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Introduction by the Organisers

Mathematical models and methods have been established in various fields of ap-
plications in recent years. These include transport and traffic (see for instance the
Oberwolfach workshop on “Traffic and Transport Optimization” in 1999), produc-
tion planning (see Handbooks in Operations Research and Management Science,
the volume on “Logistics of Production and Inventory” Graves, Rinnooy Kan and
Zipkin (eds.), North-Holland, 1993), communication networks (see “Handbook of
Discrete and Combinatorial Mathematics” Rosen (ed.), or “Handbook in Opera-
tions Research and Management Science” the volume on “Network Models” Ball,
Magnanti, Monma and Nemhauser (eds.)) and financial engineering (“Options,
Futures, and Other Derivatives” by J. Hull). The success of mathematical meth-
ods does not only rely on progress in computer technology, but in a fundamental
way it relies on the improvement of the underlying mathematical models, meth-
ods and associated algorithmic developments. In recent years new challenges from
industry and business have arisen. Modern problems contain more and more struc-
tures whose origins lie in various disciplines of mathematics, including graphs and
networks, optimization, control and stochastic processes. A prominent field in
which such problems arise is supply chain management.

Supply chain management is typically defined as:

A set of approaches utilized to efficiently integrate suppliers, manu-
facturers, warehouses, and stores so that merchandise is produced
and distributed in the right quantities, to the right locations, and
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at the right time, in order to minimize systemwide costs while
satisfying service level requirements.

The idea of the workshop was to bring people from mathematics who have
successfully applied mathematical methods for the solution of practical problems
together with people who are in touch with the real-world problems that consti-
tute supply chain management. To motivate and initiate interactions between the
two groups, the mathematicians presented their applied methods and explained
the situations in which they are effective as well as the underlying theory. These
methods and concepts cover a wide spectrum, ranging from integer programming
and dynamic programming methods through approximation algorithms to stochas-
tic optimization methods. Similarly, supply chain management experts explained
their problems, pointed out where current methods will help and where further
developments are necessary. The scope of these problems is quite impressive. It
includes distribution problems that integrate warehousing and transportation, in-
ventory management models, the integration of procurement and manufacturing
activities with demand planning processes and pricing and auction models that
are used to improve business-to-consumer and business-to-business interactions.
In this way we hope that the workshop provided a forum for open discussions
about interesting new mathematical problems that are of central importance to
supply chain management.

The workshop itself was organized as follows. We had a series of plenary talks
from world leading experts in mathematics and in supply chain management about
the current state-of-the-art in these fields. We completed the program by having a
series of shorter talks where people reported on their chosen models and solution
methods for these models.

In particular we invited and encouraged young people to participate in the
workshop. They used the chance to gain as well as to present insights into new
developments in applied mathematics and supply chain management. The in-
terconnection of the two disciplines showed to provide a great source for new,
interesting research projects in the future.

The Oberwolfach workshop on “Mathematics in the Supply Chain” turned out
to be of great interest for both experts in mathematics and experts in supply
chain management. The meeting offered a platform for mathematicians to become
acquainted with an important future-oriented field of applications. Vice versa,
it offered a platform for supply chain management people to learn more about
current mathematical models and methods potentially useful in solving further
problems. We are very happy that we had the opportunity to organize such an
interdisciplinary workshop at Oberwolfach.
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Abstracts

Beyond Supply Chain Optimization to Enterprise Optimization

Jeremy Shapiro

The number and scope of mixed integer programming applications to supply
chain management are large and increasing. Models for strategic planning include
those for analyzing: Worldwide sourcing of chemical products; consolidation of the
supply chains of two companies after a merger; the design of the supply chain for a
new product; and, the classic problem of re-locating distribution centers. In most
instances, the objective function driving analysis is minimizing the total supply
chain cost of meeting fixed and given product demand. Many scenarios reflecting
variations in demand and other planning parameters may be optimized before
senior managers, using a combination of model results and judgement, commit to
important strategic decisions.

Our research begins with the premise that, from the perspective of fact-based
strategic planning, cost minimizing objectives that focus only on supply chain
activities are timid and shortsighted. To expand the scope, we first examine ex-
tensions of supply chain optimization models that incorporate marketing science
models for demand management. The combined models address decisions for
maximizing net revenues by allowing product mix to vary. We show how simple
extensions can be constructed if product sales volumes by market and time period
are primarily functions of product prices.

Relationships involving location sensitive revenue functions, which are applica-
ble to supply chains involving commodities and retail products, are also presented.
Specifically, we discuss how logit models may be applied to consumer surveys to
determine market share and sales as a function of the distance to the nearest sup-
ply point (DC or retail store). These relationships may be used to determine a
supply chain network design that maximizes net revenues.

We also examine a more complex supply chain/demand management model for
the case when demand is a function not only of price but advertising, promotions,
and sales force effort. This model is applicable to the study of consumer pack-
age goods. For such applications, we discuss a generalized programming (column
generation) method that integrates a marketing science model relating demand to
values for these factors with a supply chain mixed integer programming model for
minimizing the cost of meeting demand. In effect, the integrated model maximizes
net revenues by harmonizing decisions about money spent to create demand with
decisions about money spent to supply products to meet this demand.

Second, we examine extensions of strategic supply chain/demand management
models to models that include strategic corporate financial management, which
involves decisions regarding capital investment, long-term debt, and, in general,
the financial performance of the firm. Although not yet widely applied, mixed
integer programming models for examining these decisions based on funds flow
equations for each planning period are available and provide a powerful, holistic
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view of the firm’s corporate financial decisions. We demonstrate how these mod-
els can be seamlessly combined with supply chain/demand management models
that compute optimal earnings before interest and taxes in each time period, key
variables affecting the firm’s financial performance.

Corporate financial decision-making also requires multi-objective methods to
measure tradeoffs of after-tax profits, returns on fixed assets, the speed of payback
on capital investments, and possibly other criteria. We examine a Lagrange mul-
tiplier method for exploring the efficient frontier defined by these criteria. We also
discuss the use of statistical methods to map points on the frontier into shareholder
value.

The Dance of the 30 Ton Trucks: Demand Dispatching in a Dynamic
Environment

Karla Hoffmann

(joint work with Martin T. Durbin)

The planning, scheduling, dispatching, and delivery of perishable items in a
time-constrained environment are recognized as some of the most challenging prob-
lems in manufacturing. In the concrete industry, the challenge is dramatically in-
creased due to overbooking and the requirement to always complete multi-truck,
time-synchronized orders once they are started. Additionally, weather and traffic
conditions can adversely affect expected travel-time in an environment where more
than 90

Virginia Concrete (VC) is a very forward-thinking, innovative company that
was in the process of installing GPS equipment and sensors on board every truck
in their delivery fleet. This equipment allowed operators to track the position of
the truck and the status of the delivery. Additionally, each truck was equipped
with an on-board computer and mobile digital transmitter to support commu-
nication between the truck and the central dispatch centre. VC wanted to use
this information to increase the efficiency of their delivery process. The company
noticed that their trucks were consistently queueing up at both their plants and
customer sites and wondered whether a decision support system might alleviate
some of these problems.

Virginia Concrete delivers 400 - 600 loads per day with approximately 125
trucks, which results in 100,000 - 150,000 loads per year. They estimate that saving
a modest five minutes on every load would generate between 500, 000and750,000
in annual savings. Additionally, dispatching is a high-pressure job where efficiency
is highly dependent upon the skills of individual dispatchers. When a highly effec-
tive dispatcher is absent, the operational efficiency of the company is negatively
impacted. Similarly, plant scheduling, next-day scheduling, and the determination
of driver arrival times are costly and time-consuming processes. VC believed that
the development of a decision-support tool would not only generate savings, it
would also i) decrease stress for dispatchers, schedulers, and plant managers, ii)
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create consistency in these functions across the company, iii) reduce the time re-
quired to train new dispatchers, and iv) enable easier substitution and relocation
of dispatchers.

We now list some of the complexities of the scheduling problem:

• Concrete is a perishable product. There is a maximum amount of time
that concrete can remain in a truck before it hardens. Unexpected delays
in traffic or at customer sites can result in concrete that is unacceptable for
delivery and must be unloaded from the truck before it begins to harden
(as little as 2 hours).

• Most concrete orders require more than one load of concrete, and the
trucks are required to arrive sequentially, with the customer specifying
the inter-arrival rate.

• Concrete must be poured in a continuous fashion. To pour continuously,
the trucks should be spaced sufficiently to allow the customer time to
unload the concrete from one truck before the next arrives, but at a rate
brisk enough to allow the concrete to be poured fluidly.

• The customer rarely knows the exact size of the order. Typically, while
unloading the last of the ordered amount of concrete the customer deter-
mines if any additional concrete is needed. At this time, the customer will
determine the additional yardage required, if any, and inform the driver.

• Most trucks hold nine cubic yards of concrete and weigh approximately
thirty tons when loaded but newer trucks hold ten cubic yards.

• Some orders are restricted to a subset of the trucks, some orders to a
subset of the drivers, and some to a subset of the plants.

• Plants can load a specific number of trucks per hour. Therefore, it may
be more cost effective to load a truck from a plant other than the closest.

• All concrete is not the same. Customers vary the concrete strength and
viscosity requirements depending upon the desired usage. Furthermore,
depending upon the weather, different chemical additives may be used
to ensure that the concrete meets application requirements. Some orders
require that all material must come from the same plant to maintain con-
sistency.

• When a customer orders concrete to a site that has a pump, there is the
requirement to send a small initial load that contains a watery concrete,
called grout. The grout load must be delivered as the first load.

• Occasionally the customer will request a gap in the delivery to account for
a planned delay during the pouring of the concrete.

• Drivers have restrictions on their workday imposed by unions and govern-
ment regulations.

The environment in which concrete is delivered is very dynamic. Obviously,
the time it takes to travel from a plant to a customer site (or vice versa) can
vary significantly within a day and from day-to-day. Traffic tie-ups in the North-
ern Virginia area are likely, but unpredictable. In addition, customer behaviour
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can impact the efficiency of the delivery process. Some very common customer
problems are:

• Customers may not be ready when the driver arrives with the concrete.
This results in the delayed usage of the truck, the backup of additional
trucks at the site, wasted time, and the delayed availability of trucks for
later deliveries.

• When placing an order, customers request a specific unload time for a
truckload, but customers are consistently optimistic regarding their ability
to unload a truck.

• The customer seldom knows the exact amount of concrete they need. Un-
derestimating by as little as one yard could require an additional truck
load. In addition, the customer often delays or cancels an order right at
the last moment.

Weather can impact the delivery process in a variety of ways. The most obvi-
ous is that inclement weather impacts the expected travel-time and causes delays
in job-site arrival. Additionally, concrete cannot be delivered during storms, or
extreme cold.

Another factor making the environment more dynamic is the breakdown of ei-
ther trucks or plants. The breakdown of an empty truck can result in delivery
delays. The breakdown of a loaded truck has additional costs associated with ma-
terial replacement; late delivery and removal of hardened product from the drum
of the truck. The breakdown of a plant can create a significant disruption in the
delivery plan for the entire company. When this occurs, the company is mainly
interested in system recovery and places priority on continuing any customer de-
livery that is currently in progress.

In the ready-mix concrete industry, much of the concrete that is delivered re-
quires the time-synchronized, staggered deployment of several trucks to a customer
site. The standard dispatching method utilized in the industry is truck-based. In
truck-based dispatching, each customer is assigned a specific number of trucks and
a specific plant as the source of the product. These trucks then make trip after trip
to the same customer until all of the concrete requested by the customer has been
delivered. The static allocation of trucks and plants can be inefficient in a dynamic
environment. Consequently, a demand dispatching capability has been developed.
In demand dispatching, trucks are assigned to a specific delivery (as opposed to
an entire job) when they enter the yard of a plant. When the driver completes
the delivery, they are then directed to a plant, which may or may not be the same
plant from which they received their previous load of concrete. Dispatching trucks
in this intelligent, responsive fashion results in a complex, intertwined movement
of trucks throughout the day. This intricate behaviour is called the Dance of the
Thirty-ton Trucks.

In order to support demand dispatching, a decision-support tool was created
that consists of both planning and execution modules. The solution of the model
formulation assists customer service representatives and dispatchers in determin-
ing 1) the feasibility of accepting additional orders, 2) the arrival times for drivers
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reporting to work, 3) the scheduling of all orders, 4) the real-time assignment of
drivers to delivery loads, 5) the dispatching of these drivers to customers and back
to plants, and 6) the scheduling of plants. This dissertation describes the series
of optimization models required to implement a decision-support tool, the impli-
cations of imperfect data, and implementation issues associated with real-time
requirements. The foundation for the solution is a time-space network represen-
tation of the problem incorporating a multitude of alternatives for delivering an
order to a customer. Choosing a single delivery alternative for each customer
adds restrictive integrality constraints to the network model. In addition to the
time-space network formulation, a minimum-cost network flow model and a Tabu
Search heuristic are utilized as other modules in the planning of orders and the
dispatching of trucks.

Recommendations are made to dispatchers and customer-service representa-
tives in real-time, responding to delivery events and customer order modifications
as they occur. To make effective recommendations in such a dynamic environ-
ment, the real-time dispatcher and order planning tools are run on a cyclic basis.
Currently, every five minutes .

The majority of scheduling solutions currently in use today focus on planning
models. Solving a real-time scheduling problem with perishable products in a time-
dependent, dynamic environment has proven to be an extraordinarily challenging
task. On a good day, 90

Due to the success of this project, development of the decision-support tool de-
scribed in this document is being expanded to include all of the sister companies
in Northern Virginia. Virginia Concrete’s parent company, Florida Rock, is inter-
ested in deploying this application throughout the corporation, thereby expanding
the number of trucks dispatched from 125 to 1400, and the number of plants from
10 to 150. More impressively, Virginia Concrete is sufficiently convinced of the
importance of this research and its application that they have begun to promote
it as a “best practice” throughout the concrete industry.

Multi-Period Strategic Supply Chain Models

Stefan Nickel

(joint work with M. T. Melo and F. Saldanha da Gama)

We propose a mathematical modelling framework for supply chain network de-
sign which captures many aspects of practical problems that have not received
adequate attention in the literature. The aspects considered include: dynamic
planning horizon, generic supply chain structure, inventory and distribution op-
portunities for goods, facility configuration, budget constraints, and storage limi-
tations. Moreover, the gradual relocation of facilities over the planning horizon is
considered. A generic mathematical programming model is described in detail.
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1. Problem Formulation

Index sets
L : set of facilities

S : set of selectable facilities, S ⊂ L

Sc : set of selectable existing facilities, Sc ⊂ S

So : set of potential sites for establishing new facilities, So ⊂ S

P : set of product types

T : set of periods with | T |= n

The set L contains all types of facilities. These are categorized in so-called se-
lectable and non-selectable facilities. Selectable facilities form the set S and include
existing facilities (Sc) as well as potential sites for establishing new facilities (So).
At the beginning of the planning horizon, all the facilities in the set Sc are op-
erating. Afterwards, capacity can be shifted from these facilities to new facilities
located at the sites in So. Note that Sc ∩ So = ∅ and Sc ∪ So = S. The second
category of facilities, the so-called non-selectable group, forms the set L \ S and
includes all facilities that exist at the beginning of the planning project and which
will remain in operation. Examples of such facilities include plants and warehouses
that should continue supporting supply chain activities, that is, are not subject to
relocation decisions. Non-selectable facilities may also have demand requirements,
that is, they may correspond to customers.

Costs
PCt

`,p : variable cost of purchasing one unit of product p ∈ P from an

external supplier by facility ` ∈ L in period t ∈ T

TCt
`,`′,p : variable cost of shipping one unit of product p ∈ P from facility

` ∈ L to facility `′ ∈ L (` 6= `′) in period t ∈ T

ICt
`,p : variable inventory carrying cost per unit on hand of product

p ∈ P in facility ` ∈ L at the end of period t ∈ T

MCt
i,j : unit variable cost of moving capacity from the existing facility

i ∈ Sc to a new facility established at site j ∈ So at the beginning

of period t ∈ T \ {1}

OCt
` : fixed cost of operating facility ` ∈ L in period t ∈ T

SCt
i : fixed cost charged in period t ∈ T \ {1} for having shut down

the existing facility i ∈ Sc at the end of period t − 1

FCt
j : fixed setup cost charged in period t ∈ T \ {n} when a new facility

established at site j ∈ So starts its operation at the beginning of

period t + 1
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Parameters

K
t

` : maximum capacity of facility ` ∈ L in period t ∈ T

Kt
` : minimum required throughput at the selectable facility ` ∈ S in

period t ∈ T

µ`,p : unit capacity consumption factor of product p ∈ P at facility ` ∈ L

H`,p : stock of product p ∈ P at facility ` ∈ L at the beginning of the

planning horizon (observe that H`,p = 0 for every ` ∈ So)

Dt
`,p : external demand of product p ∈ P at facility ` ∈ L in period t ∈ T

αt : unit return factor on capital not invested in period t ∈ T \ {n}, that

is, αt = 1 + βt/100 with βt denoting the interest rate in period t

Bt : available budget in period t ∈ T

Since each existing selectable facility may have its capacity transferred to one
or more new facilities, it is assumed that its maximum capacity is non-increasing

during the planning horizon, that is, K
t

i ≥ K
t+1

i for every i ∈ Sc and t ∈ T \ {n}.

