H−∞)H
hol, vK 
→ vH

where (H−∞)H
hol ⊆ (H−∞)H denotes the subspace characterized through the prop-

erty that associated matrix coefficients on Y extend holomorphically to ΞH .
We give an application of our theory towards the geometric realization of the

most-continuous spectrum L2(Y )mc of L2(Y ). First progress in this direction was
achieved in [GKÓ01]. There, for the cases where Ξ = ΞH , we defined a Hardy
space H2(Ξ) on Ξ and showed that there is an isometric boundary value mapping
realizing H2(Ξ) as a multiplicity one subspace of L2(Y )mc of full spectrum. It was
an open problem how to define Hardy spaces for general NCC symmetric spaces
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Y and to determine the Plancherel measure explicitely. We solve this problem
by giving a spectral definition of the Hardy space, i.e., we take the conjectured
Plancherel measure and define a Hilbert space of holomorphic functions H2(ΞH)
on ΞH . The identification of H2(ΞH) as a Hardy space then follows by establishing
an isometric boundary value mapping b : H2(ΞH) ↪→ L2(G/H)mc. In particular
we achieve a geometric realization of a multiplicity free subspace of L2(Y )mc in
holomorphic functions.
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[KS01b] Krötz, B., and R.J. Stanton, Holomorphic extensions of representations:
(II) geometry and harmonic analysis, preprint.

Structure of gl(∞)
Ivan Dimitrov

Let U and V be two (infinite dimensional) complex vector spaces with a non–
degenerate pairing 〈◦, ◦〉 : U × V → C. Consider the Lie algebra g := U ⊗ V .
When both U and V are countable dimensional, g is isomorphic to the Lie algebra
gl(∞) of finitary infinite matrices, see [M]. A maximal locally solvable subalgebra
of g is called a Borel subalgebra of g. In this talk we describe the Borel subalgebras
of g and discuss their relation with maximal toral subalgebras of g.

In order to describe the Borel subalgebras of g we need the notion of a generalized
flag in U introduced in [DP]. A chain F = {F ′

α, F
′′
α}α∈A of subspaces of U is

a generalized flag in U if F ′
α is the immediate predecessor of F ′′

α and U\{0} =
∪αF

′′
α\F ′

α. (Here we allow F ′
α = F ′′

β .) For any chain C of subspaces of U , there
is a canonical generalized flag fl(C) associated with C. The pairing between U
and V defines the closure operation on subspaces of U given by H̄ := H⊥⊥. This
operation was first introduced and studied by Mackey in his thesis, see also [M].
For any generalized flag F in U we define the closure F̄ of F as fl(F⊥⊥), where
F⊥⊥ denotes the chain in U consisting of the closures of all subspaces in F . F is
a closed generalized flag in U if F̄ = F , and F is a strongly closed generalized flag
in U if F⊥⊥ = F . Clearly, any strongly closed generalized flag in U is closed. F is
closed if and only if F̄ ′′

α = F ′′
α and F̄ ′

α equals either F ′
α or F ′′

α . For any generalized
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flag F in U the subalgebra of g which stabilizes F is StF =
∑

α F
′′
α ⊗ (F ′

α)⊥. The
following theorem describes the Borel subalgebras of g.

Theorem 1. The map F 
→ StF establishes a bijection between maximal closed
generalized flags in U and Borel subalgebras of g.

This theorem provides a rather explicit description of all Borel subalgebras of g.
The results are most interesting in the case when both U and V are countable
dimensional, i.e. g � gl(∞). In this case we can represent g as the direct limit
lim−→ gn, where gn � gl(n). It is clear that choosing a direct system of Borel subal-
gebras bn of gn, the limit subalgebra b := lim−→ bn is necessarily a Borel subalgebra
of g. The converse, however, is not true. In fact we have the following theorem.

Theorem 2. A Borel algebra b of g is the direct limit of Borel algebras bn of gn

for some (but not every) direct system g = lim−→ gn, such that gn � gl(n), if and
only if the maximal closed generalized flags corresponding to b both in U and in V
are strongly closed.

Finally, we consider the relationship between maximal toral subalgebras of g and
Borel subalgebras of g. We prove that, for any b ⊂ g, there exists a maximal
toral subalgebra t ⊂ b which is the compliment (as a vector space) of the locally
nilpotent radial of b, i.e. b = t ⊕ n, where n is the locally nilpotent radical of b.
Furthermore, we establish another criterion for b = lim−→ bn as in Theorem 2. To
state it we need to recall the definition of a splitting maximal toral subalgebra of g.
A maximal toral subalgebra t of g is called splitting if it acts locally finitely on g,
equivalently, if g admits a root decomposition with respect to t. (For more details
on maximal toral subalgebras of g see [NP].) We then prove that the conditions of
Theorem 2 are equivalent to the requirement that b contains a splitting maximal
toral subalgebra of g.

The talk is based on a joint work with Ivan Penkov.
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Dolbeault cohomology of a loop space
László Lempert

(joint work with Ning Zhang (Riverside))

Loop spaces LM of compact complex manifolds M promise to have rich analytic
cohomology theories, and it is expected that sheaf and Dolbeault cohomology
groups of LM will shed new light on the complex geometry and analysis of M
itself. This idea first occurs in [W], in the context of the infinite dimensional Dirac
operator, and then in [HBJ] that touches upon Dolbeault groups of loop spaces; but
in all this both works stay heuristic. Our goal here is to present rigorous results
concerning the H0,1 Dolbeault group of the first interesting loop space, that of
the Riemann sphere P1. One noteworthy fact that emerges from this research is
that analytic cohomology of loop spaces, unlike topological cohomology, is very
sensitive to the regularity of loops admitted in the space. Another concerns local
functionals, a notion from theoretical physics. Roughly, if M is a manifold, a local
functional on a space of loops x : S1 →M is one of form

f(x) =
∫

S1
Φ(t, x(t), ẋ(t), ẍ(t), . . .)dt,

where Φ is a function on S1× an appropriate jet bundle of M . It turns out
that all cohomology classes in H0,1(LP1) are given by local functionals. Nonlocal
cohomology classes exist only perturbatively, i.e., in a neighborhood of constant
loops in LP1; but none of them extends to the whole of LP1.

We fix a smoothness class Ck, k = 1, 2, . . . ,∞, or SobolevW k,p, k = 1, 2, . . . , 1 ≤
p < ∞. If M is a finite dimensional complex manifold, consider the space
LM = LkM resp. Lk,pM of maps S1 = R/Z → M of the given regularity. These
spaces are complex manifolds modeled on a Banach space, except for L∞M , which
is modeled on a Fréchet space. We shall focus on the loop space(s) LP1. As on any
complex manifold, one can consider the space C∞

r,q(LP1) of smooth (r, q) forms,
the operators ∂̄ : C∞

r,q(LP1) → C∞
r,q+1(LP1), and the associated Dolbeault groups

Hr,q(LP1); for all this, see e.g. [L1,2]. On the other hand, let F be the space of
holomorphic functions F : C × LC → C that have the following properties:

(1) F (ζ/λ, λ2y) = O(λ2), as C � λ→ 0;
(2) F (ζ, x+ y) = F (ζ, x) + F (ζ, y), if suppx ∩ supp y = ∅;
(3) F (ζ, y + const) = F (ζ, y).

As we shall see, the additivity property (2) implies F (ζ, y) is local in y.

Theorem 1. H0,1(LP1) ≈ C ⊕ F.

In the case of L∞P1, examples of F ∈ F are

(1) F (ζ, y) = ζν

〈
Φ,

m∏
j=0

y(dj)

〉
,
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where Φ is a distribution on S1, y(d) denotes d’th derivative, each dj ≥ d0 = 1, and
0 ≤ ν ≤ 2m. A general function in F can be approximated by linear combinations
of functions of form (1).

This brings us to the issue of topology on H0,1(LP1) and on F. On any, possi-
bly infinite dimensional complex manifold X the space C∞

r,q(X) can be given the
compact–C∞ topology as follows. First, the compact–open topology on C∞

0,0(X) =
C∞(X) is generated by C0 seminorms ‖f‖K = supK |f | for all K ⊂ X compact.
The family of Cν seminorms is defined inductively: each Cν−1 seminorm ‖ ‖
on C∞(TX) induces a Cν seminorm ‖f‖′ = ‖df‖ on C∞(X). The collection of
all Cν seminorms, ν = 0, 1, . . . , defines the compact–C∞ topology on C∞(X).
The compact–C∞ topology on a general C∞

r,q(X) is induced by the embedding

C∞
r,q(X) ⊂ C∞(

r+q⊕ TX). With this topology C∞
r,q(X) is a separated locally con-

vex vector space, complete if X is first countable. The quotient space Hr,q(X)
inherits a locally convex topology, not necessarily separated. We note that on the
subspace O(X) ⊂ C∞(X) of holomorphic functions the compact–C∞ topology
restricts to the compact–open topology. The isomorphism in Theorem 1 is topo-
logical; it is also equivariant with respect to the obvious actions of the group of
Ck diffeomorphisms of S1.

There is another group, the group G ≈ PSL(2,C) of holomorphic automor-
phisms of P1, whose holomorphic action on LP1 (by post–composition) and on
H0,1(LP1) will be of greater concern to us. Theorems 2, 3, 4 below will describe
the structure of H0,1(LP1) as a G–module. Recall that any irreducible (always
holomorphic) G–module is isomorphic, for some n = 0, 1, . . ., to the space Kn of
holomorphic differentials ψ(ζ)(dζ)−n of order −n on P1; here ψ is a polynomial,
deg ψ ≤ 2n, and G acts by pullback. The n’th isotypical subspace of a G–module
V is the sum of all irreducible submodules isomorphic to Kn. In particular, the
0’th isotypical subspace is the space V G of fixed vectors.

Theorem 2. If n ≥ 1, the n’th isotypical subspace of H0,1(L∞P1) is isomorphic
to the space Fn spanned by functions of form (0.1), with m = n.

The fixed subspace of H0,1(LP1) can be described more explicitly, for any loop
space:

Theorem 3. The space H0,1(LP1)G is isomorphic to Ck−1(S1)∗ resp. W k−1,p(S1)∗,
if the dual spaces are endowed with the compact–open topology.

The isomorphisms in Theorem 3 are not Diff S1 equivariant. To remedy this,
one is led to introduce the spaces Cl

r(S1) resp. W l,p
r (S1) of differentials y(t)(dt)r

of order r on S1, of the corresponding regularity; Lp
r = W 0,p

r . Then H0,1(LP1)G

will be Diff S1 equivariantly isomorphic to Ck−1
1 (S1)∗, resp. W k−1,p

1 (S1)∗.
For low regularity loop spaces one can very concretely represent all ofH0,1(LP1):

Theorem 4. (a) If 1 ≤ p < 2, all of H0,1(L1,pP1) is fixed by G, hence it is
isomorphic to Lp′

(S1), with p′ = p/(p− 1).
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(b) If 1 ≤ p <∞ then H0,1(L1,pP1) is isomorphic to⊕
0≤n≤p−1

Kn ⊗ L
p/(n+1)
n+1 (S1)∗ ≈

⊕
0≤n≤p−1

Kn ⊗ Lpn

−n(S1), pn =
p

p− 1 − n
,

and so it is the sum of its first [p] isotypical subspaces. Indeed, the isomorphisms
above are G × Diff S1 equivariant, G, resp. Diff S1 acting on one of the factors
Kn, L

q
r naturally, and trivially on the other.

