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Introduction by the Organisers

The meeting brought together people with different mathematical background,
who all use cohomological methods to study symmetries of manifolds. The main
aim was the exchange of ideas, recent results, and the discussion of open problems
and questions from diverse viewpoints. Altogether there were 27 talks (including
an evening talk on computer programs), and a Hausmusik evening with an artistic
juggling intermission.

All talks reflected the central theme of the workshop, namely the use of (equi-
variant) cohomology in studying Lie group actions on manifolds. Contribution to
the following subjects were given:

• classification of G-actions on manifolds,
• equivariant cohomology and cohomology of reduced spaces,
• fixed points and cohomology,
• Hodge theory,
• moment maps and quantization of manifolds,
• new models for the equivariant cohomology of a space,
• toric varieties.

Especially the informal discussions among participants both with similar and
with diverse mathematical background were a very important aspect of the work-
shop. We believe that the meeting has stimulated further cooperation in the study
of actions of Lie groups between mathematicians from different areas.

MSC classification: 14, 52, 53, 55, 57, 58
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Abstracts

A deformation of Hodge theory on the cotangent bundle

Jean-Michel Bismut

The purpose of my talk was to introduce a deformation of classical Hodge theory
which interpolates between classical Hodge theory and the geodesic flow. The
results have been announced in the Comptes Rendus notes [3, 2, 4], in the paper
[1], and also in joint work with Lebeau [5].

Let X be a compact manifold of dimension n, and let
(
F,∇F , gF

)
be a complex

flat vector bundle on X . Let
(
Ω· (X,F ) , dX

)
be the de Rham complex of smooth

forms on X with coefficients in F , whose cohomology is denoted H · (X,F ).
Let gTX be a Riemannian metric on TX , and let gF be a Hermitian metric on

F . Then Ω· (X,F ) is equipped with a corresponding L2 Hermitian product. Let
dX∗ be the formal adjoint of dX . Let DX = dX + dX∗ be the corresponding Dirac
operator. The associated Laplacian �

X = DX,2 is given by

(1) �
X = dXdX∗ + dX∗dX .

Let H = ker�
X be the harmonic forms. Then Hodge theory asserts that H '

H · (X,F ).
Let f : X → R be a smooth Morse function. In [11], Witten has introduced

a deformation of Hodge theory. Indeed, for T ∈ R, set dXT = e−TfdXeTf . Let
dX∗
T = eTfdX∗e−Tf be the formal adjoint of dXT , and let �

X
T be the corresponding

Laplacian. Set HT = ker�
X
T . Still, HT ' H · (X,F ). As T → +∞, all the

eigenvalues except a finite family of them tend to +∞, the other eigenvalues are 0
or are exponentially small as T → +∞. Let FT be the finite dimensional complex
of eigenbundles associated to small eigenvalues. In [11], Witten shows that FT
localizes near the critical points of f , which is enough for a proof of the Morse
inequalities. Assume that ∇f is Morse-Smale. Witten argues that FT converges in
the appropriate sense to the combinatorial Thom-Smale complex associated to ∇f .
This was proved rigorously by Helffer-Sjöstrand [8]. The Witten deformation was
used in [6] to establish the equality of the Ray-Singer and Reidemeister torsions.

We tried to adapt the above formalism to the loop space LX of X . On the one
hand, LX does not have a Hodge theory, in particular because of the lack of a
satisfactory L2 scalar product on the de Rham complex. On the other hand, LX
carries many natural S1-invariant functionals associated to Lagrangians L (x, ẋ).

Prominent among this, there is the energy functional E (x) = 1
2

∫ 1

0 |ẋ|2 dt. Morse
theory has been used successfully on LX , in particular by Bott [7] in his proof of
Bott periodicity.

Our strategy consists in trying to consider the small ‘time’ asymptotics of the

heat kernel e−s�
LX

(which does not exist . . . ) instead, by describing it in terms of
classical partial differential operators on T ∗X . To make the construction effective,

the functional integral approach is most useful. Indeed, let F =
∫ 1

0
f(xt)dt be

the obvious lift of f to an S1-invariant function on LX . Then, at least formally,
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localization of certain eigenforms near the critical points of f as T → +∞ can be
properly understood via the pull-back by ∇F of the Mathai-Quillen forms [10] of
TLX . The idea is now to replace F by E. Note that

(2) ∇E = −ẍ.