Without loss of generality, it is assumed that K
1

i denotes the actual size of facil-
ity i ∈ Sc at the beginning of the planning horizon. The above condition permits
to impose capacity transfers in specific periods or even complete shutdowns. Sim-

ilarly, potential new facilities have non-decreasing capacities, that is, K
t

j ≤ K
t+1

j

for every j ∈ So and t ∈ T \ {n}. Clearly, at the beginning of the planning project

we have K
1

j = 0 for every new site j ∈ So.

Decision variables

bt
`,p = amount of product p ∈ P purchased from an outside supplier by

facility ` ∈ L in period t ∈ T

xt
`,`′,p = amount of product p ∈ P shipped from facility ` ∈ L to facility

`′ ∈ L (` 6= `′) in period t ∈ T

yt
`,p = amount of product p ∈ P held in stock in facility ` ∈ L at the end

of period t ∈ T ∪ {0} (observe that y0
`,p = H`,p)

zt
i,j = amount of capacity shifted from the existing facility i ∈ Sc to a

newly established facility at site j ∈ So, at the beginning of

period t ∈ T

ξt = capital not invested in period t ∈ T

δt
` =



1 if the selectable facility ` ∈ S is operated during period t ∈ T
0 otherwise

In view of the assumptions made on the time points for paying fixed facility
costs, it follows that a new facility can never operate in the first period since
that would force the company to invest in its setup before the beginning of the
planning horizon. Similarly, an existing facility cannot be closed at the end of the
last period since the corresponding fixed shutdown costs would be charged in a
period beyond the planning horizon. Hence, z1

i,j = 0 for i ∈ Sc and j ∈ So, δ1
i = 1

for i ∈ Sc, and δ1
j = 0 for j ∈ So.
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Assuming that all parameters are non-negative our MIP formulation is as fol-
lows.

MIN
∑

t∈T

∑

`∈L

∑

p∈P

PCt
`,p bt

`,p +
∑

t∈T

∑

`∈L

∑

`′∈L\{`}

∑

p∈P

TCt
`,`′,p xt

`,`′,p

+
∑

t∈T

∑

`∈L

∑

p∈P

ICt
`,p yt

`,p +
∑

t∈T

∑

`∈S

OCt
` δt

` +
∑

t∈T

∑

`∈L\S

OCt
`(1)

s. t.

bt
`,p +

∑

`′∈L\{`}

xt
`′,`,p + yt−1

`,p =

Dt
`,p +

∑

`′∈L\{`}

xt
`,`′,p + yt

`,p, ` ∈ L, p ∈ P, t ∈ T(2)

K
1

i −
t

∑

τ=1

∑

j∈So

zτ
i,j ≤ K

t

i δt
i , i ∈ Sc, t ∈ T(3)

t
∑

τ=1

∑

i∈Sc

zτ
i,j ≤ K

t

j δt
j , j ∈ So, t ∈ T(4)

t
∑

τ=1

∑

j∈So

zτ
i,j + δt

i ε ≤ K
1

i , i ∈ Sc, t ∈ T(5)

∑

p∈P

µi,p



bt
i,p +

∑

`∈L\{i}

xt
`,i,p + yt−1

i,p





≤ K
1

i −
t

∑

τ=1

∑

j∈So

zτ
i,j , i ∈ Sc, t ∈ T(6)

∑

p∈P

µj,p



bt
j,p +

∑

`∈L\{j}

xt
`,j,p + yt−1

j,p





≤
t

∑

τ=1

∑

i∈Sc

zτ
i,j , j ∈ So, t ∈ T(7)

∑

p∈P

µ`,p



bt
`,p +

∑

`′∈L\{`}

xt
`′,`,p + yt−1

`,p



 ≤ K
t

`, ` ∈ L \ S, t ∈ T(8)

∑

p∈P

µ`,p



bt
`,p +
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Integrated Models for Service and Inventory Management

Hans Daduna

(joint work with Maike Schwarz, Cornelia Sauer, Ryszard Szekli, Rafal Kulik)

1. The aim of our project is to construct integrated models for to assess the
different policies of inventory management with respect to the quality of service
(QoS) of general service systems. The central problem is: How are the classical
performance measures (e.g. queue length, waiting time, etc.) influenced by the
management of an attached inventory? – and vice versa: How inventory manage-
ment has to react on queueing of demands, resp. customers which present that
demand, which is due to incorporated service facilities?
Research concerning integrated models and their explicit analytical solution started
only recently. The common approach: Define a Markovian system process and
then use standard optimization methods to find the optimal control strategy of
the inventory. Some contributions in this direction:
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Sigman and Simchi-Levi [SSL92] with approximation procedures to find perfor-
mance descriptors for models, in which the interaction of queueing for service and
inventory control is incorporated,

and in a sequence of papers Berman and his coauthors ([BK99], [BK01], [BS00],
[BS02]. defined for various systems a Markov process description and then used
classical optimization methods to find optimal control strategies for the inventory.
The integrated models found in the literature combine single server queueing sys-
tems with an attached inventory. All these models assume that the demand, which
arrives during the time the inventory is depleted, is back-ordered. The models vary
with respect to the lead time distribution, the service time distribution, waiting
room size, order size and reorder policy.

2. Our first models are in the same range: Single server systems with an inventory
under continuous-review. Both regimes are considered in case of empty inventory:
Back-ordering and lost sales.
We construct Markovian models which incorporate the aspects of queueing be-
haviour (performance analysis) and inventory behaviour (reorder policies) in a
unified framework. The first problems are to find conditions for the system to sta-
bilize and to compute explicitly the steady state behaviour of the system process.
The service systems under consideration are of standard structure such that in
isolation the stationary behaviour is known. It turns out that from the modelling
aspect there are fundamental differences with respect to back-ordering versus lost
sales.
(i) Backorder: We find partial solutions of the steady state equations. This suffices
to derive several invariance properties of the performance measures of the systems.
But for the complete steady state solution of the system we have to recur to nu-
merical procedures or approximations. It turns out that these procedures can be
strongly enhanced by presolving analytically parts of the system. For more details
see [SD04].
(ii) Lost sales: We find explicit solutions of the steady state equations and derive
the usual performance measures of the systems and the service levels, mean inven-
tories, service grades, etc. For more details see [SSD+03b].
(iii) In both cases we are then in a position to compute explicitly standard cost
functions of the systems which now incorporate costs for inventory, for waiting
(both due to slow service and to depleted inventory), lost sales, rejected cus-
tomers, etc.
Remarkable is that we find an asymptotic decoupling of the queueing behaviour
and the storage behaviour in the lost sales case. In terms of the classical perfor-
mance analysis notions this is a product form steady state distribution [Kel79].
The equilibrium state of the joint (queue length/inventory position)-vector fac-
torizes into a product of two factors, one concerning only the steady state queue
length and the other concerning the steady state inventory position.
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3. The single server systems with attached inventory which have an explicitly
accessible steady state (lost sales case) are then integrated as nodes into networks.
We consider standard networks of queues with steady state distribution of so-called
product form and integrate a server with inventory into such networks.
We assume lost sales regime when inventory is depleted, but do not assume that
the lost sales at the node with inventory are lost to the complete network. This
requires to redefine the routing behaviour of the customers which are rejected at
the special node due to lost sales and so enabling rejected customers to return later
on to that node again. We pursue three different approaches to handle routing in
such cases. We derive stationary distributions of joint queue lengths and inventory
processes in explicit product form. The stationary distributions are then used to
calculate performance measures of the respective systems. For more details see
[SSD03a].
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Advanced Planning Systems

Bernhard Fleischmann

An Advanced Planning System (APS) is a software system that covers all plan-
ning tasks along the supply chain (SC) of a manufacturing enterprise. It has an
hierarchical architecture composed of modules for the partial planning tasks on
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the long-term, mid-term and short-term levels in each section of the SC (see Fig-
ure 1, taken from Meyr, Wagner and Rohde, 2002). The main “advance” of the
recent APS concept consists in the fact, that it adds true planning functions to
the traditional ERP systems and that it makes mathematical planning methods
available in standard enterprise software.

A review of the tasks of the single modules and the models and methods used
in five major APS leads to the following summary. A recent survey is given in the
book by Stadtler and Kilger (2002).

The modules with the highest acceptance in practice are: The “Demand Plan-
ning” with statistical and consensus methods for sales forecasting; the “Master
Planning” that coordinates the aggregate quantities and times of all flows along
the SC using LP models; the “Strategic Network Planning” that optimizes the
decisions on locations of factories, suppliers and warehouses on the basis of MIP
models.

On the short term level, there are still considerable deficiencies of the models
and methods applied in the APS: The determination of procurement orders and
production lot-sizes is mostly left to the ERP system where it is based on poor
single-item rules. Simultaneous lot-sizing and scheduling is missing or done with
inadequate methods. In the transport planning, important mid-term decisions on
the frequency of the shipments and the transport paths are not supported. The
vehicle routing function, which is part of most APS, is of little use, if the transports
are outsourced to a logistics service provider. The “Demand Fulfilment”, i.e. the
fulfilment of the known customer orders, has not found sufficient attention in the
planning theory so far. It occurs in every APS, but uses only simple rules for
single orders and neglects the interdependence of all previously promised orders
in the shortage case.
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In addition, there are still structural weaknesses of the APS. The coordination
of the single planning modules can be implemented in an APS in many different
ways with a strong impact on the total inventory level in the SC. The right way
depends on the type of industry and is difficult to design, and there is little support
by the APS providers. Stochastic factors are not considered in an adequate way,
safety stock calculations, if any, are only provided for single items at single stock
points.
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Repeated Procurement Auctions: Theory and Computing

S. David Wu

(joint work with S. Özkan, M. Jin, and M. Erkoc)

We study repeated reverse auctions in the context of industrial procurement. A
risk-neutral buyer procures materials from competing suppliers through auctions
repeated over time. Auctions in this context poses two main challenges as follows:
(1) the suppliers’ competitive bidding strategies are significantly more complex to
analyze than traditional single-round auctions; nonetheless, these strategies affect
the equilibrium outcome of the auction, thus the buyer’s expected procurement
costs, and (2) the suppliers’ costs may demonstrate both economies-of-scale and
dis-economies-of-scale due to their short-term capacity limitations; this results in a
U-shaped cost function for the suppliers, and a winner determination problem that
is NP-hard. Motivated by the challenges, we discuss a two-part research agenda
that first analyzes the bidders’ competitive bidding behaviours and the expected
equilibrium outcomes [1], followed by an algorithmic and computational study on
the solution of the winner determination problem [2].

Competitive Bidding Analysis

We consider the optimal design of a reverse auction under symmetric incomplete
information. There is one buyer and multiple suppliers (bidders) participating in
the auction; each supplier is interested in maximizing his own surplus. The supplier
knows his own cost structure while assuming an aggregated cost function for the
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other bidders. The buyer is interested in minimizing his expected procurement
costs. The buyer knows the shape of the suppliers’ cost functions, but not the
parameters. Defined by the information that is available to them, the suppliers’
and the buyer’s decision problems dictate their competitive strategies. Extending
Myerson’s [3] mechanism design framework for single-round auctions, we set out
to examine how the bidders’ competitive strategies are formed under conditions
generalized in the following three dimensions:

1. Single-Round (SR) or Repeated (RP) auctions. Depending on the auc-
tion mechanism and the information released by the buyer, it might be
advantages for the suppliers (bidders) to consider their bidding strategies
in either a single-round or a repeated auction setting. This may signifi-
cant complicate the equilibrium analysis of the auction. If not properly
designed, the auction mechanisms are subject to undue instability, and the
buyer’s procurement cost may suffer.

2. Long-Term Contract (LT) or Short-Term Contract (ST). These are two
prevailing forms of procurement auctions. In a long-term contract auction,
the suppliers must commit to supply for an extended period of time, thus
they might act strategically to optimize long-term profit; linear cost is gen-
erally considered under this setting. In a short-term contract auction, each
supplier is only awarded a single-period contract at a time. Since capacity
considerations are prevalent in the short-term setting, it is appropriate to
consider a U-shaped cost structure for the suppliers.

3. Deterministic (DD) or Stochastic(SD) demand. The buyer’s demand may
be available to the bidders in a form that is deterministic or stochastic.
This, again, has a direct impact to the bidder’s competitive strategy, thus
the expected outcome of the auction.

We analyze different settings of procurement auction as defined by the simple
taxonomy defined by (SR or RP ) | (LT or ST ) | (DD or SD); but not all combi-
nations are meaningful in the procurement context, we thus focus on the following
six combinations:

• SR | LT | (DD or SD)
• SR | ST | (DD or SD)
• RP | ST | (DD or SD)

We first analyze the single-round auction settings (i.e., (SR | (LT or ST ) |
(DD or SD))) then extend the analysis to the repeated auction settings (i.e., (RP |
ST | (DD or SD))) using the recurrence property. We are primarily interested in
comparing the equilibrium results from the settings (SR | LT | SD) and (RP |
ST | SD), as they represent two distinct procurement philosophies that have
significant implications on the stability of supply and the procurement costs. To
this end, we analyze competitive equilibrium under the construct of an incentive
compatible and individually rational mechanism; we examine auction design using
criteria such as budget balancedness and ex-post efficiency.

Our analysis [1] shows that the key dimensions identified above have signifi-
cant impact to the bidder’s competitive bidding strategies, thus the stability of
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the auction mechanism and the buyer’s expected procurement costs. However,
the derivation of the closed-form equilibrium bidding strategies in the case of
(RP | ST | SD) involves the solution of differential equations that may be in-
tractable. Using asymptotic analysis, we show that useful insights can be derived
concerning the bidders’ behaviours. We are in the process of extending this study
to consider multi-dimensional auctions [4] where non-price attributes such as qual-
ity, delivery performance, or service level might be considered in supplier selection.

The Winner Determination Problem

In this part of the research we focus on the winner determination problem in a
multi-unit reverse auctions when the suppliers’ costs demonstrate a U-Shaped cost
characteristic. As discussed earlier, in a short-term contract auction, the suppliers
participating in the auctions are often subject to stringent capacity constraints;
thus, the supplier’s cost may demonstrate economies-of-scale when bidding on
a quantity below his capacity, while demonstrating dis-economies-of-scale when
bidding above his capacity. This motivate the study of winner determination
problems with U-Shaped cost functions [5]. We show that this particular winner
determination problem is NP-Hard even in the case of single-round auctions. We
derive two optimality properties from the U-Shaped cost structure that leads to the
design of an efficient binary tree algorithm with bounds (BTB). When tested under
a variety of demand and supplier combinations, BTB significantly outperforms
the general mix-integer programming solver, finding optimal solutions with, on
average, 2% of the computer time. The complexity of the algorithm is linear in
the number of units to be auctioned, which allows for the efficient handling of
high-volume auctions.

We extend our analysis to iterative multi-unit auctions that consist of multiple
rounds in which suppliers progressively update their bids [6]. Under the assump-
tion of myopic best response strategies, we show that a slightly modified version of
the winner determination model for single-round auctions can be used to address
the the iterative auction problems. We discuss auction mechanisms that would
improve the buyer’s procurement costs in iterative settings. These mechanisms
stipulate tie breaking policies that are employed when there are multiple optimal
solutions for the winner determination problem. We are in the process of extending
the iterative auction results to repeated auction settings.
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Designing Practical Market Mechanisms

Zuo-Jun Max Shen

(joint work with Leon Chu)

Many auctions involve the sale/purchase of a variety of distinct assets. For
example, in industrial procurement auctions, a buyer may want to purchase dif-
ferent components needed to produce the final product; similarly, sets of furniture
or airport time slots are usually offered in a bundle that will be sold together.
de Vries and Vohra [3] provide an excellent survey on one-sided combinatorial
auctions. Recently, more attention has shifted to two-sided, or double auctions,
which allow both bids and asks. Chu and Shen [1] provide a review of double auc-
tions and propose an Agent Competition Double Auction (AC-DA) mechanism,
which is strategy-proof, weakly budget-balanced, and individual-rational for the
complementarity-substitutability environment.

Usually the procurement auctions take place in a supply chain setting, since
each supplier may be contacted by several buyers and each buyer may also contact
several suppliers in order to get the best deal. The problem of determining the
production and exchange relationships across a supply chain in response to varying
needs, costs, and resource availability is called the Supply chain formation problem
[4, 5]. This problem is different from the supply chain management problem, where
the focus is on optimizing activities such as production, inventory management,
and delivery in a fixed supply chain structure.

Extensive negotiations are typically involved to establish an exchange relation-
ship in the supply chain, and the process can be very time consuming. It is
difficult to simultaneously negotiate with many supply chain players to find the
best business deal. To facilitate this process, online exchange marketplaces have
been established recently in more than a dozen major industries. For example, in
the automobile industry, a company called Covisint was formed by General Mo-
tors, Ford, and Daimler Chrysler in order to reduce the complexity and cost of
communicating with customers and suppliers.