Again, the dual spaces are endowed with the compact–open topology.

To finish this write up, here is a list of relevant literature:
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Infinite-Dimensional Homogeneous Spaces and Operator Ideals
Daniel Beltiţă

The existence of invariant Kähler structures on homogeneous spaces of certain
Lie groups turns out to be a phenomenon that is not confined to finite dimensions.
Our research concerns this phenomenon in the case of some classes of infinite-
dimensional Lie groups associated with ideals of compact operators on Hilbert
spaces.
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More specifically, we have introduced in the paper [Be03] a notion of admissible
pair of operator ideals (I0, I1) and have used it to construct Kähler homogeneous
spaces of Banach-Lie groups naturally associated with such pairs. One special
instance of admissible pair is a pair of Schatten ideals (Sp,Sq), where 2 ≤ p <∞
and 1

p + 1
q = 1. More generally, certain dual pairs of Lorentz ideals also turn out

to be admissible.
Here is the precise definition of an admissible pair:

Definition. Let H be a complex Hilbert space and B(H) the Banach algebra of
all bounded linear operators on H. An admissible pair of ideals of B(H) is a pair
(I0, I1) of two-sided ideals of B(H) satisfying the following conditions:

(a) The ideal I0 is equipped with a norm ‖ · ‖I0 making it into a reflexive
separable Banach space satisfying

‖T ‖ ≤ ‖T ‖I0 = ‖T ∗‖I0 and ‖ATB‖I0 ≤ ‖A‖ · ‖T ‖I0 · ‖B‖
whenever A,B ∈ B(H) and T ∈ I0.

(b) We have I1 · I0 ⊆ S1(H) and the bilinear functional

I1 × I0 → C, (K,T ) 
→ Trace (KT )

induces a vector space isomorphism of I1 onto the topological dual of the
Banach space (I0, ‖ · ‖I0), where S1(H) denotes the trace class on H.

(c) We have I1 ⊆ I0.

Using the notion of admissible pair, one can construct infinite-dimensional
Kähler manifolds as described in the following theorem. In this statement, for
any operator ideal I we denote by uI = {T ∈ I | T ∗ = −T } the Lie algebra of
skew-adjoint operators in I, and we also denote by UI = {T ∈ idH + I | T ∗T =
TT ∗ = idH} the group of all unitary operators in idH + I.

Theorem. Let (I0, I1) be an admissible pair of ideals of B(H) and A a self-adjoint
element of B(H). Consider the following objects:

• UI0,I1(A) = {T ∈ UI0 | T ∗AT ∈ A+ I1} = {T ∈ UI0 | [A, T ] ∈ I1},
• HI0,A = {T ∈ UI0 | T ∗AT = A},
• uI0,I1(A) = {T ∈ uI0 | [A, T ] ∈ I1},
• ω : uI0,I1(A) × uI0,I1(A) → R, ω(T1, T2) = Trace (i[A, T1]T2).

Then the following assertions hold.

(a) The group UI0,I1(A) has a natural structure of connected real Banach-Lie
group with the Lie algebra uI0,I1(A), and the bilinear functional ω is a con-
tinuous 2-cocycle of the real Banach-Lie algebra uI0,I1(A). Furthermore,
HI0,A is a Banach-Lie subgroup of UI0,I1(A) whose Lie algebra equals
{T ∈ uI0,I1(A) | ω(T, ·) ≡ 0}.

(b) The 2-cocycle ω induces a UI0,I1(A)-invariant weakly symplectic form Ω
on the homogeneous space UI0,I1(A)/HI0,A.
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(c) If the spectrum of the operator A is finite, then there exists a UI0,I1(A)-
invariant complex structure making the weakly symplectic homogeneous
space
(UI0,I1(A)/HI0,A,Ω) into a weakly Kähler homogeneous space.

We now outline the method used in [Be03] to construct the aforementioned
Kähler structures. The main point is that we actually study Banach-Lie groups
associated with admissible pairs and with certain n-tuples of self-adjoint operators.
We use the joint functional calculus of those n-tuples (which is a special instance of
the Weyl functional calculus) to construct Kähler polarizations in the complexified
Lie algebras of the Lie groups under consideration. In fact, the polarizations arise
as spectral subspaces corresponding to certain subsets of the joint spectrum of
the corresponding n-tuple. A remarkable point of this approach is that it actually
holds in a quite general setting. E.g., besides the homogeneous spaces of groups
associated with operator ideals, that approach leads to complex structures on the
flag manifolds associated with arbitrary associative unital Banach algebras.

We mention that certain special instances of the complex homogeneous spaces
constructed by the above described method were already shown to play a signifi-
cant role in representation theory of certain Hilbert-Lie groups associated with the
Hilbert-Schmidt ideal (see e.g., [Bo80], [Ca85], [Ne00], [Ne02]). From this point
of view, it is interesting to investigate the role played by the new classes of com-
plex homogeneous spaces in the representation theory of more general Banach-Lie
groups. On the other hand, it would be important to understand whether the
specific properties of the operator ideals correspond to any particular phenomena
in the complex geometry of the corresponding homogeneous spaces (compare also
[Up85]).

REFERENCES
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Realizing Lie Groups as Automorphism Groups of Complex Manifolds
Jörg Winkelmann

Let X be a hyperbolic (in the sense of Kobayashi) complex connected man-
ifold. Then the group of all holomorphic automorphisms of X (endowed with
the compact-open topology) is a finite-dimensional real Lie group with countably
many connected components. This raises the question whether conversely every
such Lie group can be realized as a the full automorphism group of a hyperbolic
complex manifold.

We prove that this is true if the group is connected or discrete.

Theorem 1. Let G be a (finite-dimensional) real connected Lie group or a count-
able discrete group.

Then there exists a Stein hyperbolic connected complex manifold X such that G
is isomorphic to the group of all automorphisms (i.e. biholomorphic selfmaps) of
X.

The first step in this direction was the result for compact Lie groups. Saerens
and Zame ([5]), and independently Bedford and Dadok ([1]) proved that, given
a compact real Lie group K there always exists a strictly pseudoconvex bounded
domain D ⊂ C

n such that Aut(D) � K. By the theorem of Wong-Rosay (which
states that every strictly pseudoconvex bounded domain with non-compact auto-
morphism group is isomorphic to the ball) it is clear that an arbitrary non-compact
real Lie group can not be realized as the automorphism of a strictly pseudoconvex
bounded domain in C

n. However, as proved in [8], for any connected real Lie group
G there does exist a complex manifold X on which G acts effectively. Moreover, X
can be chosen in such a way that it enjoys several of the key properties of strictly
pseudoconvex bounded domains. Namely, X can be chosen such that it is both
Stein and hyperbolic in the sense of Kobayashi.

In [10] we verified that one can rule out additional automorphisms, i.e. it is
possible to achieve Aut(X) � G. The precise result is the following:

Theorem 2. Let G be a connected real Lie group. Then there exists a Stein, com-
plete hyperbolic complex manifold X on which G acts effectively, freely, properly
and with totally real orbits such that AutO(X) � G.

The idea is to follow the strategy of Saerens and Zame: Construct the desired
manifold as an open subset of a larger Stein manifold in such a way that the given
group acts on this open subset. Ensure that every automorphism of this open
subset can be extended to the boundary, then modify the boundary in such a way
that this CR-hypersurface simply has no automorphisms other than those from
the given group. The latter can be done using the fact that a CR-hypersurface
(unlike a complex manifold) does have local invariants. A principal difficulty in
this approach is to obtain an extension of automorphisms of the open subset to the
boundary. If one is concerned only with compact Lie groups, then one can work
with a strictly pseudoconvex bounded domain D. For such a domain it is evident
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that for every automorphism φ of D there exists a sequence xn ∈ D such that both
xn and φ(xn) converge to a strictly pseudoconvex point in the boundary. This is
the starting point for the extension of the automorphism φ to the boundary ∂D.

Now, our goal is to obtain a result for arbitrary connected Lie groups, which
are not necessarily compact.

This lack of compactness assumption creates some difficulties.
There are two main problems: First, an arbitrary non-compact Lie group is

not necessarily linear. For instance, the universal cover of SL2(R) cannot be
embedded into a linear group. Second, as already mentioned, the theorem of
Wong-Rosay implies that in general a non-compact Lie group can not be realized
as the full automorphism group of a strictly pseudoconvex bounded domain with
smooth boundary. Thus we have to work with domains which are not bounded or
where the boundary is not everywhere smooth. The trouble is that it is therefore
no longer clear that for every automorphism φ there exists a sequence xn in the
domain such that both xn and φ(xn) converge to a nice point in the boundary.

In [7] a result similar to ours is claimed for certain Lie groups with a rather
sketchy outline of a possible proof.

The first of the aforementioned two problems is dealt with by assuming the
group G to be linear while the second problem is simply ignored. Since the second
problem is in fact a serious obstacle, the proof sketched in [7] can not be regarded
as complete.

We proceed in the following way: To deal with the first problem, we note that
every Lie algebra is linear by the theorem of Ado. Therefore, in a certain sense,
every Lie group is linear up to coverings and the first problem can be attacked by
working carefully with coverings.

For the second problem, we use bounded domains whose boundaries are smooth
outside an exceptional set E which is small in a certain sense. Exploiting this
smallness we prove that for every automorphism φ there must exist a sequence xn

such that both xn and φ(xn) converge to a boundary point outside the “bad set”
E.

Once this has been verified, we can prove (using arguments similar to those used
in[5], [1]) that φ extends as holomorphic map near lim(xn), and use the theory of
Chern-Moser-invariants to deduce that φ was in fact given by left multiplication
with an element of G.

For discrete groups the following statement is proved in [9]:

Theorem 3. Let G be a countable discrete group. Then there exists a non-compact
Riemann surface X, hyperbolic in the sense of Kobayashi, such that G is isomor-
phic to the automorphism group of X.

References

[1] Bedford, E.; Dadok, J.: Bounded domains with prescribed group of automorphisms. Comm.
Math. Helv. 62 , 561–572 (1987)

[2] Borel, A.: Semisimple groups and Riemannian symmetric spaces. Texts and Readings in
Mathematics 16, Hindustan Book Agency. (1998)



Finite and Infinite Dimensional Complex Geometry and Repr. Theory 313

[3] Diederich, K.; Fornaess, J.: Proper Holomorphic Mappings between real-analytic pseudo-
convex domains in Cn. Math. Ann. 282, 681-700 (1988)

[4] Forstneric, F.; Rosay, J.P.: Localization of the Kobayashi Metric and the boundary Counti-
nuity of Proper Holomorphic Mappings. Math. Ann. 279 , 239–252 (1987)

[5] Saerens, R.; Zame, W.R.: The Isometry Groups of Manifolds and the Automorphism
Groups of Domains. Trans. A.M.S. 301, no. 1, 413-429 (1987)
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Principal Series Representations and Dirac Operators
Roger Zierau

Kostant defined a remarkable invariant differential operator in [7] which he called
the cubic Dirac operator. Given a connected semisimple Lie group, a closed re-
ductive subgroup and a homogeneous vector bundle E → G/H of finite rank, the
cubic Dirac operator is a G-invariant differential operator on sections:

(1) D : C∞(G/H, E ⊗ S) → C∞(G/H, E ⊗ S).