The path integral to be considered takes the form

(3)

∫

LX

exp

(
−

1

2

∫ 1

0
|ẋ|2 dt

2
−
T 2

2

∫ 1

0

|ẍ|2 dt+ . . .

)
.

The dynamic interpretation of (3) just says that

ẋ = p, ṗ =
1

T
(−p+ ẇ) ,(4)

which is equivalent to

(5) ẍ =
1

T
(−ẋ+ ẇ) .

In (4) and (5), w is a standard Brownian motion along the fibres of TX . The
second order differential operator on T ∗X which describes the dynamic in (4) and
(5) is given by

(6)
1

2

(
−∆V + |p|2 − n

)
+ ∇p.

In (6), ∇p is the Hamiltonian vector field on T ∗X associated to the Hamiltonian

H = 1
2 |p|

2
, i.e., the generator of the geodesic flow.

Our problem can then be reformulated as follows. Is there a natural deformation
of classical Hodge theory whose Laplacian on T ∗X would ‘look like’ the operator
in (6)? The answer to this question is positive. To make the argument simpler,
we take T = 1 here. Let π : T ∗X → X be the canonical projection. Let ω be the
symplectic form of T ∗X . Let η be the bilinear form on T ∗X ,

(7) η (U, V ) = 〈π∗U, π∗V 〉gT X + ω (U, V ) .

This bilinear form induces a corresponding bilinear form on Ω· (T ∗X, π∗F ). Then

we take the adjoint d
T∗X

φ,H that one obtains with respect to this bilinear form, while
making a Witten twist with respect to H. The corresponding Laplacian is indeed
of the type (6). It is not self-adjoint, but it is hypoelliptic by Hörmander [9]. It is
indeed self-adjoint with respect to a hermitian form of signature (∞,∞). When
we introduce a parameter c = 1

T , the Laplacian interpolates between classical
Hodge theory for c → +∞ and the generator of the geodesic flow for c → 0. It
has a number of analytical properties described in joint work with Lebeau [5]. In
particular the Hodge theorem holds except maybe for a discrete family of values
of c.
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Toric degenerations of spherical varieties

Michel Brion

Let G be a connected complex reductive group, i.e., G is the complexification of a
connected compact Lie group K. A polarized G-variety is a pair (X,L), where X
is a complex projective algebraic variety equipped with an algebraic action of G,
and L is an ample line bundle on X . The G-variety X is spherical, if it is normal
and contains a dense orbit of a Borel subgroup of G.

Nonsingular polarized G-varieties yield quantized Hamiltonian K-varieties, and
spherical varieties correspond to multiplicity-free spaces, i.e., those HamiltonianK-
varieties for which the preimage of any K-orbit under the moment map µ : X → k∗

(where k is the Lie algebra of K) is a unique K-orbit. The intersection of the image
of the moment map with a positive Weyl chamber is the moment polytope P (X,L),
a rational convex polytope which is an important invariant of the pair (X,L).

The simplest spherical varieties are the toric varieties, i.e., the normal vari-
eties where a complex torus (C∗)n acts with a dense orbit. These correspond to
multiplicity-free spaces under the compact torus (S1)n; they are classified by their
moment polytope, an integral polytope in RN .

In the joint work [1] with Valery Alexeev, we prove that any spherical polarized
G-variety (X,L) degenerates to a toric Q-polarized variety (X0, L0), i.e., L0 is an
ample linearized Q-line bundle on the projective toric varietyX0. The torus acting
on X0 is a quotient of T × (C∗)N , where T is a maximal torus of G, and N is the
number of positive roots of G.

Such a degeneration was first constructed by Gonciulea and Lakshmibai [5] for
Grassmanians and varieties of complete flags, by using standard monomial theory.
It was generalized to all flag varieties and their Schubert varieties by Caldero
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[4], by a very different method based on properties of the dual canonical basis in
representation theory. We build on Caldero’s work; it allows us to generalize to
all groups a result of Kaveh [6] which constructs toric degenerations of spherical
varieties under the symplectic group.