We propose two double auction mechanisms that are strategy-proof, (ex post)
individual rational, and (ex post) weakly budget-balanced for a large class of supply
chain formation problems that do not satisfy the complementarity-substitutability
condition. These mechanisms can also be applied to more general settings with
pair-related costs, which no other existing mechanism is capable of doing. Both
mechanisms produce higher efficiency comparing with the existing incentive com-
patible and weakly budget-balanced mechanism. We also want to emphasize the
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important contribution of one of the mechanisms from the implementation point
of view. This mechanism is based on the solutions to a linear programming prob-
lem that possesses the following nice property: the linear relaxation has integer
extreme points, thus, we only need to solve a linear programming version of a
NP-hard problem.
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Collaborative Planning - New Challenges for Mathematicians

Hartmut Stadtler

(joint work with G. Dudek)

SCM is concerned with the coordination of material, information and financial
flows within and across often legally separated organizational units. Software
vendors have developed so called Advanced Planning Systems (APS) to overcome
deficiencies of traditional Enterprise Resource Planning systems and to better
support the planning functions needed in SCM. However, APS are based on the
principles of hierarchical planning which are well-suited for an intra-organizational
Supply Chain (SC) but fall short when non-hierarchical collaboration between
partners (companies) is needed. This is particularly true when a buyer and a
supplier have to align their medium term order and supply plans - which is the
topic of this talk.

Today inter-organizational collaboration between two SC partners - each uti-
lizing their own APS - is enabled by an additional module, called “Collaborative
Planning”. After introducing its basic reasoning we will propose an alternative,
namely “model supported negotiations” at the Master Planning level (Fig. 2).

Negotiations always start with pure upstream planning, i.e. the buyer generates
his cost minimal master plan and from that derives the corresponding purchase
plan. Then the purchase plan is evaluated by the supplier. However, one can
expect that a better master plan exists for the supplier due to the fact that the
purchase plan usually prevents the suppler to follow her cost minimal master plan
(assuming no restrictions regarding the timing of the purchase orders).
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Figure 2. Collaborative master planning where both the sup-
plier and buyer make use of their own APS

The main idea is to modify the master planning model of the supplier such that
a counterproposal to the purchase plan of the buyer is generated which reduces
the cost for the supplier drastically while modifying the purchase plan of the buyer
only slightly. This is achieved by utilizing a goal programming approach (see [1])
for further details).

Next, the buyer will evaluate the counterproposal of the supplier and ask for
a compensation which at least covers the cost increase over the buyer’s minimal
cost.

It is up to the supplier to decide when to stop negotiations and which plan to
accept taking into account the cost of the supplier’s master plan plus the compen-
sation to be paid to the buyer. This bilateral negotiation scheme results in near
optimal solutions for the SC as a whole and a win-win situation for both partners
compared with pure upstream planning.

Our solution approach is a heuristic one without any guarantee for its solution
quality. In an abstract form our approach is a horizontal decomposition of a
monolithic MIP model for multilevel, multi-item lot-sizing. This view might give
rise to alternative (mathematical) approaches to solve the issue (see [2]).
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Competition in the Supply Option Market

Victor Martinez de Albeniz

(joint work with David Simchi-Levi)

In Mart́ınez-de-Albéniz and Simchi-Levi [3], we present a framework where an
industrial buyer can analyze and optimize portfolios of supply contracts. In this
model, the buyer can optimally structure its sourcing channels so that it takes
advantage of the flexibility of different fixed-commitment or option contracts. As
a result, the manufacturer purchases from each competing supplier a share of
capacity that reflects the trade-off between price and flexibility offered by that
supplier. Thus, flexibility and price are the two attributes that manufacturers
care about. Based on this framework, we can analyze the changes in the way
suppliers compete in the marketplace.

In the present research, we assume that suppliers have a differentiated cost
structure. They incur an initial cost for reserving capacity and an additional cost
for using the capacity to satisfy the buyer’s orders. There are a number of fields
where this cost specification could be used. For instance, in the electricity indus-
try, different types of power plants exist, from nuclear to coal or gas power plants.
Nuclear power plants have a relatively small degree of flexibility in adjusting pro-
duction level to meet demand and hence all the incurred cost is associated with
reserving capacity. On the other hand, gas power plants can adjust the production
level rapidly and hence most of the cost is associated with delivering electricity.
In manufacturing, and especially in the plastics, chemicals or semi-conductor in-
dustries, buyers reserve capacity with suppliers in advance of production time.
Of course, different suppliers may have different costs for reserving capacity and
delivering supply, depending on the type of technology (machinery) and their geo-
graphical location (labor, transportation). Finally, our model may also be relevant
to the travel and tourism industry, where the service providers may have different
cost structures in terms of capacity reservation cost (cost of leasing airplanes or
hotels) and variable cost (operating cost).

These cost characteristics obviously impact the negotiation process. In our
model, each supplier offers an option contract to the buyer characterized by two
pricing parameters, a capacity reservation fee and an execution fee. Consequently,
suppliers can become more competitive by pushing in two directions: either lower-
ing the reservation price or the execution price. The trade-off is clear. A supplier
that charges mainly a reservation fee (and a small execution fee) competes on price
but not flexibility. On the other hand, a supplier that charges mainly an execution
fee (and a small reservation fee) typically emphasizes flexibility and not price.

We describe the market equilibrium outcomes of such system, and in particular
the behaviour of market prices for existing supply options. Interestingly, this model
is an extension of the Bertrand price competition model to two dimensions. An
important result in one dimension is that, in equilibrium, there is a unique supplier,
the least costly supplier, that captures all the orders at a market price that is
between its cost and the cost of the second most competitive supplier. We show
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that this is not the case when two attributes are important to the buyer. Indeed,
we demonstrate that in equilibrium, a variety of suppliers coexists, and these
suppliers offer different prices. We call this cluster competition, since suppliers
tend to cluster in small groups of two or three suppliers each, such that within
the same group all suppliers use similar technologies and offer the same type of
contract.

Most relevant to our model are papers that analyze the behaviour of suppliers
in offering options to a buyer, the prelude to introducing competition between sup-
pliers. The existing literature usually models a Stackelberg game where a single
buyer is the follower and a single supplier is the leader. Typically, competition
in such models is introduced by a spot market. This spot market is the buyer’s
sourcing alternative and a potential client for the supplier. The focus is on finding
conditions for which both players are willing to sign a contract and determining
option prices as the outcome of the negotiation process. The first publication in
this stream of literature is by Wu et al. [6]. Motivated by electricity markets, they
derive option prices as a function of the cost of the system and the elasticity of
demand. Later, Spinler et al. [5] and Golovachkina and Bradley [2] analyze models
similar to that of Wu et al. Interestingly, there are no papers that directly analyze
competition among suppliers since this implies utilizing the notion of portfolio con-
tracts, developed in Mart́ınez-de-Albéniz and Simchi-Levi [3]. Here, we move from
the traditional models of competition through dual sourcing, i.e., single supplier
offering an option contract versus spot market, to a model of pure competition
between suppliers offering different types of options.

We consider a single-period situation, where a single manufacturer looking for
supply of a component that is used in the manufacturing of the final product. This
component may be obtained from a pool of n suppliers, each of which offers an
option contract for the component. Such a contract is defined by two parameters,
v ≥ 0, the reservation price, and w ≥ 0, the execution price. These values are
determined by the supplier based on its cost structure as well as on whether the
supplier emphasizes price or flexibility. Specifically, supplier i, i = 1, . . . , n, takes
position in the market by offering options at a reservation price vi and an execution
price wi.

The suppliers’ cost structure is assumed to consist of two parts. Each supplier
incurs a fixed unit cost for reserving capacity, f i, i = 1, . . . , n, that can be seen as
the unit cost of building a factory of the appropriate size, developing the technology
required to produce the component, hiring manpower, or signing its own supply
contracts with its suppliers, e.g., the energy provider. In addition, the supplier
pays a unit cost, ci, i = 1, . . . , n, for each unit executed by the buyer. This cost is
typically the cost of raw materials and operational costs. These costs differ from
supplier to supplier and may be explained by the use of different technologies or
management practices.

Therefore, the profit of supplier i, i = 1, . . . , n, is (vi − f i)xi + (wi − ci)qi when
a buyer reserves xi units of capacity and executes qi units, qi ≤ xi. The objective
of the suppliers is to maximize their expected profit by selecting (wi, vi) optimally.
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On the demand side, we denote by p the selling price to the customer and
assume that it is an input, not a decision variable. The total customer demand
D follows a distribution with log-concave p.d.f. f , i.e., for all x, y ∈ R+, for all
λ ∈ [0, 1],

f
(

λx + (1 − λ)y
)

≥ f(x)λf(y)1−λ.

As mentioned in Caplin and Nalebuff [1], log-concave distributions include beta,
exponential, gamma, Laplace, normal, uniform and Weibull distributions.

We analyze a two-stage model. In the first stage all the suppliers submit bids
that are defined by (wi, vi), i = 1, . . . , n. At the same time, and based on these
bids, the manufacturer decides on the amount of capacity to reserve with each sup-
plier. In the second period, demand is realized and the manufacturer decides the
amount to execute from each contract. If total capacity is not enough, unsatisfied
demand is lost.

This is a game a la Stackelberg in which the suppliers are leaders and the manu-
facturer is the follower. Thus, there are multiple leaders that compete knowing the
reaction of the follower. Of course, the manufacturer’s objective is to maximize
expected profit based on the suppliers’ bids. Suppliers have complete visibility
to the manufacturer decision making process. The costs (ci, f i), i = 1, . . . , n, are
private information, i.e., each supplier knows only its own cost. In addition, we
assume that the suppliers submit sealed bids simultaneously. Thus, this is a one-
shot game. Every supplier submits a bid that maximizes its expected profit. We
are interested in determining the Nash equilibria of this game in pure strategies,

i.e., the n-uples
(

wi, vi
)

i=1,...,n
where no supplier has an incentive to unilaterally

change its bid.
Define fn+1 = vn+1 = 0 and cn+1 = wn+1 = p, and let y0 = 0 and yi =

x1 + . . . + xi for i = 1, . . . , n. We denote by V (y) the expected profit of the buyer
as a function of y. We have that

dV

dyi
(y) = (vi+1 − vi) + (wi+1 − wi)Pr[D ≥ yi].

This provides the structure of the manufacturer’s optimal portfolio which is deter-
mined by the c.d.f. of customer demand. The profit is a strictly concave separable
function of y1, . . . , yn.

Assuming that the suppliers’s costs are such that c1 ≤ . . . ≤ cn ≤ cn+1, and

1 >
f1 − f2

c2 − c1
> . . . >

fn − fn+1

cn+1 − cn
> 0,

we characterize the bidding equilibria. First, there exists a Nash equilibrium in
pure strategies of the game. In addition, we show that in every equilibrium, we
must have clustering of the bids, i.e., supplier i, i = 1, . . . , n, places its bid (wi, vi):

• in the segment [(ci−1, f i−1); (ci, f i)], and then (wi, vi) = (wi−1, vi−1);
• or in the segment [(ci, f i); (ci+1, f i+1)], and then (wi, vi) = (wi+1, vi+1).

Finally, we provide a bound on the inefficiencies created by suppliers’ competi-
tion. Define the total welfare as the sum of the profits of suppliers and buyer. The
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social welfare is maximized for U = U∗, when we consider a centralized supply
chain. Of course, when the suppliers compete, the allocation of capacities is not
necessarily efficient. We denote by ∆U the loss in welfare due to the suppliers’
competition. We show that the distortion on the optimal decisions created by
competition among suppliers is bounded: in every Nash equilibrium, we have that

∆U

U∗
≤

1

4
.

This bound is tight.
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Impact of Partial Manufacturing Flexibility on Production Variability

Ana Muriel

As manufacturers in various industries evolve toward predominantly make-to-order
production to better serve their customers’ needs, increasing product mix flexibil-
ity emerges as a necessary strategy to provide adequate market responsiveness.
Flexible capacity has been shown to be very effective to hedge against forecast
errors at the investment stage. In a make-to-order environment, this flexibility
can also be used to hedge against variability in customer orders in the short term.
For that purpose, the production levels must be adjusted each period to match
current demands, to give priority to the higher margin product and/or to satisfy
the closest customer. However, this will result in swings in production, inducing
larger order variability at upstream suppliers and significantly higher component
inventory levels at the manufacturer. Through a stylized two-plant two-product
capacitated manufacturing setting, in Bish, Muriel and Biller (2001) we show that
the performance of the system depends heavily on the allocation mechanism used
to assign products to the available capacity. While managers would be inclined
to give priority to higher margin products or to satisfy customers from their clos-
est production site, these practises lead to greater swings in production, result in
higher operational costs, and may reduce profits. In Muriel, Somasundaram and
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Zhang (2003) we extend the analysis to general multi-plant multi-product make-to-
order manufacturing systems. We develop analytical models and an optimization-
based simulation tool to study the impact of flexibility on shortages, production
variability, component inventories and order variability induced at upstream sup-
pliers. Our results show that partial flexibility leads to a considerable increase in
production variability. As more flexibility is added to the system, however, the
production plan will become more stable resulting in a decrease in variability and
inventory in the system.

In particular, we show the following results for general multi-plant multi-product
production systems. Consider a production system with n plants, each with capac-
ity of C units, and n products with demands denoted by di, i = 1, 2, n. Consider
chain flexibility configurations (see Jordan and Graves (1995)) in which each plant
can build h products. We add flexibility by increasing h.

Theorem 1. If management commits to having sufficient component inventory
never to cause shortfall for any potential demand realization, then:

(1) System inventory is increasing in the level of flexibility.
(2) The system inventory for a chain flexibility configuration in which each

plant can build h products equals nhC.

Theorem 2. If management commits to having sufficient component inventory
never to cause shortfall as long as demand is in a bounded set B characterized by:

l
∑

k=0

d(i+k)modn ≤ C min{n, l + 2}for l = 1, 2, . . . , n − 1 and i = 1, 2, . . . , n,

dn ≤ C,

then:

(1) For the dedicated system, system inventory is nC but shortfall will be pos-
itive for some d ∈ B.

(2) For the h = 2 chain, system inventory is 2nC and capacity does not cause
shortfall for all d ∈ B.

(3) For the h = 3 chain, inventory is 2nC − C and capacity does not cause
shortfall for all d ∈ B.

(4) The minimum system inventory needed is 2nC −C for any flexibility con-
figuration that results in no shortfall for all d ∈ B.

Another interesting research question is how the installed flexibility should be
managed, that is, how to allocate the demand to the available capacity and flexi-
bility to maximize sales and minimize variability. We show that allocation policies
that evenly distribute plant capacity to product demands lead to consistently bet-
ter performance, since they avoid the misplacement of inventories by replicating
the performance of a single-plant system.

Theorem 3. Consider a fully flexible production system with n plants, each with
capacity of C units, and m products with current demands of di, i = 1, 2, m. Let
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Ii be the on-hand system inventory of component i, for i = 1, 2, m, and Iij be the
portion of that inventory located in plant j, for j = 1, 2, n.

(1) The distributed policy will have Ii/n components of product i in each plant
and will be able to produce a total of

S1 ≡ min{nC,

m
∑

i=1

min{di, Ii}}.

(2) Any other policy will have Iij ∈ [0, Ii] components of product i at plant j
and thus the amount of demand satisfied is at most

S2 ≡ min{nC,

m
∑

i=1

min{di,

n
∑

j=1

min{Iij , C}}} ≤ S1.
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Polynomial Time Algorithms for Multi-Level Lot-Sizing Problems
with Production Capacities

H. Edwin Romeijn

Co-authors: Stan van Hoesel, Dolores Romero Morales, Albert P.M. Wagel-
mans.

We consider a problem in which production, inventory, and transportation deci-
sions in a basic supply chain are integrated. Traditional models usually consider
only one or two of these aspects in isolation from the other(s). Substantial evi-
dence exists (see, for instance, Arntzen et al. [1], Chandra and Fisher [2], Geoffrion
and Powers [5], and Thomas and Griffin [8], as well as the references therein) that
shows that integrating these decisions can lead to substantial increases in efficiency
and effectiveness. Integrating different decisions in the supply chain are partic-
ularly important when resources are limited, and when costs are nonlinear, e.g.,
exhibit economies of scale.

We will consider a serial supply chain for the production and distribution of
a product. Such a supply chain will for instance occur when value is added to
a product in a sequence of production facilities, and intermediate goods need to
be transported between these facilities. Kaminsky and Simchi-Levi [6] describe
an example of such a chain as it arises in the pharmaceutical industry. Another
example is the third-party logistics industry. In this case, a downstream distribu-
tion centre that satisfies demands in a certain geographical area may employ the
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services of a third-party warehouse before products are transported to the actual
distribution centre for distribution to its retailers. A serial supply chain model can
then be used to represent part of a supply chain that is relevant to the distribu-
tion centre (see Lee et al. [7]). A final example is a situation in which production
takes place at a manufacturer. The items that are produced are then stored at
the manufacturer level or transported to the first warehouse level. At each of the
warehouse levels, again products are either stored or transported to the warehouse
at the next level. From the final warehouse level products are then, after possibly
having been stored for some periods, transported to a retailer (possibly allowing
for early deliveries, i.e., inventories at the retailer level). Such a structure may
arise if a retailer actually represents an entire market, and the supply chain from
manufacturer to this market is very long. This could make it advantageous to,
in several stages, employ economies of scale by transporting larger quantities over
long distances to intermediate storage facilities before being distributed in the
actual market.

All situations described above can be represented by a generic model consisting
of a manufacturer, several intermediate production or distribution levels, and a
level where demand for the end product takes place which we will often refer to as
the retailer level (although this does not necessarily represent the level at which
actual demand consumption takes place). In fact, in such a model the intermediate
production and transportation stages are indistinguishable from one another, so
that we will usually simply refer to all intermediate stages as transportation stages
between warehouses.