Here S is the spin representation of h. In this lecture we discuss joint work with
Salah Mehdi in which the kernel of D is studied when H is noncompact and
rank(g) = rank(h). The main result is an integral formula for certain solutions of
Df = 0. In particular, the kernel is nonzero and certain interesting representations
occur.

The cubic Dirac operator is defined as follows. There is an orthogonal decompo-
sition g = h⊕ q with respect to the Killing form of g (however, we need to assume
the Killing form on h is nondegenerate). Then q is equipped with a nondegener-
ate (possibly indefinite) symmetric form. Thus, one may build a corresponding
Clifford algebra and spin representation of so(q). Since ad : h → so(q) we obtain
the representation σ ◦ ad of h, which we call the spin representation of h. In (1)
we require only that E is a representation of h so that E ⊗ S integrates to a rep-
resentation of H . Then E ⊗ S → G/H is the corresponding homogeneous vector
bundle. Now choose a basis {Xj} of q so that 〈Xj , Xk〉q = εjδjk, with εj = ±1.
Let c ∈ Cl(q) correspond to the alternating 3-form 〈X , [Y, Z]〉q on q. The cubic
Dirac operator of (1) is defined by

(2) D =
∑

j

εjr(Xj) ⊗ 1 ⊗ γ(Xj) + 1 ⊗ 1 ⊗ γ(c).

Here γ denotes Clifford multiplication and r(X) is the right action of X ∈ g on
functions.
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There are several well-known cases where such an operator has been studied.
Most notably, when H is a maximal compact subgroup of G, then c = 0 and D
is the ‘usual’ Dirac operator arising from an invariant connection. In this case,
the kernel of D (on L2-sections) is a relative discrete series representation and all
relative discrete series representations of G occur this way. See [11], [1] and [12].
Another case is when G is compact. Then, in [8] and [9] the kernel of D is seen to
be an irreducible G-representation. This is a generalization of the Bott-Borel-Weil
Theorem. A remarkable property of D which relates D to infinitesimal character
is contained in [6].

Now let us turn to a noncompact group G and noncompact reductive subgroup
H . Let E and S be as above. Our goal is to study the kernel of D and our
approach is to find a G-intertwining map from a principal series representation of
G into Ker(D).

We briefly describe the construction. Let θ be a Cartan involution of g which
stabilizes h and let g = k + s be the corresponding Cartan decomposition of g.
The principal series consists of representations induced from representations of
real parabolic subgroups of G. Our subgroup H determines a parabolic subgroup
as follows. Choose a maximal abelian subalgebra a in h ∩ s. Then a determines a
parabolic P = MAN (up to a choice of N). Note that it is important here that
gC and hC have the same ranks. It follows that P ∩H = (M ∩H)A(N ∩H) is a
minimal parabolic subgroup of H . In particular H ∩K · eP = H · eP is a closed
H-orbit in G/P .

Lemma 3. Each relative discrete series representation of M occurs in the kernel
of

DM/M∩H : C∞(M/M ∩H,F ⊗ S) → C∞(M/M ∩H,F ⊗ S)
for some homogeneous bundle F → M/M ∩H. Note that, with our choice of P ,
M ∩H is compact.

This Lemma is of course related to the results on the discrete series mentioned
above. However, here we are not concerned with the L2 statement; by relative
discrete series here we mean a representation infinitesimally equivalent to a relative
discrete series representation.

For a representation W of P we write C∞(G/P,W) for the induced represen-
tation (the smooth principal series representation).

Lemma 4. For any smooth representation W of P , given some nonzero t ∈
HomP∩H(W ⊗ Cρ+2ρh

, E ⊗ S) there is a nonzero G-intertwining map

Pt : C∞(G/P,W ⊗ Cρh
) → C∞(G/H, E ⊗ S)

(Ptφ)(g) =
∫

H∩K

� · (φ(g�)) d�.

Therefore, we need to find a W and t so that the image of Pt lies in the kernel
of D. This is accomplished by finding a relative discrete series representation W
of M so that, when realizing W as Ker(DM/M∩H) as in Lemma 3, t is evaluation
at e ∈M and the following holds.
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Theorem 5. When the highest weight µ of E is sufficiently regular, the image of
Pt lies in Ker(D).

Remark 6. Note the analogy between our construction and that of the Poisson
integral. The Poisson integral is a formula giving harmonic functions on the unit
disk in C. In fact, the generalization of this is the Poisson transform (see, for
example, [5, Ch. II, Section 4.1]) producing joint eigenfunctions of the G-invariant
differential operators on the riemannian symmetric space G/K. One notes that
the Poisson transform is an integral over the boundary G/P of G/K and the
formula comes from an analogue of Lemma 4 with S and E replaced by the trivial
representation. In our setting, H ∩K · eP = H · eP ⊂ G/P . We may therefore
say that integration over ‘a piece of the boundary’ of G/H gives solutions to the
Dirac equation Df = 0.

Remark 7. The results discussed here may be viewed as a generalization of [3], [2]
and [4] in the following sense. If G/H is a measurable open orbit in a flag variety
(i.e., an elliptic coadjoint orbit), then D = ∂ + ∂

∗
. In this case, the operator

initially studied in [3] coincides with the intertwining operator Pt above.

Remark 8. The principal series representations are fairly well understood. Thus,
certain representatins occurring in Ker(D) can be identified via the Langlands
classification. Furthermore, the growth of harmonic spinors of the form Ptφ can
be studied by considering properties of φ and using techniques of Harish-Chandra.
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Theta lifting of unitary lowest weight representations and their
associated cycles
Kyo Nishiyama

We consider a reductive dual pair (G,G′) in the stable range with G′ the smaller
member and of Hermitian symmetric type. Namely, the following three kinds of
dual pairs will be treated.

the pair (G,G′) stable range condition

Case R : (O(p, q), Sp(2n,R)) 2n < min(p, q)

Case C : (U(p, q), U(m,n)) m+ n ≤ min(p, q)

Case H : (Sp(p, q), O∗(2n)) n ≤ min(p, q)

We study the theta lifting of a unitary lowest weight representation π′ of G′, which
may be singular. The main result is an explicit determination of the associated
cycle of the lifted representation θ(π′). More precisely, we prove that

θ(AC(π′)) = AC(θ(π′)),

where θ(associated cycle) means the theta lifting of nilpotent orbits in the stable
range. We also obtained a K-type formula for θ(π′) in terms of the branching
coefficient of classical groups; the associated nilpotent orbit is realized as a quotient
of a minimal nilpotent orbit of a lager group. The K-type formula is not new
though, since θ(π′) is a derived functor module. However, our K-type formula is
not a variant of Blattner’s one, and we believe ours has some advantage.

Also, we have given a brief survey on the associated cycles of the unitary low-
est weight representations in the terminology of classical invariant theory ([1]).
This idea is crucial for the investigation of the theta lifting of the lowest weight
representations explained above.

The talk is based on the joint research ([2], [3], [4]) with Chen-bo Zhu (National
University of Singapore) and Hiroyuki Ochiai (Nagoya University).
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Quantum Chaos and Cohomology of Arithmetic Groups
Joachim Hilgert

(joint work with A. Deitmar)

Our work [1] is motivated by the following problem: given a classical system
(symplectic manifold plus Hamiltonian function) and a quantization of this sys-
tem (Hilbert space plus a self adjoint operator), can one detect from the quantum
system whether the classical system shows chaotic behavior (e.g. ergodic or hy-
perbolic behavior)? For the modular surface and its geodesic flow (so that a
suitable quantization is given by the corresponding L2-space together with the
Laplace-Beltrami operator ∆) Lewis and Zagier [2] have constructed a natural
correspondence between Maass cusp forms (which are eigenfunctions of ∆) and
holomorphic functions ψ : C \R− → C satisfying a three term functional equation
(called the Lewis equation) which has a natural interpretation in terms of the
classical system. So far one has this correspondence only for this surfaces, but
it is expected that it can be extended to coverings or even more general locally
symmetric spaces of finite volume.

The Lewis equation admits a cohomological interpretation which suggests a
starting point for generalizations. On the other hand Maass cusp forms can be
defined in terms of representation theory and correspond to Γ-invariant vectors in
principal series representations πs of PSL(2,R), which leads to an interpretation
of the dimension of the space of Maass cusp forms as multiplicities NΓ(πs) of πs

in L2(Γ\G).
Our main theorem is the following multiplicity formula for split semisimple

Lie groups with arithmetic torsion free subgroups: If π is any irreducible unitary
principal series representation and r, d the rank, respectively the dimension of the
non-compact Riemannian symmetric space associated with G, then

NΓ(π) =
∑
j≥0

(−1)j+r

(
j
r

)
dimHN−j

cusp (Γ, πω).

In order to prove this formula establish a functorial isomorphism

Hj(g,KF ⊗̂V max → Extj
g,K(Ṽ , F )
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for Harish-Chandra modules V (then V max is the maximal globalization and Ṽ is
the dual Harisch-Chandra module) and smooth G-representations F , as well as a
Poincaré duality

Hj
cusp(Γ, V

max) ∼= HN−j
cusp (Γ, Ṽ min),

where Ṽ min is the minimal globalization of Ṽ . As a corollary we derive
Theorem: Let Γ be a Fuchsian group of finite covolume and s ∈ R. Then

NΓ(πs) = dimH1
cusp(Γ, π

ω
s ), where πω

s is the G-module of analytic vectors in the
representation space of πs.
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Global deformations of the Virasoro algebra
Alice Fialowski

This talk is based on a joint work with Martin Schlichenmaier (see [4]).
Introduction. Deformation is one of the tools to study a specific object, by

deforming it into some families of “similar” structure objects. Another question
related to deformation: Can we equip the set of nonequivalent deformations with
the structure of a topological or maybe geometric space? In other words, does
there exist a moduli space for these structures? If so, then for a fixed object its
deformations should reflect the local structure of the moduli space at the point
corresponding to this object.