Specifically, given any polarized G-variety (X,L), we construct a T -variety X
together with a T -invariant regular function π : X → C and an ample linearized
Q-line bundle L on X , such that
(i) the restriction π−1(C∗) → C∗ identifies to the second projection X×C∗ → C∗,
and the restriction of L identifies to the pull-back of L under the first projection
X × C∗ → X .
(ii) the pair (π−1(0),Lπ−1(0)) = (X0, L0) is a polarized variety for the torus T ×

(C∗)N .
We also show that the moment polytope P (X0, L0) ⊂ t∗×RN projects onto the

moment polytope P (X,L) ⊂ t∗, with fiber at any point λ being the string polytope
Q(λ). The latter is the moment polytope of the toric limit of the flag variety G/P
associated with the point λ of the positive Weyl chamber.

If, in addition, X is spherical under G, then we show that X0 is toric under
T × (C∗)N . Then our construction provides a geometric explanation of a result of
Okounkov [8] for Hilbert polynomials of spherical varieties.

As in Caldero’s work, our degeneration depends on the choice of a reduced
decomposition w0 of the longest element of the Weyl group W . In fact, each string
polytope Q(λ) = Qw0

(λ) is the intersection of the string cone Cw0
⊂ t∗ × RN (a

rational polyhedral convex cone) with the affine space {λ} × RN .
Explicit linear inequalities defining the string cones, and hence the string poly-

topes, have been obtained by Littelmann [7] and Berenstein & Zelevinsky [3].
Further, for any dominant weight λ, the string polytope Qw0

(λ) ⊂ RN admits
a linear projection to the convex hull of the orbit Wλ ⊂ t∗, and the number of
integer points in the fiber at any weight µ is the multiplicity of µ in the simple
G-module with highest weight λ.

If G is the general linear group and w0 = (s1, s2, s1, s3, s2, s1, s4, s3, s2, s1, · · · )
is the simplest reduced decomposition, the string polytopes Qw0

(λ) are just the

Gelfand-Cetlin polytopes. In particular, they are integral polytopes in RN . In fact,
we conjecture that Qw0

(λ) is an integral polytope for G of type A, any reduced
decomposition w0, and any dominant weight λ. (This fails for other types.)

For arbitrary G and w0, we show that Qw0
(λ) is a lattice polytope whenever

the dominant weight λ is minuscule or cominuscule. Then the toric limit of the
corresponding flag variety G/P is a Fano variety; but it is singular unless G/P is
a projective space. This is related with results and conjectures of Batyrev et al.
[2] concerning mirror symmetry for Calabi-Yau hypersurfaces in flag varieties.

Examples show that the shape of the string polytopes Qw0
(λ) depends on the

choice of the reduced decomposition w0; it may also depend on the dominant
weight λ, even if it is assumed to be regular. However, these polytopes do have
some common features, e.g., the image measure of their linear projection onto
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Conv(Wλ) is the Duistermaat-Heckman measure for the action of T on the corre-
sponding flag variety G/P .
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Equivariant symplectic Hodge theory

Reyer Sjamaar

(joint work with Yi Lin)

A fuller account [6] of this work is available on the arXiv and will be published in
the Journal of Symplectic Geometry.

Let G be a connected compact Lie group and let (M,ω) be a compact sym-
plectic manifold equipped with a Hamiltonian G-action. It was proved by Kir-
wan [5] and Ginzburg [3] that the Leray spectral sequence of the fibre bundle
G → MG → BG degenerates at the first term. This implies the equivariant for-
mality theorem, which states that the equivariant cohomology H∗

G(M) is isomor-
phic to (Sg∗)G ⊗H∗(M) as an (Sg∗)G-module. Equivalently, the restriction map
H∗
G(M) → H∗(M) induced by the inclusion of the fibre M → MG is surjective.

(We use real coefficients throughout.)
In terms of the Cartan complex ΩG(M) = (Sg∗⊗Ω(M))G of M , the equivariant

formality theorem can be restated by saying that every closed form on M admits
an equivariantly closed extension. For example, equivariantly closed extensions of
the symplectic form ω are of the form ω + φ, where φ : g → Ω(M) is a moment
map for the action.

Our object is to define a section of the restriction map H∗
G(M) → H∗(M).