The serial supply chain model sketched above can be viewed as a generaliza-
tion of a fundamental problem, which in fact is one of the most widely studied
problems in production and inventory planning, the economic lot-sizing problem
(ELSP). The basic variant of this problem considers a production facility that pro-
duces and stores a single product to satisfy known demands over a finite planning
horizon. The problem is then to determine production quantities for each period
such that all demands are satisfied on time at minimal total production and inven-
tory holding costs. The cost functions are non-decreasing in the amount produced
or stored, and are usually assumed to be linear, fixed-charge, or general concave
functions. The production facility may or may not face a capacity constraint on
the amount produced in each period.

To model the serial supply chain, the classical ELSP can be extended to include
transportation decisions, as well as the possibility of holding inventory at different
levels in the chain. In addition to production and inventory holding costs, we then
clearly also need to incorporate transportation costs, which adds the problem of
the timing of transportation to the problem of timing of production. The objective
will be to minimize the system-wide cost while satisfying all demand. Even if the
manufacturer and retailer are in fact distinct participants in the supply chain,
each of which faces a part of the supply chain costs, this problem will be relevant.
In this case, the participants clearly still need to decide how to distribute the
minimal total costs, which is a coordination problem that is outside the scope of



992 Oberwolfach Report 19/2004

this talk. But alternatively, we may interpret the holding costs at the retailer level
as a penalty or a discount on the purchasing price of an item, which is given by
the manufacturer to the retailer if items are delivered early. In this case the costs
minimized by our optimization model are all incurred by the manufacturer. As in
standard lot-sizing problems, all cost functions are assumed to be non-decreasing
in the amount produced, stored, or shipped. In addition, we will assume that all
cost functions are concave.

In general, all levels in a serial supply chain, regardless of whether they cor-
respond to production or transportation decisions, may face capacities. We will
concentrate on serial supply chains with capacities at the first (production) level
only, as a first step towards the study of more general capacitated supply chains.
Adding capacities at additional levels appears to significantly change the struc-
ture of the problem and thereby the problem analysis. Therefore, such problems
remain a topic of ongoing research. Note that, under certain cost structures, it
may be possible to eliminate capacitated levels from the supply chain. One such
example is provided by Kaminsky and Simchi-Levi [6], who transform a 3-level
serial supply chain model with, respectively, a capacitated production level, an
uncapacitated transportation level, and a capacitated production level to a 2-level
serial supply chain model with capacities at the first level only.

We will call the problem of determining optimal production, transportation,
and inventory lot sizes in a serial supply chain under production capacities at the
first level the multi-level capacitated lot-sizing problem (MCLSP). In the presence
of non stationary production capacities this problem is NP-hard, as it is a direct
generalization of the ELSP with general production capacities which itself is NP-
hard (see Florian et al. [4]). The ELSP with stationary production capacities,
however, is solvable in polynomial time (see Florian and Klein [3]). Since our goal
is to identify polynomially solvable cases of the multi-level lot-sizing problem, we
will mainly focus on cases where the production capacities are stationary.

We study problems with general concave production, inventory holding, and
transportation costs, as well as problems with linear inventory holding costs and
two different transportation cost structures. In particular, we will consider spe-
cial cases with (i) linear transportation costs; and (ii) fixed-charge transportation
costs without speculative motives, which means that with respect to variable costs
holding inventory is less costly at higher levels than at lower levels in the supply
chain. Our solution methods are based on a dynamic programming framework
that uses a decomposition principle that generalizes the classical zero-inventory
ordering (ZIO) property of solutions to uncapacitated lot-sizing problems as de-
scribed in Zangwill [10] for the multi-level case, and, for instance, in Wagner and
Whitin [9] for the single-level case. Our algorithms all run in polynomial time
in the planning horizon of the problem. Moreover, while our algorithm for the
case of general concave cost functions is exponential in the number of levels in the
supply chain (O(T 2L+3), it is remarkably insensitive to the number of levels for
the two specific cost structures mentioned above (O(T 5 +LT 2) and O(T 7 +LT 4),
respectively, where the last running time can be reduced to O(T 6) when L = 2).
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Open issues for future research in this area can be divided into three general
directions. Firstly, the complexities, although polynomial in the planning horizon,
are of relatively high order: O(T 5) to O(T 7) for the two-level cases. It would be
interesting if the order of the running time could be reduced. In addition, although
the number of levels will generally be relatively small, it would nevertheless be
interesting to determine if the multi-level case with general concave cost functions
can be solved in polynomial time in both the time horizon and the number of
levels. A second direction is the study of serial supply chains in the presence of
capacities at other or additional levels in the chain. Finally, it would be interesting
to consider more complex supply chain structures, including, for example, product
assembly structures at the producer level, or multiple retailers.
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[7] C.Y. Lee, S. Çetinkaya, and Jaruphongsa. A dynamic model for inventory lot sizing and

outbound shipment scheduling at a third-party warehouse. Operations Research, 51(5):735–
747, 2003.

[8] D.J. Thomas and P.M. Griffin. Coordinated supply chain management. European Journal

of Operational Research, 94(1):1–15, 1996.
[9] H.M. Wagner and T.M. Whitin. Dynamic version of the economic lot size model. Manage-

ment Science, 5:89–96, 1958.
[10] W.I. Zangwill. A backlogging model and a multi-echelon model of a dynamic economic lot

size production system – a network approach. Management Science, 15(9):506–527, 1969.

Production Planning Models and MIP

Laurence A. Wolsey

This survey is based on work carried out by many people, but Yves Pochet and
Mathieu van Vyve in particular have made major contributions.

To introduce the decomposition approach used, we first present a formulation
of the most basic “hard” problem, the multi-item, multi-period lot-sizing problem
with a joint capacity constraint in each period. This can be viewed as the inter-
section of single item lot-sizing sets, and single period single node flow sets. The
approach is then to characterize exactly or approximately the convex hull of these
“simpler” sets. As we wish to solve problems directly by mixed integer program-
ming (MIP) using a default branch-and-cut approach, we either need to represent
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the convex hulls by valid inequalities and a separation algorithm, or through an
extended formulation involving additional variables. The latter, when it can be
found, typically has the advantage of being “polynomial” in size, but it can still be
very large, i.e. O(n2) or O(n3) where n is the number of periods. The uncapaci-
tated lot-sizing problem is used to provide examples of a convex hull reformulation
both with valid inequalities and with an extended formulation. Details of many
of the results can be found in [3, 4].

To effectively make use of the results on formulations available in the literature,
we propose a classification of lot-sizing problems [5].

Single item problems are classified according to three parameters: PROB−CAP−
V AR where
PROB denotes the problem type: standard, with Wagner-Whitin (non-speculative)
costs, or full capacity (discrete) production
CAP indicates the item capacity constraints: uncapacitated, constant capacity,
or arbitrary, and
V AR indicates variants: backlogging, start-up cost or times, safety stocks, sales,
etc.
Here many tight formulations both with inequalities and extended formulations
are known in the case of constant or unlimited capacity. Tables are presented
based on the single-item classification showing precisely what results are available.

Single period joint resource constraints are classified in a similar fashion, so as
to allow access to improved formulations. A distinction is made between the mode
constraints (MC) which determine the constraints on the discrete set-up, start-up
and changeover variables, such as a restriction to one start-up per period, and the
joint production capacity constraints (RC) in which start-up or cleaning times,
changeover times, etc., may reduce the available joint production capacity in the
period.

In the past, we have proposed several prototype systems, general purpose BC-
OPT [2], and specific to production planning BC-PROD [1]and BC-LS, providing
certain automatic reformulation possibilities. What we now propose for produc-
tion planning MIPs is a library of reformulations written in the modelling language
used to represent the underlying production planning problem as a mixed integer
program. Thus using the XPRESS modelling language MOSEL, the user is just
required to model his problem instance, to classify it, and then we provide a library
of black-box subroutines allowing him to automatically improve his formulation
either with cutting planes or with an extended formulation. An effective relax-
and-fix (or time decomposition) primal heuristic can also be called in a similar
fashion.

Finally computational results using this black-box approach are presented for
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three applied problems demonstrating both the reformulation and heuristic rou-
tines. Two of the problems are multi-level, a typical two-level mixing and packing
model, and a six level assembly model, whereas the third problem concerns the
packing line for a well-known supermarket product.

Several important open questions are concerned with Modelling:
Finding tighter formulations for Resource Capacity RC constraints?
Using approximation parameters based on product characteristics?
Extensions to include transportation to client demand areas - path inequalities,
mixing inequalities - how to make good choices?
Using Discrete Lot-sizing or Big Bucket RC Models?
and others with solving MIPs:
How to use good heuristic solutions to improve branch-and-cut lower bounds?
How to combine relax-and-fix heuristics with RINS?
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New Modelling Approaches for Process Industries

Christopher Suerie

Process industries differ from discrete manufacturing industries in many aspects.
These aspects, e. g. campaign production, production in batches or long setup
times have to be considered when planning for production. This is especially true
if time-indexed modelling approaches are used which are commonplace, because
time-indexing often introduces a representation defect into the planning system.

Representation defect of a time-indexed model means that the optimal solution
with respect to a continuous time scale is not feasible in the time-indexed setting.
Representation defects occur within standard lot-sizing models (e. g. CLSP; [1])
with respect to (a) setup states at period boundaries, (b) lot sizes which span
over two (or more) periods and (c) setup times which do not lie completely in one
period.
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We consider the representation defects due to (a) first. In a standard big-
bucket lot-sizing model (e. g. CLSP) an implicit assumption is made, that whenever
there is production in a certain period a corresponding setup operation has to be
performed. In reality, this is not true, because in many cases production of a
certain product can continue at the beginning of period t + 1 if it was going on at
the end of period t without the necessity of a new setup. This is obvious in a 24/7
environment where the start of the week is a rather arbitrary point in time.

Consequently, models have been tackled in literature which explicitly consider
the setup state at each period boundary (e. g. CLSPL; [5]). On the other hand,
small-bucket models (e. g. DLSP, CSLP, PLSP; [2]) do not require any new mod-
elling feature here, because there the preservation of setups from one period to the
next is a fundamental modelling paradigm.

With respect to lot sizes both small-bucket and big-bucket models require al-
terations. With the data given in Table 1, Figure 3 shows optimal solutions, if
different restrictions on lot sizes are imposed. In this example, the PLSP (e. g. [2])
is chosen as a basic model. In a time-indexed setting, the difficulty arises that, for
example, it is not known that the first lot size of product j = 2 is 45, but rather,
that production of j = 2 is 20 in t = 1 and 25 in t = 2 (Figure 1, PLSP).

Table 1. Data for example ([3])

Prod. Demand djt Prod. Setup Avail. Hold. Setup
coeff. time cap. cost cost

j t = 1 t = 2 t = 3 t = 4 aj stj ct hj scj

j = 1 0 25 30 35 1 10
80

1 10
j = 2 20 25 30 35 1 10 1 10

Figure 1 shows how the optimal solution changes, if a minimal lot size require-
ment of 50 units is introduced (MIN), a maximal lot size requirement of 60 units
is introduced (MAX), production is only allowed in multiples (batches) of 20 units
(BATCH) or production is only allowed in multiples of 20 units and demand can
only be fulfilled from completed batches (BATCH flow). Note, that in this illus-
trative example the proposed restrictions are not applied to the last lot within the
planning horizon, as it is assumed that this lot fulfils the requirement later.

In [3] a MIP model formulation based on time discretization for these kind of
model is proposed, which is shown to clearly outperform similar approaches from
literature.

The last representation defect concerning setup times which do not lie com-
pletely in one period is tackled in [4]. There, a MIP model formulation is presented
which allows for setup times which span over (multiple) period boundaries.

Combining all these features (modelling setup states at period boundaries, con-
sidering period overlapping lot sizes and period overlapping setup times), the re-
sulting model formulation is capable of representing any plan that is possible on a
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Figure 3. Optimal solutions for example ([3])

continuous time scale within a time-discretized setting. Thereby the representation
defect of time-indexed model formulations is overcome.
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Characterizing Flows through Components in Assembly Networks

S. Thomas McCormick

(joint work with Maurice Queyranne)

Dedicated to Alan J. Hoffman’s 80th birthday

Suppose that our company builds personal computers (PCs) from various com-
ponents. Often manufacturers have a choice of several mostly equivalent compo-
nents such as hard disk drives, motherboards, CD burners, etc. Most components
are compatible with each other, but there are a few incompatible components
which cannot feasibly be assembled into a final product.

Ball et al. [2] propose a graph model for this where each component is a node,
and there is an edge between incompatible components. We denote the set of such
incompatibility edges by I . The components are grouped into layers L1, L2, . . . Lk

such that a final product must contain exactly one component from each layer.
Denote the set of all edges from Li to Li+1, i = 1, . . . , k−1, by A′. Then A ≡ A′−I
represents the set of components on successive layers which are compatible.

Now consider L1 to be a source set S, and Lk to be a sink set T . If each edge of
I connects components of successive layers, then the set of feasible final products
corresponds exactly to the set of paths P from a node in S to a node in T using
only edges of A. Denote the number of components by n =

∑

j |Lj |.

Then a vector y ∈ RP , where for P ∈ P we have yP ≥ 0 giving the production
for final product P , completely specifies a production plan. The usage of compo-
nent i in this production plan is xi =

∑

P∈P:i∈P yP . If we define M ∈ Rn×P to
be the 0–1 node-path incidence matrix of the graph, then we have that x = My.
When |I | is small, |P| is almost

∏

j |Lj |, which can be exponential in n. For mod-
elling purposes, it would be much more convenient to work with the variables x,
whose size is only n.

But this raises the question: Given x ∈ Rn, when is there a y ∈ RP such that
x = My? For the given structure, Ball et al. [2] give a complete set of inequalities
answering this question.

However, not every PC contains a CD burner. Thus Queyranne [5] proposed
generalizing this model to allow edges in A that skip layers. In this case it is
simpler to forget the layer structure entirely, but to now insist that the connections
between component nodes are directed, and that the directed graph is acyclic, i.e.,
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contains no directed cycles. We continue to have a set S of source nodes, and a
disjoint set T of sink nodes, and we interpret the set A of arcs such that every
path P from a source node to a sink node (we again denote the set of such paths
by P) represents a feasible final product.

Keeping M as the node-path incidence matrix, we can again ask the question:
Given x ∈ Rn, when does there exist a y ∈ RP such that x = My? This question
was partially answered by [5]. A preliminary version of the current paper giving a
full answer is in [4].

It is natural to want to extend this model in two directions: (1) What if we
allow the graph to contain directed cycles? (2) What if we have upper bounds uij

on the flow through arc i → j, i.e., require that
∑

P∈P:i→j∈P yP ≤ uij , and/or

require that xi ≤ ui? This paper extends [4] in both of these directions.
To deal with graphs with directed cycles, for each j ∈ T and i ∈ S add a return

arc j → i to A, thereby completing a cycle C for each path from i to j. Since the
original graph was acyclic, these are the only cycles created by the return arcs.
Note that this device allows some modelling flexibility: we need not put in return
arc j → i if final products containing both j and i are not feasible. We now denote
the set of directed cycles by C and index y by C ∈ C, and consider M to be the
node-cycle incidence matrix.

Define Qu = {x ∈ Rn | 0 ≤ x ≤ u, ∃y ∈ RC with
∑

C∈C:i→j∈C yC ≤ uij , and

x = My}. We use Q∞ when all uij and ui are ∞. Our task is to characterize Qu.
To do this we consider and solve each of the following problems:

1. Separation Problem: Given some x̄ ∈ Rn, either prove that x̄ ∈ Qu, or
find some cut αT x ≥ β that is satisfied by every x ∈ Qu, but violated by x̄, i.e.,
such that αT x̄ < β.

We solve this by splitting each node i into i and i′ with a new arc i → i′ with
bounds lii′ = uii′ = x̄i. Then it is easy to see that x̄ ∈ Qu iff there is a feasible
flow in this extended network. This can be decided using one max flow (see, e.g.,
[1]). When there is no feasible flow then as in Hoffman’s Circulation Theorem [3]
the associated min cut gives us disjoint subsets (possibly empty) of the (original)
nodes J and K, and a subset of the (original) arcs U , defining the Hoffman cut
x(J) ≤ x(K) + u(U). This proves a conjecture of [5] that every facet of Q∞ has
0, ±1 components.

2. Validity Problem: Given a proposed cut αT x ≥ β, either prove that it is
valid for all x ∈ Qu, or find some x̄ ∈ Qu such that αT x̄ < β.

We solve this by using the same split-node network. This time we put cost αi

on new arc i → i′ and cost 0 on all other arcs, and we do a min-cost circulation on
the network that effectively minimizes αT x. If the optimal value z∗ ≥ β, then the
cut is valid, else the optimal flow yields an x̄ violating the cut. Note that we can
really restrict our attention to just the 0, ±1 Hoffman cuts, in which case there
are min-cost flow algorithms with faster run times [1].

3. Dimension of Q∞: Compute the dimension of Q∞. Then it is easy to see
that, when u > 0, dim(Qu) = dim(Q∞).
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We again use the node-split graph, but this time we delete all the i → i′ arcs.
It can be shown that any implicit equality of Qu induces a node subset W of this
graph with no arcs crossing its boundary in either direction. Hence each such W
must be a union of connected components of the graph. Conversely, each connected
component yields an implicit equality satisfied by every x ∈ Qu, and if there are
q connected components, then q − 1 of these equalities are linearly independent.
This shows that dim(Q∞) = dim(Qu) = n − (q − 1).