There is a lot of confusion in the literature in the notion of a deformation.
Several different (inequivalent) approaches exist. May aim now is to clarify the
difference between deformations of geometric origin and so-called formal deforma-
tions. Formal deformation theory has the advantage of using cohomology. It is
also complete in the sense that under some natural cohomology assumptions there
exists a versal formal deformation which induces all other deformations. Formal
deformations are deformations with a complete local algebra base. A deformation
with a commutative (non-local) algebra base gives a much richer picture of defor-
mation families, depending on the augmentation of the base algebra. If we identify
the base of deformation – which is a commutative algebra of functions – with a
smooth manifold, an augmentation corresponds to choosing a point on the mani-
fold. So choosing different points should in general lead to different deformation
situations. I will show in the case of the Witt and Virasoro algebra that – in the
case of infinite dimensional Lie algebras – there is no tight relation between global
formal deformations.
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1. Deformations. Let L be a Lie algebra.
i) Intuitively: One-parameter family Lt of Lie algebras with bracket µt = µ0 +

tφ1 + t2φ2 + . . . .
ii) Global deformations: Consider a deformation Lt not as a family of Lie

algebras, but as a Lie algebra over the algebra K[[t]]. Call it the base of the
deformation. The natural generalization is to allow more parameters, or to take
in general a commutative algebra A over K with identity as base of a deformation.
Take such an A over K of char 0 with an augmentation ε : A→ K and m = Ker ε
maximal ideal.

Definition. A global deformation λ of L with base (A,m) is a Lie A-algebra
structure on A⊗KL with [ , ]λ such that ε ⊗ id : A ⊗ L → K ⊗ L = L is a Lie
algebra homomorphism.

A deformation is called trivial if A⊗KL carries the trivially extended Lie struc-
ture, i.e. [1 ⊗ x, 1 ⊗ y]λ = 1 ⊗ [x, y]. Two deformations of a Lie algebra L with
the same base A are called equivalent if there exists a Lie algebra isomorphism be-
tween the two copies of A⊗L with the two Lie algebra structures, compatible with
ε⊗ id. We say that the deformation is local if A is a local K-algebra with unique
maximal ideal mA = Ker ε. In case that in addition, m2

A > 0, the deformation is
called infinitesimal.

iii) We call a deformation formal, if its base is a complete local algebra (with a
unique maximal ideal) (see [1]).

Proposition (see [3]). If dim H2(L,L) <∞, there exists a universal infinitesimal
deformation ηL of L with base B = K ⊕ H2(L,L)′.

This means that for any infinitesimal deformation λ of the Lie algebra L with
finite-dimensional (local) algebra base A there exists a unique homomorphism
φ : K ⊕ H2(L,L)′ → A such that λ is equivalent to the push-out φ∗ηL.

Definition ([1]). A formal deformation η of L parametrized by a complete local
algebra B is called versal if for any deformation λ, parametrized by (A,mA), there
exists f : B → A morphism such that the push-out

1) f∗η is equivalent to λ.
2) If A satisfies mA

2 = 0, then f is unique.

Theorem. Assume H2(L,L) is finite dimensional.
a) ([1]) There exists a versal formal deformation of L.
b) ([3]) The base of the versal deformation is formally embedded into H2(L,L),

i.e. it can be described in H2(L,L) by a finite system of formal equation.

Corollary. H2(L,L) = {0} implies that L is formally rigid.

Theorem ([2]). The Witt and Virasoro algebra is formally rigid.

2. Krichever–Novikov algebras. They are generalizations of the Virasoro
and all its related algebras. Let M be a compact Riemann surface of genus g,
or a smooth projective curve over C. Let I = {P} and O = {Q} be distinct
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points (“marked points”) on the curve. Denote A = I ∪ O as a set. Denote by
L the Lie algebra consisting of those meromorphic sections of the holomorphic
tangent line bundle which are holomorphic outside of A, equipped with the Lie
bracket of vector field. Call them Krichever–Novikov algebras. For the Riemann
sphere (g = 0) with quasi-global coordinate z, I = {0}, O = {∞}, the introduced
algebra is the Witt algebra. The Witt and Virasoro algebras are graded, but these
Krichever–Novikov algebras are only almost graded, as was observed by Krichever–
Novikov in the two-point case [5] and generalized by Schlichenmaier [6].

We consider the genus one case, i.e., the case of one-dimensional complex tori,
or, equivalently the elliptic curve case. Consider now two marked points. One
marking we always put to ∞ = (0 : 1 : 0), and the other one to the affine
coordinate (e, 0). Set

B := {(e1, e2, e3) ∈ C
3 | e1 + e2 + e3 = 0, ei �= ej for i �= j}.

In B × P2 we consider the family of elliptic curves E over B defined via Y 2Z =
4(X − e1Z)(X − e2Z)(X − e3Z). Consider the complex lines in C2:

Ds := {(e1, e2) ∈ C
2 | e2 = s · e1}, s ∈ C, D∞ := {(0, e2) ∈ C

2}.
Then B is isomorphic to C2 \ (D1 ∪D− 1

2
∪D−2).

Theorem ([7]). For any elliptic curve E(e1,e2) over (e1, e2) ∈ C2 \ (D1 ∪D−1/2 ∪
D−2) the Lie algebra L(e1,e2) of vector fields on Ee1,e2) has a basis {Vn, n ∈ Z}
such that the Lie algebra structure is given as

(∗) [Vn, Vm] =




(m− n)Vn+m, n,m odd,
(m− n)(Vn+m + 3e1Vn+m−2

+(e1 − e2)(e1 − e3)Vn+m−4), n,m even,
(m− n)Vn+m + (m− n− 1)3e1Vn+m−2

+(m− n− 2)(e1 − e2)(e1 − e3)Vn+m−4, n odd, m even.

These algebras make sense also for the points (e1, e2) ∈ D1 ∪ D− 1
2
∪ D−2.

Altogether this defines a 2-dimensional family of Lie algebras parametrized over
C2. In particular, for (e1, e2) = 0 we get the Witt algebra.

Now consider the family of algebras obtained by taking as base variety the line
Ds (for an s). We get that for fixed s in all cases the algebras will be isomorphic
above every point in Ds as long as we are not above (0, 0).

Proposition. For (e1, e2) �= (0, 0) the algebras L(e1,e2) are not isomorphic to W.

In particular, we obtain a family of algebras over the base Ds, which is always
the affine line. In this family, the algebra over the point (0, 0) is the Witt algebra
and the isomorphy type above all other points will be the same but different from
this special Witt element. We obtain the following

Theorem. For every s ∈ C ∪ {∞} the families of Lie algebras defined by (∗)
define global deformations W(s)

t of W over the affine line C[t]. Here t corresponds
to the parameter e1 and e2 respectively. The Lie algebra over t = 0 corresponds
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always to the Witt algebra, the algebras above t �= 0 belong (if s is fixed) to the
same isomorphy class, but are not isomorphic to W.

Remark. It is easy to incorporate a central term defined by a local cocycle and
easy to show that the centrally extended algebras have the same properties.
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Direct limits of Lie groups
Helge Glöckner

1. Existing methods. Let G1 ⊆ G2 ⊆ · · · be an ascending sequence of finite-
dimensional real Lie groups, such that the inclusion maps are smooth homomor-
phisms. Then G :=

⋃
n∈N

Gn is a group in a natural way, and it becomes a topolog-
ical group when equipped with the final topology with respect to the inclusion maps
Gn → G, the so-called DL-topology ([1], [11]). Provided certain technical condi-
tions are satisfied (ensuring in particular that expG := lim−→ expGn

: lim−→ L(Gn) →
lim−→Gn = G is a local homeomorphism at 0), the map expG and its translates can
be used as charts which make G a (usually infinite-dimensional) Lie group (see [9]
and subsequent work by the same authors). It is also known that every Lie subal-
gebra of gl∞(R) := lim−→ gln(R) integrates to a subgroup of GL∞(R) := lim−→ GLn(R)
[6]; this facilitates an alternative construction of a Lie group structure on various
direct limits of linear Lie groups. However, neither of these methods is general
enough to tackle arbitrary direct limits of Lie groups. In particular, examples
show that expG need not be injective on any 0-neighbourhood [1], whence a gen-
eral construction of a Lie group structure on G =

⋃
nGn cannot make use of expG.

2. A new construction principle. In [1], a Lie group structure on G =
⋃

nGn

was constructed in the case where the inclusion maps are embeddings (strict direct
systems). Later, the strictness condition could be removed [2]. In [2], direct limits
of Lie groups are discussed as special cases of direct limits of direct sequences
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M1 ⊆M2 ⊆ · · · of finite-dimensional smooth manifolds and injective immersions.
To make M :=

⋃
nMn a smooth manifold, the idea is to start with a chart φ1 of

some Mn (say M1) and then to use tubular neighbourhoods to extend φn already
defined (or its restriction to a slightly smaller open set) to a chart of Mn+1. Then
lim−→ φn is a chart for M . It can be shown that M is smoothly paracompact [2].
Furthermore (see [2]), the direct limit groups G are regular Lie groups in the sense
of convenient differential calculus [6] (this is easy) and also regular Lie groups in
Milnor’s sense [8] (this is much harder to prove). If all manifolds (or Lie groups)
and all bonding maps are real or complex analytic, then the direct limit manifolds
constructed in [2] are real analytic in the sense of convenient differential calculus,
resp., complex analytic.

3. Lie theory for direct limit groups. Despite the fact that expG need not be
well-behaved, all of the basic constructions of finite-dimensional Lie theory can be
pushed to the case of direct limit groups G =

⋃
nGn. Thus, subgroups and Haus-

dorff quotient groups of G are Lie groups, a universal complexification GC exists,
subalgebras of L(G) integrate to analytic subgroups, and Lie algebra homomor-
phisms integrate to smooth homomorphisms in the expected way. Furthermore,
every locally finite real or complex Lie algebra of countable dimension is enlargible,
i.e., it is the Lie algebra of a regular Lie group [2]. Such Lie algebras have been
studied by Bahturin, Baranov, Benkart, Dimitrov, Neeb, Penkov, Strade, Stumme,
and Zalesskii. If H ⊆ G is a closed subgroup, then H is a smooth submanifold
of G, and in fact a conveniently real analytic (cω-) submanifold, under mild ad-
ditional conditions [2]. Furthermore, the homogeneous space G/H can be given a
cω-manifold structure which makes π : G→ G/H a smooth principal bundle (and a
cω-principal bundle under additional conditions), [2]. Similar results are available
for complex Lie groups [2]. Special cases of complexifications and homogeneous
spaces have already been used in [10], in the context of a Bott-Borel-Weil theorem
for direct limit groups.

4. Direct limits of infinite-dimensional Lie groups. The situation becomes
more complicated if the Gn’s are infinite-dimensional Lie groups. Let us assume
that a direct limit φ := lim−→ φn of compatible charts is defined on some open (or
c∞-open) subset of the locally convex direct limit lim−→ L(Gn). Provided lim−→ L(Gn)
is regular (viz. it is Hausdorff, and each bounded subset is contained and bounded
in some L(Gn)), then it is straightforward to make G =

⋃
nGn a (possibly not

smoothly Hausdorff) Lie group in the sense of convenient differential calculus [4],
whose group multiplication however need not be continuous (cf. [11]). All Lie
groups of relevance are Lie groups in a stronger sense (as in Milnor [8]), based
on a notion of smooth maps which are, in particular, continuous (Keller’s C∞

c -
maps). Pathological examples show that, even if φ is a global chart, it need not
make G =

⋃
nGn a Milnor-Lie group, [4]. But what happens for the examples

encountered in practice ?