4. Dimension of induced face: Given some valid cut αT x ≥ β, compute the
dimension of the face F of Qu it induces. Solving this allows us to characterize
which valid cuts are facets of Qu.

Here we combine the techniques of the previous two items, and we restrict
w.l.o.g. to Hoffman cuts x(J) ≤ x(K) + u(U). We again use the node-split graph,
and put cost −1 on arcs i → i′ with i ∈ J and costs +1 on arcs i → i′ with i ∈ K,
costs 0 elsewhere, and do a (cheap) min-cost flow. We can determine which arcs
have their flows fixed at a bound in every optimal solution. Delete all such arcs
except those needed to keep the same number of connected components. Then
delete all i → i′ arcs. Finally, compute the number of connected components
qF of the remaining graph. Then the dimension of F is n − (qF − 1). Thus
x(J) ≤ x(K) + u(U) is a facet iff qF = q + 1.

5. Separation to a facet: Given some x̄ /∈ Qu, find a cut αT x ≥ β separating
x from Qu that induces a facet of Qu.

Hoffman cut x(J) ≤ x(K) + u(U) reveals that it is not a facet by having too
many connected components in the previous algorithm. In this case we can use
these connected components to decompose the cut into a sum of Hoffman cuts on
smaller node subsets (at least one of which must also be violated), and recurse until
we obtain a facet. We conjecture that in fact each cut from the decomposition
must already be a facet.

Finally we extend our results also to cases with lower bounds l. In this case
a Hoffman cut can have a subset L of original arcs and becomes x(J) + l(L) ≤
x(K) + u(U).
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Optimization in SAP Supply Chain Management

Heinrich Braun

In the first part I introduce the planning models of Supply Network Planning
and Detailed Scheduling. For mastering the algorithmic complexity I present the
various implemented strategies for aggregation and decomposition integrated in
a modular optimization architecture like a tool box. The main focus of our de-
velopment was to solve larger problems with higher quality and more functional-
ity whereas now the focus changed in favour to master the solution complexity:
Given the planners detailed explanation about reasons of delays, non-deliveries,
additional shifts/overtime etc.

In the second part I discuss the various difficulties in practise in order to
achieve the acceptance by the customers, including the different involved rules:
OR-Specialists, IT-Department, Consulting and last but not least the planner as
the end user.

Integrated Optimization of School Starting Times
and Public Bus Services

Armin Fügenschuh

(joint work with Alexander Martin and Peter Stöveken)

The optimization of public bus services in rural areas is mostly an optimization
of the traffic caused by pupils on their ways to school and back home, because they
are the largest group of customers. Beside the morning and afternoon peaks, there
is a much lower demand for public buses over the rest of the day. The counties
in Germany we focus on are rural, for their population density is rather low. The
biggest city has no more than, say, 30,000 inhabitants, around 150,000 people
live in an area of about 1,000 square kilometres. More than half of all pupils are
coming to school by public transit, that is, about 10,000 pupils take the bus to
100 different schools. The average way to school has a length of around 10 km, a
few pupils travel even more than 30 km twice a day.

It was noted by the consulting company BPI-Consult, a subsidiary of the
Finnish Jaakko Pöyry, that a significant lower number of buses is needed, if the
bus scheduling problem is solved together with the starting time problem, i.e.,
the simultaneous settlement of school and trip starting times [11]. Since then,
BPI successfully consulted several counties, where they were able to find solu-
tions which reduce the number of buses by 15 – 20%. Moreover, BPI does not
only present a solution, instead they accompany the whole embedding process, in-
cluding negotiations with all participating groups (bus companies, pupils, parents,
teachers, schools, and the county government). Within this process it is sometimes
necessary to re-optimize the problem, when new, previously unknown constraints
emerge. However, their solutions are currently generated manually. Generating
solutions manually is a difficult task, even if we only concentrate on the morning
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peak, which gives a small planning horizon from 5:30 – 9:00 a.m.. Thus, the idea
of an automatic planning tool was born.

A wide range of transportation problems involving public bus transit, pupils
and/or schools were already studied before, see [5, 7, 6, 8, 10], to name just a few.
However, none of the presented models completely fits to our problem, mainly
for some or all of the following reasons. The time windows of school starting
times are fixed and cannot be changed to save buses. In all modelling approaches,
pupils are always transported directly to school, and changing the bus is not
allowed. Locating bus stops, designing routes (trips) and assigning pupils to routes
is sometimes part of the optimization, but for us these are input figures. Finally,
scheduling drivers is not an issue for us: Since our time horizon is small (from 6:00
till 8:30), no planning of breaks is needed.

Turning the laws and administrative regulations (see [1, 2, 3], for instance) into
an optimization model, we identified (after several discussions with BPI-Consult)
the following variables, constraints and objectives. We focus on the following
degrees of freedom (variables):

• The schedules of the buses,
• the starting times of the bus trips, and
• the starting times of the schools.

No other possible variables are issued, for example, planning the routes of the bus
trips, or locating the bus stops. Moreover it is required that all pupils are using
the same bus trips for their ways to school as they do it today. For BPI-Consult,
the decision on which variables the focus should lie, is mainly a political one.
Changing the starting times of schools and bus trips causes already enough public
opposition. For example, if some school doesn’t start at, say, 7:40, but at 8:30,
then the pupils leave home nearly one hour later, which might cause troubles for
working parents. Therefore, changing school starting times in a whole county at
once is a very delicate issue, and political skills are needed to implement any given
solution.

The decision variables are not independent from each other, they are coupled
by the following constraints:

• The (legal) bounds on the school start (7:30 – 8:30 a.m.),
• lower and upper bounds on the waiting time for pupils at the school,
• bounds on the waiting time for pupils while transferring from one bus trip

to another,
• bounds on the starting time of trips.

There are several conflicting goals that have to be addressed by the optimization.
In particular, we want to minimize the following:

• The total number of deployed buses,
• the time for driving deadhead-trips,
• the standing times of buses between two trips,
• the absolute change of the schools’ starting times,
• the absolute change of the starting times of the bus trips,
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• the waiting times for pupils at their schools, and
• the waiting times at a transfer bus stop.

Thus it turns out that the integrated optimization of bus schedules and school
starting times is a multicriterial discrete linear optimization problem.

The problem can be modelled as a mixed-integer programming problem, based
on well-known models for the classical vehicle routing problem with time windows
(see [9], for instance). Due to the strict time limits on the minimum and maxi-
mum waiting times for pupils at their school, additional coupling constraints are
introduced to this model.

Unfortunately, even state-of-the-art MIP solvers are not able to solve this model
to optimality. Feasible solutions found by the MIP solver are of poor quality (i.e., a
high number of deployed buses). Thus, we developed a greedy-type heuristic, that
uses techniques from mixed-integer preprocessing as a main feature. The heuristic
repeats the following steps to fix the binary variables of the model to their lower
or upper bounds.

In each step, a local-best deadhead trip is selected. The criterion which dead-
head trip is more promising than the others is based on its length (shorter deadhead
trips are preferred) and also on the change of time windows, once the two corre-
sponding trips are connected (deadhead trips that do not change time windows
are preferred). After selecting a deadhead trip, it must be checked, whether the
connection is feasible. In mathematical terms, this question can be decided by
checking feasibility of a suitable integer program with at most two non-zeros per
inequality. By a result of [4], this problem can be solved in pseudo-polynomial
time O(mU), where m is the number of inequalities (i.e., the number of schools
plus the number of trips) and U is the largest difference between upper and lower
bound on each variable. In our application, every school and every trip must start
some-when between 5:30 and 9:00 a.m., therefore we can check feasibility even in
polynomial time O(m). When the deadhead trip turns out to be feasible, further
strenghtenings on the bounds of time variables and fixings of binary variables can
be deduced.

In total, our heuristic produces a feasible solution in time O(|A| · m), where
A is the set of all deadhead trips. In practice, the presented heuristic is able to
produce good feasible solutions (in terms of few buses) after a very short amount
of time (typically, less than 3 seconds on a modern computer).
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Connecting mrp, MRP II and ERP - Supply Chain Production
Planning via Optimization Models

Stefan Voß

(joint work with David Woodruff)

Supply chain management (SCM) rose to prominence as a major management
issue in the last ten to fifteen years. While the focus of managing supply chains
has undergone a drastic change as a result of improved information technology,
production planning and logistics remain critical issues. Recently, we have in-
vestigated optimization models that correspond to mrp (materials requirements
planning) and MRP II (manufacturing resources planning) and end up as a basis
for useful SCM planning models. In order to develop those models, we need to
consider extensions leading away from mrp to models that bear little resemblance
to mrp but are able to model reality in a more appropriate way. One of the not
yet fully understood extensions in this respect are load dependent lead times.

Enterprise resource planning (ERP) may be referred to as an integrated software
application designed to support a wealth of business functions. After the early fo-
cus on mrp switched over to MRP II, later it was extended to cover enterprise-wide
business functions from finance, human resources and the like. The basic functions
incorporated into ERP, however, still heavily rely on mrp and MRP II. And even
if so-called advanced planning systems (APS), incorporating powerful planning
procedures and methodologies together with concepts for dealing with exceptions
and variability, are being developed this has not yet changed (for popular books
on ERP and APS see, e.g., [1, 2]).

The focus of managing supply chains has changed considerably due to an in-
creased availability of information technology. However, basic issues such as pro-
duction planning remain critical. Long before the words “Supply Chain” were
popular, mrp was seen as the best possible way to do production planning. While
mrp and MRP II may be regarded as philosophy, it is important to bridge the
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gap between such philosophy and advanced mathematical programming models in
production planning and SCM. In the last couple of years we have investigated
related mathematical models in the context of supply chain planning [3]. In this
respect, a reasonable way is to begin with optimization models that map to mrp
and MRP II and end up as some basis for advanced planning models. Based on
this, connections with hierarchical systems for planning and detailed scheduling
are possible.

Extensions of our models incorporate, e.g., load dependent lead times. Let us
define the lead time as an estimate of the time between the release of an order to the
shop floor or to a supplier and the receipt of the items. Typically, these times are
composed of processing, waiting and transportation times, and they are assumed
as given data [4]. It is useful to make a distinction between lead times for due dates
and lead times for planning as is done by [5]. They are concerned primarily with the
former, which is the set of times published for use by customers. We are concerned
primarily with the latter, which are used for planning production. These may also
be referred to as waiting times. That is, as organizations move from creating plans
for individual production lines to entire supply chains it is increasingly important
to recognize that decisions concerning utilization of production resources impact
the lead times that will be experienced. One may gain insights into why this is the
case by looking at the queueing that results in delays. Then these insights may
be used to investigate optimization models that take into account load dependent
lead times and routing alternatives. Our work can be seen as making use of so-
called clearing functions for the trade-off between loading and waiting time with
extensions to include multiple routings or subcontractors. Alternatively, our work
can also be seen as extending the category denoted as multiple-stage production
planning with limited resources to include routing flexibility and load dependant
lead times.

Planning systems such as mrp or MRP II are usually based on an assumption
of lead times that depend only on the stock keeping unit (SKU) and have been
roundly criticized in the academic literature (see, e.g., [6]). In fact, we can see that
under reasonable assumptions the lead time depends less and less on the SKU as
the throughput grows. The expected lead time depends more and more on the
expected length of the queues.

In a complex supply chain using modern practises, which include small move
batches, one can reasonably justify a Poisson model of the arrival process, at least
as a rough approximation to gain insight. Work arrives from a variety of sources in
a fairly random pattern. We adopt the convention that the processing time for the
homogeneous family is one time unit, so that the expressions are a bit simpler. If
a particular SKU, i, is added to the routing we can analyze the expected queueing
time under the assumption of a Poisson arrival process. Suppose that the expected
processing rate for the new SKU i (using the specified time units) is µi, then since
it is well known that Poisson arrivals see time averages we can make use of standard
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Figure 4. Waiting Time as a function of arrival rate.

queueing formulas to write the expected waiting time for SKU i as

(19)
1

µ̄i

+
λ̄σ2 + λ̄

2(1 − λ̄)

where σ is the standard deviation of the service times.
Figure 4 shows waiting time as a function of the arrival rate for four different

situations. The value of σ is set to zero or one and µi is set to 1/3 and 3. The
queueing depends both on the part (the value of µi), the nature of the server (the
value of σ) and the loading (the value of λ). But for high loadings, the value of λ
dominates as can be seen by inspecting Expression (19) or the figure. This is why
we need to include waiting time effects in the supply chain planning model along
with routing choices.

Note that generally the qualitative conclusions remain if the arrivals are not
Poisson, but the mathematics does not. An additional qualitative conclusion is
that if there is one resource with a much higher utilization value than all others in
the supply chain, then it will be responsible for much of the queueing. We would
call such a server the bottleneck or critical resource.

That is, lead times impact the performance of the supply chain significantly.
Although there is a large literature concerning queueing models for the analysis
of the relationship between capacity utilization and lead times, and there is a
substantial literature concerning control and order release policies that take lead
times into consideration, there have been only a handful of papers that describe
models at the aggregate planning level that recognize the relationship between
the planned utilization of capacity and lead times. In [7] we provide an in-depth
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discussion of the state-of-the art in this literature, with particular attention to
those models that are appropriate at the aggregate planning level. The biggest
issue is that planning models typically treat lead times as static input data, but
in most situations, the output of the planning model implies capacity utilizations
which, in turn, imply lead times.

The approach of modelling clearing functions in order to account for load de-
pendent lead times is considered very promising and should be implemented in a
stochastic framework by using queueing models with the purpose to integrate the
problem of variable demand patterns and to analyze the behaviour of load depen-
dent lead times. This could be used as a starting point for additional modelling
of the production system. It is evident that not all concepts and methods are well
suited for each type of production system (job shop, flexible manufacturing sys-
tem, etc.) with one or more production stages or products (one level - multi level
production systems, one item - multi items or products), respectively. In case of
load dependent lead times and their integration into mathematical programming
models for the aggregate production planning process it is wise to begin with the
most simple production system and then proceed to more complex systems and
situations in order to arrive at overall supply chain networks with the aim to find
general principles of modelling and accounting for load dependent lead times.
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Current IBM Research in Supply Chain Modelling and Optimization

Brenda Dietrich

The Mathematical Sciences department at IBM T J Watson Research Centre has
worked with IBM’s various manufacturing units for over 20 years, providing mod-
els and software tools that are used to improve the efficiency of manufacturing
and related planning processes. Activities have included product and process de-
sign, demand forecasting, inventory planning, procurement support, production
planning, and pricing. Improvements in the underlying information technology,
including availability of real-time data and rapid computation have allowed us to
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deploy new applications of optimization techniques, with much of our current em-
phasis on operational, rather than strategic, decision making. In recent years our
modelling capability and tools have also been made available to a select set of IBM
customers and partners, typically through consulting and services engagements.

This talk discusses two optimization projects, implosion and fleet dispatching,
which are illustrative of the range of applications of optimization by IBM.

We began studying the “implosion” or resource-allocation problem in 1989. At
that time our group provided modelling and analysis support and software to IBM
manufacturing sites. In the late 1980’s the PS/2 card plant in Austin experienced
shortages of electronic components that were required for the production of several
different PS/2 cards. IBM’s world-wide material planning process required that
the card plant commit an availability schedule for PS/2 cards within a few days
of receiving a forecast of card requirements and an availability schedule for com-
ponents. The card volume planners had no tools, other than simple spreadsheets,
to aid in determining how to allocate the limited availability of the scarce com-
ponents to cards, and on occasion had produced infeasible committed availability
schedules. This lead to both lowered revenue, and increased costs resulting from
excess inventory of other computer parts (disk drives, power supplies) that could
not be used.

The difference between resource-allocation-based planning and traditional ma-
terial requirements planning (MRP) approaches can be understood in terms of
the inputs, assumptions, and outputs of these two methods. MRP considers the
top-level demand (MPS) to be fixed input data and assume infinite material and
capacity availability. MRP calculates required supply quantities and generates
recommendations for changes to supply orders. In contrast, resource-allocation
models take the material availability to be known input data, and treat the top-
level demand as a desirable but not necessarily attainable target. These models
calculate a feasible production schedule in a manner that ensures feasibility and
optimizes specific economic criteria. In addition, resource-allocation models can
be extended to consider factors that cannot be represented with traditional MRP
methods, such as allocation of production to customers or demand classes, use
of substitute material, and allocation of production to alternative manufacturing
sites.

In resource-allocation-based planning, the production quantities for each prod-
uct in each period are decision variables. Constraints on the decision variables are
determined from the bill-of-capacity structure, the material-availability limits, the
bill-of-material structure, and the original demand schedule. These constraints
limit the values that can be simultaneously taken by the decision variables. Profit
or serviceability maximization is often used as an objective function, and the prob-
lem is solved through the use of heuristics or linear programming algorithms.

During the early years of the implosion project, the problem size (number of
parts times number of time periods), the computational speed of the available
hardware, coupled with limitations of the available software, restricted the prac-
ticality of using of linear programming in implosion applications. Therefore, an
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alternate solution method, known as the “implosion heuristic” was developed. The
implosion heuristic is intended to quickly produce feasible, near optimal solutions.
It takes as input standard MRP data: bills of material, supply of parts, and de-
mand; it and produces as output a feasible production plan and shipment schedule.
It can also provide reports on backlog and inventory levels of parts.