5. Discussion of the main examples. Given a σ-compact smooth mani-
fold M of finite dimension, the group Diffc(M) of compactly supported smooth
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diffeomorphisms of M is a Lie group in Milnor’s sense (see [7] or [5], where also reg-
ularity of Diffc(M) in Milnor’s sense is proved in detail). It is a union Diffc(M) =⋃

K DiffK(M) of the Fréchet-Lie groups DiffK(M) of diffeomorphisms supported in
a given compact subsetK ⊆M . Because the DL-topology does not make Diffc(M)
a topological group [11], the DL-topology is strictly finer than the topology on the
Lie group Diffc(M). Hence, there exists a discontinuous map on Diffc(M) which
is continuous on DiffK(M) for each K. There even exists a discontinuous map on
DiffK(M) which is smooth on each DiffK(M), whence Diffc(M) �= lim−→ DiffK(M)
as a smooth manifold [4]. However, homomorphisms on Diffc(M) are smooth
(resp., continuous) if and only if they are so on each DiffK(M), [4]. The situa-
tion is similar for test function groups C∞

c (M,G) with values in a Lie group G.
Thus Diffc(M) = lim−→ DiffK(M) and C∞

c (M,G) = lim−→ C∞
K (M,G) holds or does

not hold, in the following categories (see [4]):

C∞
c (M, G) Diffc(M)

Lie groups yes yes

topological groups yes yes

smooth manifolds no no

topological spaces no no

6. Smooth homomorphisms vs. continuous homomorphisms. The con-
tinuity and smoothness questions just analyzed are related to the general (open)
problem (due to Milnor) whether every continuous homomorphism between infinite-
dimensional Lie groups is smooth. Some progress concerning this problem has
been made recently: Every Hölder continuous homomorphism between Milnor-Lie
groups is smooth [3], and Lip0-homomorphisms between Lie groups in the sense
of convenient differential calculus are smooth in the convenient sense (the author,
work in progress).
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Flag manifolds and cycles
Gregor Fels

Let G be a complex semisimple Lie group and Q ⊂ G a parabolic subgroup. Let
S ⊂ G be a (connected) real form of G. Let s ⊂ g = sC denote the corresponding
Lie algebras. Fix a Cartan decomposition s = k ⊕ p and let g = kC ⊕ pC be its
complexification. Finally, let K ⊂ S denote the corresponding maximal compact
subgroup and let KC ⊂ G be its complexification. In order to avoid some awkward
case by case distinctions we assume that G is simple. All the result below can be
easily generalized for semisimple G.

Let X := G/Q be a flag manifold. The orbit structure of the canonical action
S×X → X by left translations is well understood, see [Wo1]. Since there are only
finitely many S-orbits in X we conclude that open orbits exist. Any open S-orbit
is called a flag domain.
Every flag domains D = S·x contains a unique compact KC-orbit CD. Such orbit
has the property CD = KC·x = K·x. This is a special case of a more general fact:
There is a natural duality between the S-orbits and the KC-orbits in X, and an
S-orbit s and an KC-orbit k are said to be dual if the intersection s∩k is a single
K-orbit, see [Mat], [MUV], [BrLo].
Every compact KC-orbit CD defines a cycle 1·CD in X i.e., a point in the Barlet
cycle space. The Barlet cycle space C(X) provides a universal family parameter-
izing all cycles in X. The construction of the Barlet space C(Z) can be given for
an arbitrary complex space Z, see [Bar] for the details. From the point of view of

group actions, a natural family can be defined as follows ([WeWo]). For a given
compact KC-orbit C = CD, consider M̃D := {g ∈ G | gC ⊂ D}.
Notice that the stabilizer G[C] of C acts freely and properly on the right on this
set, and that the quotient

MD := (M̃D/G[C])◦

can be identified with a domain in the complex homogenous space G/G[C]. Ob-
serve that this space parameterizes the (connected component) of the family of
submanifolds of D which are obtained by moving the base manifold C by elements
of g ∈ G such that g(C) ⊂ D. We refer to such MD as the Wolf parameter space.
The analysis of the quotient G/G[C] shows that the following cases occur:

• G/G[C] = {pt} in the rare case when a non-compact real form S acts transitively
on X
• G/G[C] is a compact Hermitian space Y. This happens only if S is of Hermitian
type and certain cycles CD ⊂ G/Q
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• G/G[C] is the affine symmetric space G/NG(kC).

Our first main result is the description of the Wolf parameter spaces MD for
all S,X and the corresponding flag domains D. In the particular case when S
is of Hermitian type, the structure of MD was determined in [WZ]: In this case
MD

∼= ∆ or MD
∼= ∆×∆ where ∆ denotes the bounded symmetric domain such

that Aut◦(∆) = S/Z(S).
We deal only with the case where S is not of Hermitian case. Let H := NG(kC) =
G[CD]. It turns out that

Theorem 1. Let a (non-Hermitian) real form S be fixed. For arbitrary X and
flag domain D ⊂ X all domains MDC ⊂ G/H coincide. The domains MDC can

be also described in a more explicite way: Fix a maximal Abelian subalgebra a ⊂ p

and an Iwasawa decomposition s = k ⊕ a ⊕ n. Fix a Borel subgroup B ⊂ G such
that b ⊃ a⊕ n. It should be noted that B·[H ] is open in G/H and its complement
consists of dim a irreducible B-stable hypersurfaces: G/H \B·[H ] = H1∪· · ·∪Hr.
For any B-stable hypersurface H define the set

ΩH :=
(
G/H \

⋃
s∈S

sH)◦ =
(
G/H \

⋃
k∈K

kH)◦
where (· · · )◦ denote the connected component containing [H ]. This set is open and
is called the hypersurface domain, associated with H.
Theorem 2. For an arbitrary but fixed (non-Hermitian) S, any flag domain
D ⊂ X and arbitrary B-stable divisor H ⊂ G/H we have

MD = ΩH = S· exp iωAG·[H ]

where ωAG := {X ∈ a | |λ(X)| < π/2 for all λ ∈ Φ(a)}. Here, Φ(a) denotes the
restricted root system of s with respect to a.
All above domains are Kobayashi hyperbolic.

See [FeHu], [HuWo].

Remark. The open set S· exp iωAG·[H ] ⊂ G/H is also called the Akhiezer-
Gindikin domain, see [AG]. Note that H is disconnected and KC = H◦.
The covering map G/KC → G/H maps biholomorphically S· exp iωAG·[KC] onto
S· exp iωAG·[H ]. Furthermore, being interested in local properties of various cycle
spaces, we do not need to distinguish between H = G[C] and KC = H◦.

As already mentioned, instead of moving the reference cycles CD by elements of a
given transformation group G one can also consider the universal family of cycles,
i.e., the component of the Barlet cycle space C(X) which contains CD. Such a
universal family depends only on the complex geometry of the ambient space and
the embedding CD ↪→ X. A compact KC-orbit C can be now considered as a point
[C] ∈ C(D) = C, and MD is just a subset of C. Therefore one naturally asks if
MD = C(D) or if MD is at least open in C.
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In order to “see” cycles in the proximity of the given C it is necessary to compute
the full Zariski tangent space T[C]C at a point [C]. In general, the Barlet spaces C
are singular and in principle, the point [C] ∈ C might be singular. Note that we
have the canonical subspace T[C](G·[C]) of T[C]C, consisting of vectors tangent to
the orbit G·[C].

Our first result here is that for certain real forms S ⊂ G the tangent spaces to C
computed at all compact KC-orbits C and for all G-flags X the spaces To(G·[C])
and T[C]C coincide. In particular, MD is open in C(X).

On the other hand, there are real forms S and flag manifolds X in which there are
situations which do not arise by moving the base cycle by elements of Aut(X) :
There exist real forms and compact orbits C ⊂ X (we give a precise list below)
such that dimT[C]C > dimG/G[C]. In such a case we compute in detail the isotropy
representation KC × T[C]C → T[C]C. It is actually quite difficult to obtain precise
quantitative results of this type, and a substantial part of our work consists in
developing effective methods for computing certain cohomology groups which are
necessary for our purposes.

The calculations are carried out mostly for the full flag X = G/B. It should be
noted that in this case Aut◦(X) = G/Z(G).

Theorem 3. In all cases the Barlet space C(G/B) is smooth at CD.

Note that forG simple and S ⊂ G a real form, all kC-modules pC in the complexified
Cartan decomposition of s are irreducible if S is not of Hermitian type and sum of
two irreducible submodules pC = (pC)+⊕ (pC)− if S is of Hermitian type. Further,
for every complex group H of the classical type A–D let H ↪→ GL(V H

std) denote the
standard representation. It turns out that the isotropy groups in all cases listed
below are of classical type.

Theorem 4.

i) For all real forms s listed below, there exist compact KC-orbits C ⊂ G/B =
X, such that the Zariski tangent space T[C]C(X) is bigger than T[C](G/G[C]).
T[C]C = T[C](G·[C]). The real forms listed below are also the only ones with
this property:

(1) so(2p, 2q + 1) for p ≥ 2,
(2) so(2p+ 1, 2q + 1), for p, q ≥ 1
(3) spn(R) for n ≥ 3,
(4) G2

(5) sl3(R).

ii) At the same time, for all real forms except sl3(R) there exist compact KC-
orbits C′ ⊂ G/B, such that T[C′]C(X) = T[C′](G·[C′]).
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iii) For those compact KC-orbits C ⊂ G/B with the property as in i) the
tangent space T[C]C(X) has the following decomposition as a KC-module:

s = so(2p, 2q + 1) T[C]C = pC ⊕ V
SO2p

std

s = so(2p+ 1, 2q + 1) T[C]C = pC ⊕ V
SO2p+1
std or T[C]C = pC ⊕ V

SO2q+1
std

s = spn(R) T[C]C = (pC)+ ⊕ ∧2
V GLn

std or T[C]C = (pC)− ⊕ ∧2(V GLn

std )∗

s = G2 T[C]C = pC ⊕ V SO4
std

s = sl3(R) T[C]C = pC ⊕ V SO3
std

See [Fe] for the proofs and further details.
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Berezin transform on root systems of type BC
Genkai Zhang

In the present talk we present our recent result on Berezin transform on root
systems with general multiplicities. The Berezn transform on symmetric domains
arises when one studies the branching of holomorphic representation on a Her-
mitian symmetric space G/K of a semisimple Lie group G under a symmetric
subgroup H with the corresponding symmetric space H/L being a real form of
G/K. More precisely, consider the restriction map R of a scalar holomorphic
discrete series Hν (and its analytic continuation) realized as a Hilbert space of
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holomorphic functions on G/K to the real form H/L. The map Bν = RR∗ on
L2(H/L) is then the Berezin transform. It is H-invariant, and is bounded on
L2(H/L) for larger parameter of ν. The spectral symbol of Bν has been computed
by Unterberger-Upmeier [3], Zhang [6] [5] van Dijk and Pevsner [1] and have found
several applications [4]. In the present work we consider a general root system of
type BC with general positive multiplicity. The Berezin transform can be defined
as an integral operator whose kernel is defined by a series. We find the spectral
symbol of the Berezin transform and find a Bernstein-Sato type formula for the
integral kernel. The precise results are summarized below.

Let a = Rr be an Euclidean space with inner product (·, ·) and let R ⊂ a∗ be a
root system of type BC. We fix an orthogonal basis γj , j = 1, . . . , r of a∗ so that
R = { γj

2 ; j = 1, · · · , r} ∪ {γj ; j = 1, · · · , r} ∪ { γj±γk

2 ; j �= k = 1, · · · , r} and let
k = (k1, k2, k3) be the root multiplicity with k1, k2 and k3 the multiplicities of the
respective subsets of R. We assume that k1 + k2 > 0 and k3 > 0.

Let {ξj} be the basis of a dual to γj

2 , j = 1, . . . , r, i.e., γj

2 (ξk) = δjk. A function
f(x) on aC will be identified with f(x1, · · · , xr), for x = x1ξ1 + · · · + xrξr . Let
Dj = Dξj be be the Cherednik operators and let φλ be Heckman-Opdam the
spherical function. Consider the function

fν(x) =
r∏

j=1

cosh(xj)−2ν .

The integral kernel B(x, y) of the Berezin transform is given by B(x, 0) = fν(x)
and by an infinite series with using the Jack symmetric polynomials. Its spectral
symbol is determined by the integral

bν(λ) = f̃ν(λ) =
∫

a

fν(x)φλ(x)dµΣ(x)

where dµΣ(x) is the invariant measure for the root system Σ (which corresponds
to the radial A-part of the Riemannian measure in the case of symmetric space
H/L = LA · 0).

We prove first a Bernstein-Sato type formula using the Cherednik operator.

Theorem 1. (Bernstein-Sato type formula) The following formula holds
r∏

j=1

(D2
j − (−ν/2 + ρ1)2))fν =

r∏
j=1

(−ν/2 + k3(j − 1))(1 + ν/2− k2 − k3(r− j))fν+1

In proving the theorem we also find some interesting commutation relation for
the Hecke algebra elements and multiplication operators by polynomials of ex

j .
We can then find the spectral symbol.

Theorem 2. The spherical transform of fν is given by

bν(λ) = cδ

r∏
j=1

∏
ε=±1

Γ(ν − p− 1
2

+ ελj)
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The result has also some applications to orthogonal polynomials, the details
will appear later.
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General Differential Calculus and General Lie Theory
Wolfgang Bertram

In joint work with H. Glöckner and K.-H. Neeb [1], a simple and at the same
time very general approach to differential calculus, manifolds and Lie groups is
proposed which not only works in arbitrary dimension over the real and complex
numbers, but more generally for arbitrary topological modules over (commutative)
base rings k having a dense group of invertible elements (in particular, over all
non-discrete topological fields). All notions and results from differential geometry
and Lie theory that are essentially algebraic in nature continue to make sense in
this general framework – one may call these parts of the theory “general differential
geometry” and “general Lie theory”.

In our talk we present a basic result of this theory which in a way provides a
rigorous justification of the use of “infinitesimals” in differential geometry (cf. [3]):
if M is a manifold over k, then the tangent bundle TM is, in a natural way, a
manifold over the ring of dual numbers k[ε] = k ⊕ εk ∼= k[x]/(x2) (with relation
ε2 = 0), and tangent maps are smooth over k[ε]; thus the tangent functor really
is a functor of scalar extension from k to dual numbers over k. It immediately
follows that the iterated tangent bundles T nM are manifolds over the ring T nk :=
k[ε1, . . . , εn] and that the “jet bundles” JnM = (T nM)Σn (the subbundle fixed
under the canonical action of the permutation group Σn on T nM) are manifolds
over the ring Jnk := (T nk)Σn . Likewise, if G is a Lie group over k, then T nG
is a Lie group over T nk and JnG is a Lie group over Jnk. Another approach to
infinitesimals has been proposed by A. Weil in 1953 and lead to various concepts
such as the “Weil-functors” defined in the book “Natural Operations in Differential
Geometry” by I. Kolář, P. Michor and J. Sovák (Springer-Verlag 1993) or the
theory of “smooth toposes” and “synthetic differential geometry” (see the book
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“Models for Smooth Infinitesimal Analysis” by I. Moerdijk and G. Reyes, Springer-
Verlag 1991); our result may be seen as an alternative and much simpler approach
to these objects.

Finally, we give a short overview over problems and further topics in the context
of general Lie theory. In general, it is not possible to integrate differential equations
in our general context (this is known to be so already in the p-adic case or in the
locally convex real case), and so most problems take the form of “integration prob-
lems”. For instance, for a general Lie group over k, there is no exponential map,
but pushing the theory of connections somewhat further than usual one can define
a certain bundle isomorphism on the level of higher order tangent bundles which
serves to replace the missing exponential map (work in progress, cf. [3]). Then one
may ask whether there is also an analog of the Campbell-Hausdorff formula. This
seems to be indeed the case, but the precise form of this formula is unknown at
present (note that the characteristic of k is arbitrary). The ultimate integration
problem in Lie theory would be to find an analog of “Lie’s third theorem” in our
general context, i.e. to find necessary and sufficient conditions for a Lie algebra
to be “integrable” to a Lie group. This problem can also be posed for symmetric
spaces and Lie triple systems. Remarkably enough, for Jordan algebraic structures
the integration problem can be solved (cf. [2], [4]): there is a functor assigning to
every Jordan-structure over k (-algebra, -triple system or -pair, satisfying some
natural continuity condition) a geometry which is smooth over k. This is possible
since “Jordan geometries” tend to be algebraic, whereas “Lie geometries” only
tend to be analytic.

REFERENCES

(all available on my homepage: http://www.iecn.u-nancy.fr/˜bertram/ )
[1] Differential Calculus, manifolds and Lie groups over arbitrary infinite fields
(with H. Gloeckner and K.-H. Neeb), Expo. Math., to appear, see also arXiv
math.GM/0303300
[2] Projective completions of Jordan pairs. Part I: The generalized projective
geometry of a Lie algebra (with K.-H. Neeb), J. of Algebra, to appear, see also
arXiv math.RA/0306272
[3] Differential Geometry over General Base Fields and Rings. Part I: First and
Second Order Geometry. Preprint, Nancy 2003 (Part II in preparation).
[4] Projective completions of Jordan pairs. Part II: Manifold structures and sym-
metric spaces (with K.-H. Neeb). Preprint, Nancy – Darmstadt 2004, see also
arXiv math. GR/0401236

Cohomology of holomorphic vector fields on a punctured Riemann
surface

Friedrich Wagemann
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Let Σ denote a compact Riemann surface of genur g and Σr = Σ \ {p1, . . . , pr}
a punctured Riemann surface, punctured in r ≥ 1 distinct points.
Let Hol(Σr) denote the Lie algebra of holomorphic vector fields on Σr. It is a
topological Lie algebra with respect to the topology of uniform convergence on
compact sets in Σr. The underlying topological space is Fréchet.
The goal of this survey is an Ext-description of the continuous cohomology of
Hol(Σr), i.e. to describe it in terms of (topologically split) exact sequences of
Hol(Σr)-modules.
In a first section, we recalled the setting of continuous cohomology of a Fréchet
Lie algebra g [1]. The Ext-description, which is standard for ordinary cohomology
by work of Yoneda, is more difficult here as there is no standard category of topo-
logical g-modules which posesses enough projectives and injectives. Nevertheless,
H2(g,C) classifies central extensions which are topologically split (i.e. split as
sequences of topological vector spaces). Our first theorem [6] is that the standard
map associating to a (topologically split) crossed module its continuous 3-cocycle
induces a bijection of the set of crossed modules of g with V to H3(g, V ) in case
there is a topologically split exact sequence 0 → V → W → U → 0 such that
H3(g,W ) = 0.
In a second section, we recalled N. Kawazumi’s theorem [2] on the continuous
cohomology of Hol(Σr). It states that H∗(Hol(Σr),C) is isomorphic to the sin-
gular cohomology of the space Map(Σr, S

3) of continuous maps from Σr to the
3-sphere S3, equipped as a topological space with the compact-open topology. The
latter cohomology algebra is a graded commutative Hopf algebra in N generators
of degree 2 (where N equals the dimension of H1(Σr)) and one generator of de-
gree 3, a kind of Godbillon-Vey generator. We generalized Kawazumi’s work to
n dimensional complex manifolds [4], and showed also that one can obtain from
it the continuous cohomology of the topological subspace of meromorphic vector
fields [3] (i.e. those holomorphic vector fields on Σr which have at most poles in
p1, . . . , pr) which play an important rôle in Krichever-Novikov’s approch to string
theory.
In a third section, we showed in our main theorem how to construct a crossed
module representing the mentioned Godbillon-Vey type generator [5]. The corre-
sponding 4-term exact sequence is constructed by splicing together the short exact
de Rham sequence of holomorphic differential forms on the universal cover Σ̃r of
Σr, say

0 → C → Ω0(Σ̃r) → Ω1(Σ̃r) → 0,

and an abelian extension of Hol(Σr) by Ω1(Σ̃r) by a certain 2-cocycle.
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On the holomorphic structure of G-orbits in compact hermitian
symmetric spaces
Wilhelm Kaup

In this lecture we give a survey on the results of the submitted paper [4]. Let
us start with a complex Banach space E of dimension n (that is Cn with a fixed
norm ‖ ‖). The open unit ball D ⊂ E is called a bounded symmetric domain if
the group G := Aut(D) of all biholomorphic automorphisms of D acts transitively
on D (this is not an essential restriction to the usual more abstract definition,
see e.g. [2]). Then it is well known that G is a semi-simple Lie group and that
the isotropy subgroup K : = {g ∈ G : g(0) = 0} is a maximal compact subgroup
coinciding with the group of all linear isometries of the complex Banach space
E. The compact dual Z of D in the sense of symmetric hermitian spaces is a
compact homogeneous complex manifold containing E as open dense subset in
such a way that G ∼= {g ∈ Aut(Z) : g(D) = D} (Z is the Riemann sphere in case
E = C and D the open unit disk). In this sense G also acts on Z by biholomorphic
transformations and has only finitely many orbits there (one of which is the domain
D ⊂ Z, another one is the Shilov boundary of D, the unique closed G-orbit in Z).

The G-orbits in Z as homogeneous spaces and the holomorphic arc components
of their closures have been described explicitly in [5]. Here we are interested in
the Cauchy-Riemann structure of G-orbits (which for open orbits is just the usual
holomorphic structure as complex manifold). For fixed orbit M : = G(a), a ∈ Z,
let us briefly recapitulate its CR-structure (take [1] as general reference for arbi-
trary CR-manifolds): For every c ∈M the tangent space TcM is canonically con-
tained in the tangent space TcZ, which is a complex vector space in a natural way.
Clearly, HcM : = TcM ∩ i TcM (called the holomorphic tangent space at c ∈M)
is the biggest complex subspace contained in TcM . The CR-structure on M is
given by the complex vector bundle HM ⊂ TM . In particular, a smooth function
f : M → C (or more generally with values in another CR-manifold) is called CR
if it satisfies the tangential Cauchy-Riemann partial differential equations in the
sense that the differential df(c) : TcM → C is complex linear on every holomorphic
tangent space HcM , c ∈M . Here we are interested in the holomorphic extendibil-
ity of CR-functions, the explicit determination of CR-automorphism groups and
the CR-equivalence problem for G-orbits.