The idea behind the implosion heuristic is quite simple, and is based on the fact
that given a finite supply of resources, for a single demand element (that is, a part,
time period, quantity triple p,t,N) there is a maximum quantity of p that can be
completed in time period t. By considering the demands in some specified order,
and for each demand determining the maximum quantity of the demand that can
be met in the prescribed time period and subtracting the resources used to meet
this demand from the supply, one can produce a feasible production plan and cor-
responding shipment plan. Computational efficiency and solution quality can be
achieved through extensions of this simple approach. When all resources are read-
ily available, this approach produces a production plan that meets all demands
through just in time production. If there are shortages of some resources, the pro-
duction of parts that require those resources will be limited by the availability of
the resources. If a scarce resource is used in only one part, the production of that
part will be reduced so that it does not exceed the availability of that resource.
In the more typical case, where a scarce resource is used by multiple parts, the
order in which the demands are considered is the primary factor determining the
allocation of the scare resource. The demands that are considered first will be met
and will consume the resources, leaving none for the demands that are considered
later. By ordering the demands according to business objectives, high quality solu-
tions can be obtained. If equitable solutions, which evenly share scarce resources,
are desired, each demand can be broken into several smaller demands, and these
demands interleaved in the order. This basic heuristic approach can be extended
to deal with substitutions, various forms of build-ahead, and some reallocation
of stock. In all of the heuristic extensions, the “no-backtracking” principle has
been maintained. That is, once a production quantity has been determined to be
feasible, that quantity is never later reduced. Adhering to this design principle
has allowed us to customize the heuristic to address a number of complex scenar-
ios without compromising execution speed. One particularly important form of
customization addresses business rules related to backlog. If a demand cannot be
completely met in the requested period, the remaining quantity can be ignored
(appropriate for the case where customers will substitute a competitor’s product),
it can be added to demand for that part in the following period, or it can be used
to create a new, high priority demand in the following period.

The Watson Implosion Tool (WIT), which includes both an LP based solver
and the heuristic solver described above has been in use within IBM for well over
a decade. WIT has been continually enhanced in response to requirements from
internal and external customers. It has been applied to a wide range of planning
problems, including corporate wide constrained material requirements planning,
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reverse logistics, distribution planning, and services capacity planning. Most re-
cently it has been used as the basis for a dynamic available to promise/available to
sell application for IBM’s highly configured products such as main frames and high-
end servers. In the available to sell application, current inventory and component
purchase contracts are evaluated against multiple demand scenarios to determine
the expected usage and the resulting expected overage, of components and sub-
assemblies. The expected overage is then imploded, together with information on
the cost of purchasing additional parts, against numerous sales opportunities to
identify those that are most profitable to pursue. As new sales are closed, the
opportunity list is updated to reflect usage of parts. This process has enabled
IBM to better manage its inventory and improve our demand fulfilment processes.

WIT now uses the COIN interface to access the open source COIN LP and IP
solvers, as well as OSL. (See www.coin-or.org.)

In contrast to the WIT project, which has continued with essentially the same
staff for over ten years, much of our current work involves rapid development and
deployment of optimization models to support customer needs. We recently devel-
oped the optimization component of a decision support system for a provider of car
service Fleet scheduling and dispatching involves allocating vehicles and drivers
to meet customer demands within tight time windows. Cars are fitted with two-
way data terminals allowing the dispatch centre to maintain knowledge of drivers’
states and positions at all times. Modestly priced compute servers allow us to solve
and re-solve the scheduling and routing problem nearly optimally throughout the
day as demands change. Despite highly dynamic data, our optimization tool is
able to solve the scheduling and dispatching problem quickly enough to provide a
timely schedule, i.e., before the demands have changed so much that the schedule
is largely invalid. Combined with a mechanism that locally updates a schedule
within seconds in response to single a new input, this yields a system in which the
car service provider operates more efficiently than it could with its former manual
scheduling system. The system was installed in March, 2003 and is currently in
use 24 hours a day. Productivity has increased significantly.

The basic problem is formulated using shortest path based column generation.
The base problem is solved to optimality a few times each day to determine a
starting plan for the next several shifts. However, data is constantly changing due
to flight delays, customer requests, and traffic conditions. Columns are updated,
and new columns are generated, as real-time data is received. A sub-problem,
corresponding to the current and next shift, is updated and resolved several times
each hour by the “continual solver”. Since the dispatcher must be able to over-
ride solver recommendations, must always have access to a feasible schedule, and
requires near instantaneous response, a variety of heuristic methods are employed
in an “instant solver” to produce and maintain good feasible solutions. The fleet
scheduling and dispatching application is remarkably similar to a service technician
scheduling application developed by the same team in 1997-98 for IBM internal
use.
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Optimization-Based Order Promising and Fulfilment

Michael O. Ball

The Available to Promise (ATP) business function is the set of capabilities that
support responding to customer order requests. Traditionally ATP refers to a
simple database lookup into the Master Production Schedule. With the advent
of assemble-to-order (ATO) and configure-to-order (CTO) production environ-
ments, the ATP function requires advanced real-time decision support systems
with underlying model support. ATP research can be classified into two cate-
gories: push-based models, which allocate resources and prepare information based
on forecasted demand, and pull-based models, which generate responses to actual
customer orders. ATP systems operate within a short-term operational environ-
ment where most resource availability is considered fixed because of procurement
lead-time limitations. This distinguishes both push-based and pull-based ATP
models and systems from traditional planning, scheduling and inventory manage-
ment processes. Reference [2] provides an overview of ATP research.

This presentation covers a series of papers [1, 3, 4, 5], which describe mixed
integer programming (MIP) pull-based ATP models. These models allocate avail-
able resources to a batch of order requests that arrive within a pre-determined
batching interval. They have a strong temporal component in that both the com-
ponent availability and production capacity vary over time and the orders have
constraints on possible delivery dates. They can be viewed as both order-promising
and order-fulfilment models, since they specify a schedule for the use of production
capacity.

In order to model the batch ATP problem as a decision problem, we first must
characterize the decision space. We classify decisions as either front-end (order
related) or back-end (production related). The front-end decisions include: 1)
whether to accept or reject an order, 2) determining the order quantity, 3) deter-
mining the order delivery date and 4) deciding whether to split an order satisfied
by multiple separate deliveries. Depending on the application, any of these de-
cisions might be fixed a-priori and thus not addressed within the model. For
example, if a company had a policy of accepting all orders then there would be
no category 1) variables. Similarly, if the order quantity or delivery date was
fixed within the customer order then there would be no category 2) or 3), resp,
decision variables. Finally, a company could have a policy against splitting or-
ders eliminating category 4) variables. Back-end decisions involve the allocation
of production resources, including assignment of components to orders, assign-
ment of orders to factories and production lines and order scheduling. Generally
speaking, ATP models emphasize front-end considerations and as such they do
not include detailed models of production/factory resources. In a typical business
implementation, detailed factory scheduling would be addressed by other models
and systems.

For some problem classes the models must include complex material availability
constraints related to consideration of a flexible bill-of-material (BoM). The mate-
rials needed in assembling end-items are grouped into different component types.
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The manufacturer may have multiple suppliers that provide materials of the same
type, which differ in features such as quality, price and technology. We call the
combination of a component type and a supplier as a component instance, which
represents the very basic material element in the models. Each customer order has
an associated BoM that specifies the quantity of each component type required
to build a specific product. Furthermore, for each selected component type, a
customer may specify a set of preferred suppliers, implying that the manufacturer
must choose a component instance from one of the preferred suppliers. Thus, com-
ponent substitution at component-instance level is allowed but subject to certain
restrictions. However, there can be incompatibilities between certain pairs of com-
ponent instances, e.g. a hard disk assembly from supplier A is incompatible with
a printed circuit board from supplier B. The derivation of constraints to represent
these incompatibilities presented an interesting problem in polyhedral projection
that was solved for a special case in [1]. However, more general instances of this
problem remain open.

We now describe the specific ATP decision problem associated with a partic-
ular electronic product (denoted by EP) manufactured by Toshiba Corporation
and the MIP ATP model we developed. This model has been implemented by
Toshiba and is used to support daily ATP decision-making. The order promising
process proceeds by iteratively collecting and processing batches of orders. The
ATP model is used to determine delivery dates, a decision on whether to split
the order and the production schedule for each order. The model must balance
available resources relative to a batch of orders requesting multiple products that
share certain common components. The objective function criteria include mini-
mization of due date violation, inventory holding cost and a day-to-day production
smoothness measure. The due date violation is computed as the sum, over all or-
ders, of the amount delivered late times the number of days late. The holding cost
contains both a material holding cost and a finished product inventory holding
cost. Production smoothness is based on a measure of day-to-day variation in the
production amount of each assembly line at each factory.

The EP supply chain consists of multiple final assembly and testing (FAT) fac-
tories all located in Japan, which provide EPs delivered directly to both domestic
and international business customers. Due to high product mix, an ATO produc-
tion framework is employed to increase the degree of product flexibility. The order
promising and fulfilment process involves in total several thousand-product mod-
els. Order sizes range from a very small number of units to a few hundred. Orders
are generated by one of several sales units and are processed by a single central
order processing system in Toshiba headquarters. The ATP system collects orders
over a 1/4 hour time interval and returns commitments to the sales offices at the
end of each ATP run (1/4 hour interval). Order commitments are booked up to
approximately ten weeks in advance of delivery.

In the order promising process for EP, Toshiba employs the business practice
of never denying an order. If an order cannot be fulfilled before its requested
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due date, then a promise date beyond the requested date is given, i.e. it is back-
ordered, or the order is split with a portion given an early promise date, e.g. before
the due date and a portion given one or more later promise dates. However, an
order cannot be split among different factories, namely, one order can only be
committed in one factory. In order to emphasize customer satisfaction for EP,
Toshiba weights due date violation higher than any holding costs and production
smoothness penalty in its order fulfilment decision models. Occasionally, the sales
staff will book “pseudo orders” based on enquiry orders from customers to reserve
critical resources for anticipated future high priority demands.

A particularly interesting aspect of this problem was the manner in which re-
source constraints varied across the order-promising time horizon. For the fixed
product interval, which spans from approximately the present time to two weeks
into the future, resources, in the form of manufacturing orders (MO) are fixed. An
MO specifies the production quantity for each product at each assembly line in
each factory. That is, a fixed production schedule is set, which takes into account
both production capacity availability and critical material availability. Having a
fixed schedule stabilizes production dynamics in the near term and allows for the
required materials to be set up and put in place. Any order commitments made
for this time interval must fit within the fixed production schedule. In the flexible
product interval, two kinds of resources, capacity and material, are considered in
order promising. The production capacity is given daily at the factory level in
terms of machine-hour and manpower availability. The weekly availability of indi-
vidual critical materials is aggregated into finished goods level availability grouped
based on the bill of material (BoM), balance-on-hand inventory, pipeline inventory
and scheduled receipts. It is defined as a Production Capability (PC). Any order
commitments made for this time interval must satisfy the capacity and material
availability constraints. The flexible product interval spans from approximately
two weeks to two months into the future. For the flexible resource interval, which
covers due dates three weeks into the future, the only constraint considered is pro-
duction capacity, which is specified daily at factory level in terms of machine-hour
and manpower availability. This interval starts beyond the material resource lead
times so any resource commitments can be met. The resource allocation variables
within the MIP model varied by time interval in order to accommodate the varia-
tion in resource constraints just described. In the actual implementation, in order
to solve the largest real instances an approximate aggregation procedure was used.
In particular, an aggregate model was first solved to assign orders to weekly re-
source availability. Subsequently, for each week a version of the model was solved
that assigned that week’s orders to daily resource availability. For a typical prob-
lem instance, there were 4355 different EP product models. In one batch run
there were 1162 newly-arrived orders which were combined with 3834 previously-
promised customer orders. Both classes of orders generated appropriate resource
assignment variables because since the production timing and factory assignment
could be changed for the previously promised customer orders (even though the
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deliver date commitments were fixed). The associated MIPs were solved within 3
minutes of computing time using a commercial MIP solver.
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Performance Measurement for Inventory Routing

Martin W.P. Savelsbergh

(joint work with Jin-Hwa Song)

Vendor managed inventory resupply (VMI) has become a popular strategy to
reduce inventory holding and/or distribution costs. In environments where VMI
partnerships are in effect, the vendor is allowed to choose the timing and size
of deliveries. In exchange for this freedom, the vendor agrees to ensure that its
customers do not run out of product. In a more traditional relationship, where
customers call in their orders, large inefficiencies can occur due to the timing of
customers’ orders, i.e., high inventory and high distribution costs. By employ-
ing VMI partnerships companies may be able to reduce demand variability and
therefore their inventory holding and distribution costs. Realizing the cost savings
opportunities of VMI partnerships, however, is not an easy task, particularly with
a large number and variety of customers. The inventory routing problem (IRP)
seeks to do exactly that: determining a distribution strategy that minimizes long
term distribution costs. A large body of literature on the IRP exists; Campbell
et al. [1] and Kleywegt et al. [2], among others, contain an overview of the major
research activities in this area.

We do not focus on developing distribution strategies, but instead on measuring
the effectiveness of distribution strategies. A popular performance measure used
in practice to evaluate distribution strategies in an environment where VMI part-
nerships are in effect is the volume delivered per mile or volume per mile for short.
As the volume that needs to be delivered by the vendor over a given period of
time is determined by the total usage of its customers, and not under the control
of the vendor, the vendor strives to minimize the total mileage required to deliver
product. However, volume per mile by itself is not a meaningful number, because
it is impacted by many factors, such as the geography of customer locations and
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customer usage patterns, but it is valuable for comparing performance in consec-
utive periods of time. If a company has a stable customer set and customer usage
patterns do not fluctuate much, then an increase (decrease) in volume per mile
indicates that distribution planning is improving (worsening).

The above discussion shows that volume per mile is a useful measure for moni-
toring relative distribution strategy performance. However, volume per mile can-
not be used to determine, in an absolute sense, the quality of a distribution strat-
egy. We develop a linear programming based methodology that allows the com-
putation of tight lower bounds on the total mileage required to satisfy customer
demand over a period of time (and thus upper bounds on volume per mile).

The approach is based on solving the following variant of the inventory routing
problem. A single product has to be distributed from a single facility to a set
I of n customers over a period of time of length T . Each customer i ∈ I has
the capability to maintain a local inventory of product up to a maximum of Ci.
In the period of interest customer i consumes an amount ui of product. A fleet
of homogeneous vehicles, with capacity Q, is available for the distribution of the
product. We assume an unlimited supply of product and an unlimited number of
vehicles in the fleet. We denote the travel distance between two locations i and
j by tij . The objective is to determine the minimum total distance required to
satisfy all demand.

Observe that when Ci ≥ Q ∀i ∈ I , then the optimal distribution strategy is to
always deliver a full truck load to a customer right when the customer’s storage
tank becomes empty. The resulting total distance is

∑

i∈I
ui

Q
2t0i, where 0 denotes

the plant. Therefore, a simple lower bound on the minimum total distance required
to satisfy all demand is obtained by assuming that all customers’ storage capacities
are greater than the truck capacity, i.e.,

LB1:
∑

i∈I

ui

Q
2t0i

In practice, deliveries to customers with storage capacity less than the truck’s
capacity, i.e., Ci < Q, are usually combined with other deliveries to ensure a high
utilization of the truck’s capacity.

Define a feasible delivery pattern Pj = (dj1, dj2, ..., djn) to be a delivery pattern
that satisfies

∑

i∈I dji ≤ Q and 0 ≤ dji ≤ Ci ∀i ∈ I . Let δ(Pj) = {i ∈ I : dji > 0}
denote the set of customers visited in delivery pattern Pj . The cost of delivery
pattern Pj , denoted as c(Pj), is the value of an optimal solution to the travelling
salesman problem involving the plant and the customers in δ(Pj). Let P be the
set of all feasible delivery patterns and let xj be a decision variable indicating how
many times delivery pattern Pj is used. Then the optimal objective function value
of the following linear program, called the pattern selection LP, provides a lower



1016 Oberwolfach Report 19/2004

bound on the total distance required to satisfy the demand

D∗ = min
∑

Pj∈P

c(Pj)xj

s.t.
∑

Pj∈P

djixj ≥ ui, ∀i ∈ I

xj ≥ 0

There are two major obstacles to using this linear program:

• The number of feasible delivery patterns is prohibitively large.
• The calculation of the cost of each delivery pattern involves the solution

of a travelling salesman problem.

We show that only a finite set of delivery patterns needs to be considered and
that the size of the linear program can further be reduced by pattern dominance
and approximation ideas.

Using this methodology companies will be able to gain insight into the effec-
tiveness of their distribution strategy.
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Primal-Dual Approximation Algorithms for Deterministic Inventory
Models

Retsef Levi

(joint work with Robin Roundy and David Shmoys)

In this talk, we consider several classical models in deterministic inventory theory:
the single-item lot-sizing problem, the joint replenishment problem (JRP) and the
multi-stage assembly problem. These inventory models have been studied exten-
sively over the years, in a number of different settings, and play a fundamental role
in broader planning issues, such as the management of supply chains. We shall
consider the variants in which there is a discrete notion of time with a finite plan-
ning horizon, and the demand is deterministic (known in advance) but dynamic,
i.e., it varies over the planning horizon.