For simplicity and without essential loss of generality we restrict to the case
where the bounded symmetric domainD is irreducible, that is, not a direct product
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of lower dimensional bounded symmetric domains. Then, if D has rank r, there
exist precisely

(
r+2
2

)
G-orbits in Z, which can be indexed in a canonical way as

Mp,q with integers p, q ≥ 0 satisfying p + q ≤ r (compare the special example
below). There are precisely r+ 1 open orbits (those with p+ q = r) and also r+ 1
orbits (those with q = 0) contained in the closureD ofD. In caseD is of tube type,
the Shilov boundary M0,0 of D is totally real in Z, and there is a biholomorphic
transformation ι of Z with period 2, mapping every Mp,q onto Mq,p, thus giving
a real-analytic CR-equivalence between Mp,q and Mq,p. It’s the existence of this
transformation ι that is responsible for some extra phenomena in the tube case. For
a presentation of our results therefore assume in the following that the irreducible
bounded symmetric domain D is not of tube type: Then, if M = Mp,0 (that is,
M ⊂ D), every continuous CR-function f on M has a unique continuous extension
f̂ to the linear convex hull M̂ =

⋃
k≥pMk,0 ofM that is holomorphic on the domain

D = Mr,0, and M̂ is maximal in Z with respect to this extension property. For
every other orbitM = Mp,q, q > 0, every continuous CR-function onM is constant
and every continuous CR-function on M ∩E has a unique holomorphic extension
to E, implying that then every infinitesimal CR-transformation of M extends to
a holomorphic vector field on Z. This can be used to show for every G-orbit M
in Z that the group Aut(M) of all CR-automorphisms of M is just the group
G and also that the G-orbits in Z are pairwise CR-inequivalent. The proofs use
extensively the Jordan algebraic description of bounded symmetric domains as
well as the CR-extension results for K-orbits obtained in [3].

For the announced example fix integers s ≥ r ≥ 1 in the following and denote
by E : = Cs×r the Banach space of all complex s × r–matrices, where ‖z‖ is the
operator norm of the matrix z, considered as a linear operator Cr → Cs. Then the
open unit ball D ⊂ E is an irreducible bounded symmetric domain of rank r, and
D is of tube type if and only if s = r. The subgroup SU(s, r) ⊂ SL(s+ r,C) acts
by linear fractional transformations transitively on D in the following way: Write
every g ∈ SU(s, r) in block form g =

(
a b
c d

)
with a ∈ Cs×s, b ∈ Cs×r, c ∈ Cr×s,

d ∈ Cr×r and put g(z) := (az + b)(cz + d)−1 for all z ∈ D. Then the connected
identity component of G = Aut(D) consists of all transformations obtained this
way. The compact dual Z of D is the Grassmann manifold Gr,s of all r-planes in
Cr×Cs, in which E is embedded by identifying every matrix z ∈ E with its graph
{(x, zx) : x ∈ Cr} ∈ Gr,s. For every z = (zjk) ∈ E let z∗ : = (zjk) ∈ Cr×s and 11
the unit matrix in Cr×r. Then, if the hermitian matrix 11 − z∗z ∈ Cr×r has type
(p, q) (meaning p positive and q negative eigenvalues), we have G(z) = Mp,q. In
particular,

D = Mr,0 = {z ∈ E : 11 − z∗z positive definite}
and

M0,0 = {z ∈ E : z∗z = 11}
is the Shilov boundary of D. In the tube case, i.e. r = s, the involutory transfor-
mation ι leaves GL(r,C) ⊂ Z invariant and satisfies ι(z) = z−1 there.
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Deformation quantization of Kähler manifolds
Martin Schlichenmaier

In this talk I presented results on the Berezin-Toeplitz deformation quantization
for compact quantizable Kähler manifolds. Some of them were obtained jointly
with M. Bordemann and E. Meinrenken. Some of them jointly with A. Karabegov.

Let (M,ω) be a Kähler manifold and (C∞(M), ·) the associative and commuta-
tive algebra of C∞-functions under the pointwise product. This algebra is endowed
with a Poisson structure via {f, g} := ω(Hf , Hg), with Hf the Hamiltonian vector
field defined by ω(Hf , .) = df(.). A formal deformation quantization or a star
product is an associative product � on the vector space of formal power series
C∞(M)[[ν]], which is ν-adically continuous and fulfills

(1) f � g = f · g mod ν, (2)
1
ν

(f � g − g � f) = i{f, g} mod ν.

In particular,

f � g =
∞∑

j=0

νjCj(f, g),

with bilinear maps Cj : C∞(M) ×C∞(M) → C∞(M). A star product is called a
differential star product if the Cj are bidifferential operators. Usually one assumes
also f �1 = 1�f = f . Two star products � and �′ (for the same Poisson structure)
are called equivalent if there is an isomorphism of algebras B (i.e. B(f) �′ B(g) =
B(f � g)) such that the formal sum B =

∑∞
j=0 ν

jBj starts with B0 = id. A
differential star product is called a star product with the property of “separation
of variables” (in the terminology of Karabegov) or of Wick-type (in the terminology
of Bordemann-Waldmann) if in the first argument of Cj only holomorphic and in
the second argument only anti-holomorphic derivatives appear. In joint work with
A. Karabegov I showed that the Berezin-Toeplitz (BT) deformation quantization
is a differential star product with the separation of variables property [KS].
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The approach presented here works for arbitrary compact and quantizable
Kählermanifolds. A Kähler manifold is called quantizable if there exists a holo-
morphic hermitian line bundle over M : (L, h,∇), (∇ is the compatible connec-
tion) such that curvL,∇ = −iω. Important examples of such quantizable Kähler
manifolds are given by the projective space with the hyperplane section bundle,
projective submanifolds, abelian varieties, moduli spaces of flat su(N)-connections
on a Riemann surface, moduli spaces of stable algebraic vector bundles of rank N
and degree d over an algebraic curve, etc.

The metric h on L extends to h(m) on Lm := L⊗m. By integrating it against the
Liouville form it defines a scalar product on the space of C∞ sections. Inside the
L2 completion there is the finite-dimensional subspace Γ(m)

hol of holomorphic sec-
tions. Let Π(m) be the projection onto this subspace. The BT quantum operators
associated to a function f on M are defined as (T (m)

f )m∈N with

T
(m)
f : Γ(m)

hol → Γ(m)
hol ; s 
→ T

(m)
f (s) = Π(m)(f · s) .

Theorem 1. [BMS].
(a) limm→∞ ||T (m)

f || = ||f ||sup.

(b) ||mi[T (m)
f , T

(m)
g ] − T

(m)
{f,g}|| = O(1/m),

(c) ||T (m)
f · T (m)

g − T
(m)
f ·g || = O(1/m).

Theorem 2. [Bia], [BMS], [CMF]. There exists a unique star product
f �BT g =

∑∞
k=0 ν

kCk(f, g), such that

T
(m)
f · T (m)

g ∼
∞∑

k=0

(
1
m

)k

T
(m)
Ck(f,g), m→ ∞.

This star product is called the Berezin-Toeplitz star product.

Theorem 3. [KS]. The BT-star product is a differential star product with the
separation of variables property. It has as Karabegov classifying form ω̃BT =
− 1

λω + ωcan and as Fedosov-Deligne class c(�BT ) = 1
i

(
1
λ [ω] − ε

2

)
.

Here λ is a formal variable, ωcan is the curvature form of the canonical holomor-
phic line bundle and ε is the canonical class. Furthermore, it should be recalled
that all star products with the separation of variables property are uniquely given
by their (formal) Karabegov form, and all differential star products up to equiva-
lence given by their (formal) Fedosov-Deligne class. As an important tool in the
proof of the last theorem the Berezin transform I(m) : C∞(M) → C∞(M) was
used. With the help of the (suitably generalized) Berezin covariant symbol map
σ it can be described as I(m)(f) = σ(T (m)

f ). In [KS] it was shown that it has a
complete asymptotic expansion in 1/m which starts with f(x) + (1/m)∆f + . . .
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The generalized Cayley map from an algebraic group to its Lie algebra
Peter W. Michor

This talk is mainly based on the paper [4].

Let π : G → End(V ) be an infinitesimally faithful complex representation of a
connected Lie group G. Consider (A,B) 
→ tr(AB) on End(V ) and suppose that
it is non-degenerate on the linear subspace π′(g) ⊆ End(V ). Then the orthogonal
projection prπ : End(V ) → π′(g) is defined:

G
representation π ��

Φπ Caley map

���
�
� End(V )

orthoproj.prπ

��

Ψπ(g) = Ψ(g) := det(dΦ(g))

g �� infinites. repr. π′
�� π′(g)

The Cayley mapping Φ has the following simple properties:

(1) Φ(bxb−1) = Adb(Φ(x)).
(2) We have Φ(g) ∈ Cent(gg) ⊂ Zg(gg).
(3) dΦ(e) : g → g is the identity mapping.
(4) H ⊂ G be a Cartan subgroup with Cartan algebra h ⊂ g. Then Φ(H) ⊂ h.
(5) For the character χπ(g) = tr(π(g)) of π we have

dχπ(g)(Te(µg)X) = tr(π′(Φπ(g))π′(X))

Further results are:
• Let π : G → Aut(V ) be a representation admitting a Cayley mapping. Let
H = (

⋂
a∈AG

a)o = (GA)o ⊆ G be a subgroup which is the connected centralizer
of a subset A ⊆ G and suppose thatH is itself reductive. Then π|H : H → End(V )
admits a Cayley mapping and Φπ|H = Φπ|H : H → h.
• Let G be a semisimple real or complex Lie group, let π : G → Aut(V ) be an
infinitesimally effective representation. Let g = g1⊕· · ·⊕gk be the decomposition
into the simple ideals gi. LetG1, . . . , Gk be the corresponding connected subgroups
of G. Then Φπ|Gi = Φπ|Gi

for i = 1, . . . , k.
• G a simple Lie group, for direct sum and tensor product representations

Φπ1⊕π2(g) =
jπ1

jπ1⊕π2

Φπ1(g) +
jπ2

jπ1⊕π2

Φπ2(g) ∈ g.

Φπ1⊗π2(g) =
jπ1χπ2(g)
jπ1⊗π2

Φπ1(g) +
χπ1(g)jπ2

jπ1⊗π2

Φπ2(g) ∈ g.