Each of the inventory models that we consider has the following characteristics.
There are N commodities (or equivalently, items) that are needed over a planning
horizon consisting of T time periods; for each time period and each commodity,
there is a demand for a specified number of units of that commodity. To satisfy
these demands, an order may be placed in each time period. For each commodity i
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ordered, a fixed ordering cost Ki is incurred, which is independent of the number of
units ordered from that commodity. The order placed in time period t may be used
to satisfy demand in time period t or any subsequent point in time. In addition,
the demand in time period t must be satisfied completely by orders that have been
placed no later than time period t. (In the inventory literature, these assumptions
are usually referred to as “neither back orders nor lost sales are allowed”.) Since
the cost of ordering a commodity is independent of the number of units ordered,
there is an incentive to place large orders, to meet the demand not just for the
current time period, but for subsequent time periods as well. This is balanced by
a cost incurred for holding inventory over time periods. We will let hi

st denote this
holding cost, that is, the cost incurred by ordering one unit of inventory in period
s, and using it to meet the demand for item i in period t. We will assume that hi

st

is non-negative and, for each (i, t), is a non-increasing function of s. (Note that in
particular, we do not require sub-additivity; we could have that hi

rt > hi
rs +hi

st for
some r < s < t.) The goal is to find a policy of orders that satisfies all demands
on time and minimizes the overall holding and ordering cost.

The details of the three inventory models are as follows. In the single-item
lot-sizing problem, we have a single item (N = 1) with specified demands over T
time periods (d1, .., dT ).

In the joint replenishment problem we have N commodities, where for each com-
modity i = 1, . . . , N , and for each time period t = 1, . . . , T , there is a specified non-
negative demand dit. In addition to the item ordering costs, Ki, i = 1, . . . , N , any
order incurs what we call a joint ordering cost K0, independent of the (nonempty)
subset of commodities that are included in the order (and again, independent of
the (positive) number of units for each commodity included). The joint order-
ing cost creates a dependency between the different commodities and complicates
the structure of the optimal policy. The holding cost follows the same structure
described above.

In the assembly problem, we have a somewhat more involved structure. As part
of the input, we also specify a rooted directed in-tree, where each node in the tree
corresponds to an item, and we assume that the items are indexed so that i > j
for each edge (i, j) in the tree. Node (or item) 1, the root of the tree, is facing
external demands over T time periods (d1, .., dT ). A unit of item i is assembled
from one unit of each of its predecessor items in the tree. Thus, any unit of item
1 consists of one unit of each of the other items. We again have an ordering cost
and holding cost for each item.

We note that the way we model the holding cost is much more general than the
most common setting, in which each item i has a linear holding cost, so that the
cost of holding one unit from time period s to time period t is equal to (t − s)hi,

for some choice of hi > 0 (or to
∑t

l=s hi
l in the more general case). By allowing

the more general structure described above, we can capture other important phe-
nomena, such as perishable goods, where the cost of holding an item longer than
a specified interval is essentially infinite. The strength of the general holding cost
structure is also demonstrated, where we show how to apply the algorithm to the
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more general JRP model with back-orders. As for the ordering cost, we note that
our algorithms are applicable also in the presence of time dependent cost param-
eters. Furthermore, in addition to the (fixed) ordering cost that is independent of
the order size, one can incorporate a per-unit ordering cost into the holding cost
term (as long as we preserve the monotonicity).

In this talk, we describe a unified novel primal-dual algorithmic framework
that provides optimal and near-optimal solutions to the three inventory models
described above. The algorithms improve known results in several ways: the
performance guarantees for the quality of the solutions improve on or match pre-
viously known results; the performance guarantees hold under much more general
assumptions about the structure of the costs, and the algorithms and their analy-
sis are significantly simpler than previous known results. Finally, our primal-dual
framework departs from the structure of previously studied primal-dual approxi-
mation algorithms in significant ways, and we believe that our approach may find
application in other settings.

Our main result is a 2-approximation algorithm for the joint replenishment
problem. By this we mean that for any instance of the problem, our algorithm
computes a feasible solution in polynomial-time, with cost that is guaranteed to
be no more than twice the optimal cost. The joint replenishment problem is NP-
hard, but it can be solved in polynomial-time by dynamic programming for a fixed
number of commodities, or for a fixed number of time periods, (by fixing the times
at which joint orders are placed the problem decomposes by item). LP-based
techniques have not previously played a significant role in the design of approx-
imation algorithms for NP-hard deterministic inventory problems with constant
performance guarantee. LP-rounding was applied to a more general problem by
Shen, Simchi-Levi, and Teo, but this yielded a guarantee of only O(log N +log T ).
This absence of results is particularly surprising in light of the fact that it has
long been understood that these problems admit integer programming formula-
tions with strong linear programming relaxations, i.e., that provide tight lower
bounds. These formulations are closely related to formulations that have been
studied for the facility location problem, which has also been a source of intense
study for approximation algorithms.

The single-item lot-sizing problem was shown to be solvable in polynomial time
by dynamic programming in the landmark paper of Wagner & Within. Further-
more, Krarup & Bilde showed, in this case, that the facility location-inspired LP
has integer optima by means of a primal-dual algorithm, and Bárány. Van Roy,
and Wolsey gave yet another proof of this by means of an explicitly generated
pair of primal and dual optima (that are computed, ironically, via a dynamic pro-
gramming computation). Finally, Bertsimas, Teo and Vohra gave a proof, which
is based on LP rounding. If we consider our joint replenishment algorithm as ap-
plied to the special case of the single-item lot-sizing problem (where, since there
is only one item, one can merge the joint ordering cost and the individual item
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ordering cost into one new ordering cost), then we obtain a new, extremely sim-
ple, primal-dual optimization algorithm that also proves the integrality of this LP
formulation.

Finally, with some modifications, our primal-dual algorithm can also be applied
to the assembly problem to yield a 2-approximation algorithm. Here, we achieve
the same approximation ratio as Roundy, who gave a 2-approximation algorithm
(again for the case where all cost parameters are fixed over time) using a non-linear
relaxation and ideas borrowed from continuous-time lot-sizing problems. Although
we only match the previous performance guarantee, our approach is much simpler,
and it yields the performance guarantee under a much more general cost structure.
In particular, under our assumptions on the cost structure, it is easy to show that
the assembly problem is NP-hard by a reduction from the joint replenishment
problem. However, for the variant of the problem considered by Roundy, it is still
not known whether it is NP-hard or not.

As a byproduct of our work, we prove upper bounds on the integrality gap of
the corresponding LP relaxations, the worst-case ratio between the optimal integer
and fractional values; for both the JRP and the assembly problem, we prove an
upper bound of 2.

We note that our algorithms have their intellectual roots in the seminal paper
of Jain & Vazirani, which gives a primal-dual approximation algorithm for the
uncapacitated facility location problem. Nonetheless our algorithms depart from
their approach in rather significant ways, as we shall describe in detail in the next
section. We believe that this new approach may find applications in other settings.

An extended abstract of this paper will appear in STOC 2004. The paper with
all relevant references can be found in http://www.orie.cornell.edu/elevi/Index.html.

Toward Robust Revenue Management

Maurice Queyranne

(joint work with Michael O. Ball)

We develop robust revenue management policies by viewing the customer accep-
tance problem from the perspective of competitive analysis on on-line algorithms.
Specifically, the on-line revenue management algorithm seeks to maximize the rev-
enue associated with the accepted customers, where a decision has to be made to
accept or reject each customer at the time of the customer arrival. The qual-
ity of such algorithms is measured against an optimal offline solution that would
result from perfect knowledge of the whole input sequence and determine which
customers to accept after all customers have arrived. The online approach al-
lows for the definition and analysis of algorithms without the need for demand
forecasts or a risk-neutrality assumption. The policies that emerge from this anal-
ysis have worst-case guarantees on their performance, and appear to be appealing
from a practical standpoint. In particular we derive optimal booking policies for
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multiple-fare booking problems, defined by nested protection levels, which fit cur-
rent industry practice, but with protection levels derived from very passimonions
input. We also derive optimal algorithms of new types for bid control problems.

Pricing and Manufacturing Decisions when Demand is a Function of
Prices in Multiple Periods

Philip Kaminsky

(joint work with Hyunsoo Ahn and Mehmet Gumus)

In recent years, as manufacturing and supply chains have become more and more
efficient, the conflict between production planning and marketing has become
more apparent. There is a growing research literature focusing on joint marketing
decision-making and production planning. The overall objective of this literature is
to develop approaches that avoid the possible conflicting consequences of market-
ing and operations planning decisions, by integrating marketing/pricing decisions
and manufacturing decisions to jointly achieve a common objective. Virtually all
of this research considers demand at each period to be a function of price in that
period. However, in reality, in many cases customers may consider making a pur-
chase for several periods, and actually make the purchase in either the first period
that the price is below the reservation price, or in the period that they believe
will have the lowest price. Hence, demand realized in each period is not only a
function of current price but also of past and future prices. In this work, we focus
on models that combine elements of both marketing and production planning, de-
signing a profit-maximizing production schedule and product pricing schedule in
the face of inter-temporal demand-price interactions.

A variety of aspects of joint pricing and manufacturing models have been ana-
lyzed in the operations management and marketing management literature. The
models vary from constant demand, EOQ-like frameworks, to non-stationary dis-
crete and continuous-time frameworks. To the best of our knowledge, the earliest
paper where price and production quantity are both decision variables is by [1],
who extends the basic EOQ model to include a revenue term, and finds the optimal
price and lot size using a calculus-based approach. This work was extended by
many authors, including [2], [3], [4], and [5]. A variety of authors have also consid-
ered the deterministic discrete-time production framework, including [6], [7], [8],
[9], and [10]. For models of dynamic pricing in the continuous-time deterministic
setting, see the comprehensive survey of joint pricing and production literature by
[11]. A variety of authors have also considered joint pricing and production models
with stochastic demand (see [12] and the references therein), as well as revenue
management models, as surveyed in [13].

In this work, we consider two models that differ from much of the previous
work by allowing demand to remain in the system for more than one period.
In the first model, a potential customer has the patience to wait until the price
drops to a level that she can afford. This assumption is somewhat analogous
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to the assumptions used in inter-temporal price discrimination models in micro-
economics (c.f., [14]). However, while most related literature, with the exception
of [15], focuses on the analysis of models with a fixed number of customers of
unknown valuation, we allow new customers to be introduced into the system in
each period. Furthermore, our model differs from a few models that allow the
entry of new customers by assuming a finite lifetime of potential demand (i.e.,
an unfulfilled customer will remain only for a finite number of periods) as well
as non-stationarity of demand and parameters. In this first model, customers
make a purchase the first time that the asking price drops below their reservation
price. In our second model, customers are assumed to be aware of the optimization
problem being solved, and so they make a purchase when their discounted utility
is maximized.

In most prior work, consumers in a system focus on the price in the period in
which they enter the system. If the price is below their reservation price, they
make a purchase. If not, they exit the system. However, in many cases consumers
consider the price in more than the current period. In our own experience, we
have decided how much we were going to spend on a car or computer, and then
waited for the price to fall within our budget. Therefore, it is not always realistic
to assume that customers whose reservation prices do not exceed the current price
of the product set by manufacturer just leave the market. In many cases, some
proportion, α (0 ≤ α ≤ 1) of the customers in this system will wait for the next
period, and check if the next period’s price is less than or equal to their reservation
price. Hence, one way to extend the traditional model of demand realization is to
to allow some portion of unsatisfied customers to stay in the system for at most
some number of periods K, during which they continue to examine price levels to
purchase the product. This extension to the traditional model is our first model. It
is reasonable to assume that, for any period, only a portion of remaining customer
will wait for one or more periods and the number of customers waiting decreases
in time. To describe such consumer behaviour, we use αi, i = 0, 1, ....K, K + 1
to represent the proportion of customers that will wait for at least i periods such
that 1 = α0 ≥ α1 ≥ α2 . . . ≥ αK ≥ αK+1 = 0.

By implementing this extension, we model two different streams of demand at
each period t. The first one consists of the customers who acquire their reservation
price using the current demand function and whose reservation price is higher than
the current price, and the second one consists of the customers who have entered
the system at previous time periods, and whose reservation prices have been less
than prices in previous periods, but exceed the product price at period t. We
call the former source of demand current demand, and the latter source residual
demand.

For general demand functions, we formulate the two-step demand realization
process described above as follows. First, we define some notation. Suppose that
P = (p1, p2, . . . , pT ) represents prices for a product over the planning interval T .
Let dt = Dt(pt) be the demand function at period t and D = (d1, d2, . . . , dT ) be
demand induced by pricing sequence, P . Let rk

t represent the portion of demand
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in period t originating from period t − k. In this case, rk
t can be formulated as

follows.

(20) rk
t =

{

Dt(pt), if k = 0;

αk

[

Dt−k(∧k
i=1pt−i) − Dt−k(pt)

]+
), if 1 ≤ k ≤ min(K, t − 1).

We introduce a minimization operator to select the minimum price between
periods t−k and t−1, since this gives the leftover residual demand after observing
the actual prices from periods t − k to t − 1. Hence, αk of this leftover residual
demand consists of the customers whose reservation prices have not exceeded the
product price from period t − k to t − 1.

In this work, we consider a linear demand curve at each period, and consider this
demand model within a standard discrete-time multi-period production system
where at each period we decide both price of the product, pt and the production
quantity of product, xt. Our objective is to maximize the net profit subject to
inventory balance, production capacity, and demand realization constraints.

One reasonable critique of this model is that it assumes that consumers aren’t
aware of impending price decreases. Indeed, this model is intended to model
situations in which customers place a high value on a good’s availability, and
tend to buy it as soon as their budget constraint (i.e., reservation price) is met.
Alternatively, we introduce our second model, in which customers are aware of
the pricing pattern. In this case, they enter the system and stay for at most K
periods, and actually make a purchase when their discounted utility is maximized.
We model utility as the difference between modified price and reservation price,
where βj ≥ 1 is a factor that we multiply by price in the future to represent the
disutility of waiting j periods. We consider this alternate demand model within
the same capacitated production framework.

We consider a variety of special cases of these models. Although both models
are in general neither concave nor convex, we characterize their structure, and
use this structure to design optimal algorithms for both models. For special cases
including stationary parameters, we design more efficient algorithms, and for the
special one-period interaction uncapacitated stationary case, we provide a closed
form expression of the optimal solution in both cases. Finally, we complete an ex-
tensive computational investigation to determine the value of considering demand
interaction in a variety of situations.
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Experiments with Cooperative Optimization Algorithms for
Production Scheduling

Claude Le Pape

(joint work with Emilie Danna)

Industrial optimization applications must be both “efficient”, i.e., provide “good”
solutions within reasonable time, and “robust” with respect to variations in the
problem instances: variations in problem size, variations in numerical characteris-
tics, and addition of side constraints. It should in most cases be easy to include
additional constraints without re-designing the overall problem-solving strategy.
Cooperative optimization algorithms, which combine different techniques, can of-
ten be used to improve either efficiency or robustness (or both) without sacrificing
the other ([3]).

For example, mixed integer programming, constraint programming, and local
search techniques, provide good results under very different assumptions. Mixed
integer programming is especially efficient whenever the continuous relaxation of
the problem model is a good approximation of the convex envelope of the solutions
(at least around the optimal solution) or when the relaxation can be iteratively
tightened (by adding cuts) to improve this approximation. Constraint program-
ming provides good results when critical constraints propagate well and, in an
optimization context, if a tight bound on the optimization criterion results (by
propagation) in constraints that effectively guide the search toward a good solu-
tion. Local search is efficient when good solutions share characteristics (e.g., the
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ordering of two tasks in a scheduling problem) that can be compactly represented
and that are likely to be kept when local search operators proceed from a solution
to the next. If each of these techniques encounters difficulties on one aspect or
on some instances of a problem, a hybrid algorithm may give on average better
results than pure mixed integer programming, constraint programming, or local
search algorithms.

Production scheduling with earliness and tardiness costs is interesting in this
respect. In its purest version, an n × m job-shop problem consists of a set J of
n jobs and a set R of m machines of capacity one. Each job j ∈ J consists of
a set of m non-preemptive operations ordered according to a given permutation
σj = (σj1, σj2, . . . , σjm) of the machines: Job j must be executed first on machine
σj1, then on σj2, and so on. Let pji be the processing time of job j on machine
i. Job j cannot start before its release date rj and is additionally characterized
by its due date dj and two nonnegative cost factors, earliness αj and tardiness βj .
Let Cj be the completion date of the last operation of job j. The cost incurred
by job j is αj(dj − Cj) if Cj ≤ dj and βj(Cj − dj) if Cj > dj . The objective is
to minimize the sum of the costs incurred for each job. Real-life problems tend
to be more complex with the addition of other constraints and cost factors (e.g.,
setups, secondary resources, calendars). In the following, we consider the case
in which it is not certain that operation σ−1

ji of job j will use machine i, either
because there is a choice between different machines, or because the operation can
be left unperformed. An unperformed operation must be assigned a start time and
will require its usual processing time to be completed, but it will not use capacity
on any machine. This corresponds for example to sub-contracting that operation,
with an additional cost υi

j .
This problem is difficult for all of the optimization techniques mentioned above.

Mixed integer programming is a good candidate for representing the cost function,
but no good model is known to state that a machine can only perform one op-
eration at a time. Constraint programming usually deals well with precedence
and resource constraints, but adding an upper bound on the weighted-sum opti-
mization criterion does not result in effective constraint propagation. Local search
operators based on permuting operations are easy to design, but the impact of a
permutation on the total cost is hard to estimate. In the following, cooperative
optimization algorithms centred on a mixed integer programming model are pro-
posed and compared with a pre-existing combination of constraint programming
and local search.

The mixed integer programming model relies on the disjunctive model of [1]. Let
continuous variable xji represent the start time of job j on machine i. Minimizing
the sum of earliness and tardiness costs is modelled by min

∑

j∈J zj where variable
zj represents the cost incurred by job j:

{

zj ≥ αj(dj − xjσjm
− pjσjm

)
zj ≥ βj(xjσjm

+ pjσjm
− dj)

∀j ∈ J
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Release dates constraints are simply:

(21) xjσj1
≥ rj , ∀j ∈ J

Precedence constraints between operations in each job are modelled by:

(22) xjσj,t+1
≥ xjσjt

+ pjσjt
, ∀j ∈ J, ∀t = 1 . . .m − 1

Resource constraints are modelled by the constraints: ∀ p < q ∈ J, ∀ i = 1 . . .m,

xpi ≥ xqi + pqi − Myi
pq(23)

xqi ≥ xpi + ppi − Myi
qp(24)

yi
pq + yi

qp = 1(25)

yi
pq ∈ {0, 1} and yi

qp ∈ {0, 1}

where M is some large constant. The interpretation is that yi
pq = 1 if job p

is scheduled before job q on machine i, and yi
pq = 0 otherwise. This type of

model is known as a big-M formulation. Its advantage is to be simple but it only
weakly links the decision variables y that appear in the resource constraints and
the secondary variables x that appear in the precedence constraints. It is hence
expected to behave poorly, i.e., usually to have a loose continuous relaxation, or
as shown in [4] to make it difficult for a mixed integer programming solver to find
good integer solutions.

Unperformed operations are modelled by introducing binary variable ui
j = 1

if operation σ−1
ji of job j is unperformed, and ui

j = 0 otherwise. The objective

function becomes min
∑

j∈J zj +
∑

j∈J

∑m

i=1 υi
ju

i
j . To link resource constraints

and unperformed variables, Equation 25 is changed to yi
pq + yi

qp ≤ 1 + ui
p + ui

q.
The following table provides the results obtained with five algorithms based on

this model, all developed by Emilie Danna and further detailed in [2].

• The MIP algorithm is the default search strategy of CPLEX 9.0.
• The IS+MIP algorithm consists in using constraint programming to con-

struct an initial solution to the problem. This solution is then used both
to reduce the value of the M constant in each resource constraint and as
a starting point for CPLEX.

• The IS+MIP+RINS algorithm is similar to IS+MIP but activates the re-
laxation induced neighbourhood search option of CPLEX ([5]). Relaxation
induced neighbourhood search is a form of local search which relies on the
continuous relaxation to define a neighbourhood of the incumbent solu-
tion: the integer variables that have the same values in the solution of the
continuous relaxation and in the incumbent are fixed to these values and a
sub-MIP on the remaining variables is solved (with a limit on the number
of nodes explored).

• The IS+MIP+RINS+GD algorithm adds the “guided dives” option of
CPLEX ([5]) to the IS+MIP+RINS algorithm. When a binary variable
is selected for branching, the “guided dives” strategy will explore first
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the node in which this variable is fixed to the value that it takes in the
incumbent.

• The IS+MIP+RINS+GD+MCORE algorithm adds to the IS+MIP+RINS
+GD algorithm another form of local search which defines a neighbour-
hood by heuristically reducing the values of the M coefficients. See [2] for
details.

These algorithms are tested on 22 job-shop instances from the Manufactur-
ing Scheduling Library (MaScLib) ([6]), with up to 260 operations. For each
instance, 4 problem variants are tested: optimizing the sum of weighted earliness
and weighted tardiness with no unperformed operation (ET); optimizing weighted
tardiness with no unperformed operation (T); optimizing the sum of weighted
earliness, weighted tardiness, and non-performance costs (ET UNP); optimizing
the sum of weighted tardiness and non-performance costs (T UNP). Each run is
limited in CPU time, with a limit dependent on the number of operations. The
measure of performance of each run is defined as the ratio of the cost of the solution
found by the algorithm divided by the cost of the best-known solution. For each
algorithm and each optimization criterion, the table below provides the geometric
mean of the ratios obtained for the 22 instances under consideration.

The algorithms are also compared with an unpublished constraint program-
ming and local search algorithm CP+LS developed at ILOG. The results show
the interest of all the components that have been added to the initial MIP algo-
rithm. They also show that on pure problems, hybrid algorithms based on mixed
integer programming can compete with state-of-the-art techniques. Open issues
include the representation of additional constraints such as setup time and costs,
calendars, etc., as proposed in ([6]).

Algorithm Optimization criterion Overall
ET T ET UNP T UNP mean

MIP 1.626 1.708 1.370 1.774 1.612
IS+MIP 1.494 1.415 1.208 1.313 1.353
IS+MIP+RINS 1.378 1.339 1.144 1.194 1.260
IS+MIP+RINS+GD 1.192 1.188 1.088 1.094 1.140
IS+MIP+RINS+GD+MCORE 1.130 1.155 1.060 1.056 1.099

CP+LS 1.107 1.015 1.148 1.082 1.087
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Stochastic Lot-Sizing Polyhedra

George L. Nemhauser

(joint work with Yongpei Guan, Shabbir Ahmed)

We study a multi-stage stochastic integer programming model of the uncapac-
itated lot-sizing problem (ULSP) under uncertainty. The deterministic ULSP is
to determine a minimum cost production and inventory holding schedule for a
single product so as to satisfy its known demand over a finite discrete-time plan-
ning horizon. Integer variables are needed to model the fixed cost of production.
The deterministic problem is well studied. It is solvable in polynomial time by
dynamic programming and it is also possible to give a linear programming for-
mulation whose solution is integral, by adding a simple, but exponential, family
of so-called (l,S) inequalities to the standard formulation. This LP formulation is
very useful as a relaxation in solving more complicated lot-sizing problem with,
for example, capacity constraints. In the stochastic version of ULSP, demand in
each period is given by a discrete probability distribution function. This infor-
mation structure can be interpreted as a scenario tree where a node j at level
(period) t represents the state of the system that can be distinguished by infor-
mation available up to period t. In other words, each path in the tree from its
root to a leaf corresponds to a deterministic realization of the problem and has a
known probability. The objective now is to minimize the expected costs over all
of the paths. We first extend the deterministic integer programming model to the
stochastic case. Then we show that the (l,S) inequalities, which are derived from
sub-paths of the tree, are valid for the stochastic problem as well. We then give
our main contribution, which is an extension of the (l,S) inequalities to sub-trees.
We establish necessary and sufficient conditions for the sub-tree inequalities to be
facet defining. A computational study verifies the usefulness of these inequalities
as cuts in a branch-and-cut algorithm. Finally, we show how these inequalities can
be applied to other stochastic integer programming problems by giving a general
way of extending inequality descriptions of polyhedra for multi-stage deterministic
problems to stochastic versions of these problems.
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Solving Multi-Objective Models

Ed Rothberg

(joint work with B. Bixby, M. Fenelon, Z. Gu, and R. Wunderling)

Models involving a large set of linear constraints and a set of conflicting objec-
tives arise in a number of application areas. Such models are particularly common
in supply chain planning. A number of practical issues arise when solving such
models. Through extensions to CPLEX presolve and careful orchestration of the
various steps of the solution process, we are able to obtain substantial runtime
reductions.

The first question that must be addressed when solving a multi-objective model
is how to trade off the various objectives. The obvious approach of forming a single
blended objective from a linear combination of the original objectives can produce
undesirable results. Modest multipliers on objectives involving different units will
typically produce non-intuitive trade-offs. Very large multipliers, typically chosen
to achieve a strict prioritization among the objectives, quickly runs into numer-
ical difficulties due to the limitations of finite-precision arithmetic. A common
approach to combining objectives is therefore to choose a lexicographic ordering,
where an objective is treated as being infinitely more important than objectives
of lower priority.

A model involving a set of lexicographic objectives can be solved by optimizing
the highest priority objective, then fixing all variables with non-zero reduced costs,
and then continuing in the same fashion with the next highest priority objective.
At each stage in this multi-stage solution process, the LP solver must solve a model
with a static set of linear constraints, a strictly growing set of fixed variables, and
a new objective vector. Note that the solution vector for the previous objective is
also primal feasible for the next objective.

Given the limited set of changes to the model from one stage to the next (new
variable fixings and a new objective vector), one may wonder whether it would
be possible to reuse information computed during the solution of the previous
model to solve the next. In particular, CPLEX presolve performs a set of logical
reductions that decrease the size and computational difficulty of the model without
removing the optimal solution. Given the set of accumulated variables fixings in
this context, the scope for presolve reductions is substantial.

While these presolve reductions would ideally carry over from one stage to
the next, an important detail prevents this from happening. Specifically, pre-
solve performs reductions that depend on the objective vector, so the presolved
model may no longer contain the optimal solution when given a new objective
vector. CPLEX presolve therefore has been extended to classify individual reduc-
tions based on the model properties on which they depend. Presolve now allows
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the user to shut off those reductions that depend on model properties that will
change. Presolve groups reductions into two categories — primal reductions and
dual reductions. Primal reductions are those that depend only on the primal
constraints and are independent of the objective function. They are compatible
with adding additional constraints or changing the objective function. Dual reduc-
tions depend only on dual constraints, and are compatible with adding variables
and changing the right-hand-side vector. In our context, setting CPLEX parame-
ter CPX PARAM REDUCE to value CPX PREREDUCE PRIMALONLY
allows us to make changes to the objective vector while retaining the presolved
model.

Another important presolve extension whose usefulness in our context will hope-
fully be clear shortly is the ability to transform a basic solution on the original,
unpresolved model into a basic solution on the presolved model. This is done
through a process of converting the basis on the original model to a primal and
dual solution vector, then applying presolve reductions on these vectors to obtain
solution vectors on the presolved model, and finally using these vectors to guess
a basis for the presolved model. The seemingly more straightforward path of per-
forming presolve reductions on the basis itself turns out not to be possible. This
solution transformation process is encapsulated in a single parameter change in
CPLEX (CPX PARAM ADV IND = 2), whereby the next presolve invocation
will transform a model and basis into a presolved model and an associated basis.

Given these presolve capabilities, the solution of the lexicographic multi-objective
model can be performed using a straightforward sequence of steps. As each ob-
jective is considered, we maintain a current presolved model, a set of fixings on
the original and presolved models, and current basic solutions for the original and
presolved models. The following steps are then performed before moving on to the
next objective:

• If the number of fixed variables in the presolved model is large (thus sug-
gesting that further presolve reductions would be beneficial), perform a
new primal-only presolve on the original model, and transform the cur-
rent solution basis on the original model into a basis on the new presolved
model.

• Transform the current objective vector on the original model into an ob-
jective vector on the presolved model.

• Solve the LP using primal simplex, starting from the available start basis.
• Use the computed reduced costs to update the set of fixings on the original

and presolved models. Also update the basic solution on the original
model.

Computational experiments with this approach show runtime reductions whose
magnitude depends on the size of the model and the number of objectives. A
model with roughly one million constraints, 1.5 million variables, and 20 objectives
achieved a 2X performance gain. A model with roughly 2.5 million constraints,
3.5 million variables, and 20 objectives achieved a nearly 5X performance gain.
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The extensions to CPLEX presolve described here are discussed in more detail
in the CPLEX reference manual [1].
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Time-Line Network Based Optimization Models for Vehicle and Crew
Scheduling

Leena Suhl

Within planning processes in public transport, especially vehicle and crew schedul-
ing in airline, bus, and railway traffic, many tasks can be expressed as optimization
problems and modelled with techniques of mixed-integer programming. Although
the simple vehicle scheduling problem with one depot is polynomially solvable,
there are numerous aspects implying that the corresponding optimization models
become np-hard, so that problems of practical size are hardly solvable with current
state-of-the-art technologies.

We have investigated time-space-network based modelling techniques which
may drastically reduce the number of arcs within a network model. The mod-
elling approach has been applied to rotation building problems of airlines and
railways as well as to vehicle scheduling problems of bus transit. We take into
account aspects such as dead-heading and periodicity. Through an aggregation
technique we may implicitly include all possible deadhead trips into the model.
Further aspects such as maintenance routing of vehicles or break routing of crews,
multiple depots, and multiple vehicle types may be modelled as well.

Especially, the multiple-depot, multiple-vehicle-type problem of bus transit can
be modelled with a multi-layer multi-commodity aggregated flow network. Ag-
gregation of potential deadhead trips enables large-scale practical problems (with
thousands of trips) to be solved directly using standard optimization software.

The integrated rotation building and maintenance routing problem for both
airlines and railways can be modelled with an aggregated time-space flow network
as well, if we introduce maintenance states for a given maintenance rule. Further-
more, we may build rotations for groups of locomotives and carriages using special
techniques to deal with shared vehicle capacities and to aggregate “equivalent”
vehicle groups.

Analogously to maintenance routing, airline crew scheduling problems with spe-
cial rules guaranteeing night and weekend breaks (“maintenance” of human beings)
can be modelled with maintenance states as well.

All model types mentioned above have been implemented together with indus-
trial partners using a standard MIP solver such as CPLEX or MOPS. Because
very large instances still cannot be solved to optimality, the approach has been
enhanced with heuristics in order to guarantee a feasible solution in any case.
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Supply Chain Optimization and Approximate Dynamic Programming

Daniel Bienstock

This work concerns ongoing joint work between Daniel Bienstock and Guillermo
Gallego and two Ph.D. students (N. Ozbay and O. Sahin), all from Columbia Uni-
versity), and an industrial partner. This company has clients throughout the
world, and has subcontracted a large amount of its manufacturing to other com-
panies, which in turn subcontract key work to component suppliers. Our partner
company assembles the components into finished products and ships them to cus-
tomers through distribution centres (DCs) that are co-located with the customers.
The suppliers are located throughout the world.

The company faces a demand profile that is seasonal, with sharp end-of-quarter
effects. It produces forecasts that are propagated to its manufacturing subcon-
tractors (and their subcontractors) in order to mitigate shortages. A key issue
is that the manufacturing leadtime for some of the more important components
can be extremely long, when the order quantity is in substantial excess of forecast
amounts.

Our task is to produce a good buffering policy, taking into account all relevant
data (manufacturing leadtimes, shipping delays, information flow delays, batching
effects, demand profiles, and so on). Our initial work has been in the direction
of formulating the problem as a Markov Decision Process, with the aim of un-
derstanding key structural properties of optimal policies and how these can be
approximated with “reasonable” (implementable) policies.

In order to find the optimal solution to a Markov Decision Process one needs
to solve a Linear Program. This linear program will generally be quite large – the
number of variables will equal the number of states, and the number of constrains
will equal the number of (state, decision) pairs. For this reason it has generally
been believed that realistic instances will be unsolvable.

The table below presents computational experience solving LPs arising from
Markov Decision Process models. The models we consider are a generalization of
the model in [3]. In [3] the authors characterize optimal policies for the following
inventory problem: at each time period we face a constant deterministic demand λ,
which must be satisfied, and a stochastic demand that does not need to be satisfied
(when it is not satisfied we pay a penalty). In addition, at each time period we can
produce, and the production cost will include a fixed cost. The model we consider
is just like the model in [3] except that there is a positive production leadtime –
specifically, if we start production at time t the work will not be done until time
t + 2.

This change greatly increases the complexity of the model (and of the optimal
policies). The running times in the table below were obtained on a 3 GHz Xeon
machine, with 6 GB of physical RAM. The LPs were solved using the interior
point solver in CPLEX 8.1, which greatly outperformed all simplex variants.

As we can see from the table, the running times are substantial but, perhaps,
not as discouraging as one might first expect, given the size of the problems.
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n m nonz sec

6336 458304 5498372 434

10901 1023264 12277232 1112

13596 1728958 20745428 2401

16379 1609014 19305490 2467

Nevertheless, it is clear that a model with (say) ten times the number of variables
will prove beyond the reach of even the best LP solver.

To this effect, we are launching an effort to develop a good implementation
of the ideas in [2] for approximately solving dynamic programs, together with
classical ideas from the dynamic programming literature (such as Policy Iteration
and Successive Approximation) and modern ideas from computer science (see [1])
related to the approximate solution of Linear Programs.

Based on prior work, we envision a hybrid algorithm that alternates between
approximation techniques (such as those described above) and calls to an exact
LP solver.

References

[1] D. Bienstock (2002), Potential Function Methods for Approximately Solving Linear Program-
ming Problems, Theory and Practice. Kluwer (Boston).

[2] D. P. de Farias and B. Van Roy (2003), The Linear Programming Approach to Approximate
Dynamic Programming. Operations Research 51, 850 – 865.

[3] K.C. Frank, R.Q. Zhang, and I. Duenyas(2003), Optimal Policies for Inventory Systems with
Priority Demand Classes. Operations Research 51, 993 – 1002.
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