Results for algebraic groups. Now let G be a reductive complex algebraic
group and π a rational representation. We have A(g) = A(g)G ⊗ Harm(g), where
Harm(g) is the space of all regular functions killed by all invariant differential
operators with constant coefficients. We define Harmπ(G) := Φ∗

π(Harm(g)). It is
a G-module.
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• For the localization at Ψ we have A(G)Ψ = A(G)G
Ψ ⊗ Harmπ(G). Moreover, we

have A(G) = A(G)G ⊗ Harmπ(G) if and only if Φ : G→ g maps regular orbits in
G to regular orbits in g.
• If Φ(e) = 0 ∈ g then for the G-equivariant extension of the rational function
fields Φ∗ : Q(g) → Q(G) the degrees satisfy [Q(G) : Q(g)] = [Q(G)G : Q(g)G].
• Let a ∈ G be regular. Assume that dΦ(a) is invertible. Then Φ restricts to an
isomorphism Φ : ConjG(a) → AdG(Φ(a)) of affine varieties.
• Let a ∈ G. Then for the semisimple parts we have Φ(as) = Φ(a)s and Φ(a) =
Φ(as) + Φ(a)n ∈ ga is the Jordan decomposition.
• Let G be a connected reductive complex algebraic group and let Φ : G→ g be the
Cayley mapping of a rational representation with Φ(e) = 0. Then Φ : Gpos → greal

is bijective and a fiber respecting isomorphism of real algebraic varieties, where
Gpos is the set of all a ∈ G whose semisimple part has positive eigenvalues, and
greal is the set of all X ∈ g whose semisimple part has only real eigenvalues.

Relation to the classical Cayley mapping. Let T : Spin(n,C) → SO(n,C)
be the double cover. We consider the spin representation Spin : Spin(n,C) →
Aut(Sn).
• There is a choice of the sign of the square root so that χ(g) :=

√
det(1 + T (g))

satisfies
ΦSpin(g) = − 2

2n/2
χ(g) Γ(T (g)) ∈ so(n,C).

for all g ∈ Spin(n,C). Moreover, χ ∈ A(Spin(n,C)) and we have for the rational
function fields

Q(Spin(n))Spin(n) = Q(so(n,C))Spin(n)[χ],

Q(Spin(n)) = Q(so(n,C))[χ].
Thus the generalized Cayley mapping ΦSpin : Spin(n,C) → so(n,C) factors to the
classical Cayley transform Γ : SO(n,C)∗ → Lie Spin(n,C)(∗), up to multiplication
by a function, via the natural identifications.

Relation to Poisson structures. For a representation π of a Lie group G we
can try to pull back the Poisson structure on g∗ via the derivative of the character
dχπ : G → g∗. This pullback is a rational Poisson structure on G which in fact
is an integrable Dirac structure in the sense of [1], [2], [3]. Let us explain this a
little:

Let M be a smooth manifold of dimension m. A Dirac structure on M is a
vector subbundle D ⊂ TM ×M T ∗M with the following two properties:

(1) Each fiberDx is maximally isotropic with respect to the metric of signature
(m,m) on TM ×M T ∗M given by 〈(X,α), (X ′, α′)〉+ = α(X ′)+α′(X). So
D is of fiber dimension m.

(2) The space of sections of D is closed under the non-skew-symmetric version
of the Courant-bracket [(X,α), (X ′, α′)] = ([X,X ′],LXα

′ − iX′dα).
Natural examples of Dirac structures are the following: Symplectic structures ω on
M , where D = Dω = {(X,ω(X)) : X ∈ TM} is just the graph of ω : TM → T ∗M ;
these are precisely the Dirac structures D with TM ∩D = {0}. Poisson structures
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P onM whereD = DP = {(P (α), α) : α ∈ T ∗M} is the graph of P : T ∗M → TM ;
these are precisely the Dirac structures D which are transversal to T ∗M .

Given a Dirac structure D on M we consider its range R(D) = prTM (D) =
{X ∈ TM : (X,α) ∈ D for some α ∈ T ∗M}. There is a skew symmetric 2-
form ΘD on R(D) which is given by ΘD(X,X ′) = α(X ′) where α ∈ T ∗M is
such that (X,α) ∈ D. The range R(D) is an integrable distribution of non-
constant rank in the sense of Stefan and Sussmann, see [5], so M is foliated into
maximal integral submanifolds L of R(D) of varying dimension, which are all
initial submanifolds. The form ΘD induces a closed 2-form on each leaf L and
(L,ΘD) is thus a presymplectic manifold (ΘD might be degenerate on L). If the
Dirac structure corresponds to a Poisson structure then the (L,ΘD) are exactly
the symplectic leaves of the Poisson structure.

The main advantage of Dirac structures is that one can apply arbitrary push
forwards and pull backs to them. So if f : N →M is a smooth mapping and DM

is a Dirac structure on M then the pull back is defined by f∗DM = {(X, f∗α) ∈
TN ×N T ∗N : (Tf.X, α) ∈ DM}. Likewise the push forward of a Dirac structure
DN on N is given by f∗DN = {(Tf.X, α) ∈ TM ×M T ∗M : (X, f∗α) ∈ DN}.
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Θ-hypergeometric functions and shift operators
Angela Pasquale

The noncompactly causal (NCC) symmetric spaces are a small but nice class
of pseudo-Riemannian symmetric spaces. The interest in these spaces was raised
by the studies on the global structure of the space-time (see for instance [5]). In
1994, Faraut, Hilgert and Olafsson [1] could exploit the geometry of these spaces
to extend to them the theory of spherical functions, which Harish-Chandra had
developed in the late 50s on the Riemannian symmetric spaces of noncompact type
[4]. As in the Riemannian case, the spherical functions on a NCC symmetric space
G/H are the (suitably normalized) smooth H-invariant joint eigenfunctions of the
commutative algebra of G-invariant differential operators on G/H . However, due
to the non-compactness of H , they turn out to be much less regular than those
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of Harish-Chandra: they are only defined on an open submanifold of G/H ; they
are meromorphic (not entire) in the spectral parameter; they can be described by
integral formulas only for certain values of the spectral parameters. Many of the
difficulties encountered when studying the spherical functions on NNC symmetric
spaces can be overcome by working in the more general setting of Θ-spherical
functions.

The Θ-hypergeometric functions are special functions associated with root sys-
tems that generalize the spherical functions on both the NCC and the Riemannian
symmetric spaces. Their definition has been suggested by Olafsson’s expansion
formula [7] for the spherical functions on a NCC symmetric space G/H . This for-
mula shows that the restriction of the spherical functions ofG/H to a specific Weyl
chamber of Cartan subgroup is a certain linear combination of Harish-Chandra se-
ries for the Riemannian dual G/K. In their theory of hypergeometric functions
associated with root systems [3, 2, 10, 6, 11], Heckman and Opdam developed very
powerful methods for studying this kind of linear combinations without relying on
a Riemannian structure. It is then quite natural to to try to extend Heckman-
Opdam’s definitions and methods to enclose also the spherical functions on NCC
symmetric spaces. The big family of special functions originating from this exten-
sion gives precisely the Θ-hypergeometric functions. They are constructed from
a triple (a,Σ,m), where a is a Euclidean symmetric space, Σ is a root system in
the dual a∗ of a, and m is a multiplicity functions on Σ. As the hypergeometric
functions associated with root systems, the Θ-hypergeometric functions are joint
eigenfunctions of the hypergeometric system of Heckman and Opdam. The param-
eter Θ designates a subset of a fixed fundamental system Π of positive simple roots
in Σ. The different choices of Θ lead to a lattice of special functions associated with
the given root system. At the top of the lattice, that is for Θ = Π, we find the hy-
pergeometric functions of Heckman and Opdam; at the bottom, that is for Θ = ∅,
(certain multiples of) the Harish-Chandra series. In the middle appear many new
special functions. For “geometric” triples (a,Σ,m), the Θ-hypergeometric func-
tions corresponding to Θ = Π yield Harish-Chandra’s spherical functions, whereas
the spherical functions on NCC symmetric spaces arise from some of the new spe-
cial functions in the central part of the lattice. This unified framework allows us,
for instance, to derive information on the spherical functions on NCC symmetric
spaces from those of the spherical functions of the Riemannian dual.

A particularly nice situation occurs for even multiplicity functions on reduced
root systems. Geometrically, this situation corresponds to Riemannian symmetric
spaces G/K with the property that all Cartan subalgebras in the Lie algebra g
of G are conjugate. The simplest example is when g admits a complex structure,
in which case all multiplicities are equal to 2. The analysis of Θ-hypergeometric
functions with even multiplicities is simplified by the use of Opdam’s shift oper-
ators (see e.g. [6]). By modifying one of these operators, it is possible to obtain
a Weyl-group-invariant differential operator with regular coefficients yielding Θ-
hypergeometric functions with even multiplicities from averages of exponential
functions. In particular, this provides new formulas for the spherical functions on
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Riemannian symmetric spaces with even multiplicities of both noncompact and
compact type. The study of of the Θ-hypergeometric functions in even multiplic-
ities and their associated harmonic analysis is a joint work with Gestur Ólafsson
[9].
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Maximal adapted complexifications of Riemannian homogeneous
spaces

Andrea Iannuzzi
(joint work with Stefan Halverscheid)

For a Riemannian real-analytic manifold M one can construct canonical com-
plexifications by defining the adapted complex structure on a domain of the tan-
gent bundle TM , as shown by Guillemin-Stenzel and Lempert-Szoeke ([GS], [LS]).
This uniquely determines the complexification in a neighborhood of M , which is
identified with the zero section in TM , however in general there are questions
about existence and unicity of a maximal domain Ωmax on which the adapted
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complex structure exists. If Ωmax is understood, by functoriality of the definition
it may be regarded as an invariant of the metric, i.e., isometric manifolds have
biholomorphic maximal domains. For instance examples are given by symmetric
spaces of non-compact type ([BHH]), compact normal Riemannian Homogeneous
spaces ([Sz2]), compact symmetric spaces ([Sz1]) and spaces obtained by Kählerian
reduction of these ([A]). Note that in the mentioned cases maximal domains turn
out to be Stein.

Let us consider a Riemannian homogeneous space M = G/K, with G a Lie
group of isometries and K compact. It is reasonable to assume that dimC G

C =
dimR G , where GC is the universal complexification of G . Then KC acts on
GC , the left action on M induces a natural G -action on TM and under certain
extensibility assumptions on the geodesic flow of M one obtains a real-analytic
and G-equivariant map P : TM → GC/KC such that

the connected component of the non-singular locus of DP containing M is the
unique maximal domain on which the adapted complex structure exists.

This applies to the case of generalized Heisenberg groups and naturally reductive
Riemannian homogeneous spaces, among which one finds all isotropy irreducible
homogeneous spaces classified by J. Wolf [W].

As an application it is shown that for all generalized Heisenberg groups such
maximal domain is neither holomorphically separable, nor holomorphically convex.
We are not aware of previous non-Stein examples. Moreover allready in the case of
the 3-dimensional Heisenberg group one notices mixed signature Ricci curvature,
suggesting an influence of curvature properties of M on the complex geometry of
the maximal adapted complexification. Some recent new examples give a different
light to such point of view.
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