We accomplish this by picking a (symplectically) harmonic representative α of
a de Rham cohomology class and finding an extension αG ∈ ΩG(M) which is
equivariantly harmonic. (A form or equivariant form β is harmonic if dβ = d∗β =
0, where ∗ is Brylinski’s [2] symplectic Hodge star operator, and equivariantly
harmonic if dGβ = d∗β = 0.) The class of αG in HG(M) then turns out to
be uniquely determined by the class of α in H(M). For instance, the canonical
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extension of the symplectic class [ω] is the class [ω + φ0], where φ0 is the unique
moment map satisfying

∫
M
φ0(ξ)ω

n = 0 for all ξ ∈ g, where n is one half the
dimension of M .

However, the section [α] 7→ [αG] exists only under the assumption that every de
Rham cohomology class possesses a harmonic representative. As shown by Math-
ieu [7], this is the case precisely when (M,ω) has the strong Lefschetz property in
the sense that the map

Hn−k(M) −→ Hn+k(M), c 7−→ [ω]k ∧ c

is an isomorphism for each 0 ≤ k ≤ n. (Incidentally, under the strong Lefschetz
assumption the degeneracy of the equivariant cohomology spectral sequence follows
easily from an argument due to Blanchard [1].) We rely on a sharpened version
of Mathieu’s result due to Merkulov [8] and Guillemin [4], who independently
established the symplectic dδ-lemma. Let δ = ±∗d∗ be Koszul’s boundary operator
and suppose M has the strong Lefschetz property. The dδ-lemma asserts that

ker d ∩ im δ = im dδ = ker δ ∩ im d.

In words, if α is a harmonic k-form on M that is either exact or coexact then
α = dδβ for some k-form β. An equivariantly harmonic extension of a harmonic
form can be found by successive applications of the dδ-lemma. As a corollary we
establish an equivariant version of the dδ-lemma, to the effect that

ker dG ∩ im δ = im dGδ = ker δ ∩ im dG.

In view of the Kirwan injectivity and surjectivity theorems these results suggest
close relationships among the harmonic forms onM , the fixed-point setMT (where
T is a maximal torus of G), and the symplectic quotients of M . However, because
of the poor functorial properties of δ, these relationships remain at present obscure.

After I presented this paper at the Oberwolfach meeting, Christopher Allday
kindly pointed out that, in the case of a circle action, a section s : H∗(M) →
H∗
G(M) can also be constructed by introducing a Riemannian metric on M and

using classical elliptic Hodge theory. A formula for s can then be written down in
terms of the Green’s function for the Laplacian. Eckhard Meinrenken subsequently
showed this can be done equally well for an arbitrary compact connected G. Their
argument works for any compact Riemannian G-manifold for which the spectral
sequence in equivariant cohomology collapses at E1. (On the other hand, the
section so constructed is perhaps less natural from a symplectic point of view.)

References
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Theory of toric varieties from a topological point of view

Mikiya Masuda

The theory of toric varieties was established early 70’s (see [3], [13]). Among toric
varieties, complete non-singular toric varieties are well studied. For instance, their
cohomology and Chern classes are determined. However, these are topological in-
variants and it is possible to reprove these results using only topological technique,
and this leads us to develop a topological analogue of the theory of toric varieties.
Like the theory has applications to combinatorics (e.g., counting lattice points in
convex lattice polytopes and face numbers of simplicial convex polytopes), our
topological analogue also has applications to combinatorics, which is similar to
the toric case but treats a wider class in combinatorics.

In this talk I reported some development ([7], [8], [10], [11], [12]) on this topo-
logical analogue. Our geometrical object is a torus manifold which is a closed
omnioriented smooth manifold of even dimension, say 2n, with a smooth action of
an n-dimensional torus T = (S1)n. A complete non-singular toric variety of com-
plex dimension n with restricted T -action provides an example of a torus manifold,
but a class of torus manifolds is much wider. To a torus manifold M , one can asso-
ciate a combinatorial object ∆M called a multi-fan which reduces to an ordinary
fan when M is toric. A multi-fan is a collection of cones in which cones may
overlap. The correspondence from torus manifolds to multi-fans is not one-to-one,
but many topological invariants of M can be described in terms of ∆M .

A complete non-singular toric variety together with an equivariant ample line
bundle L associates a moment map whose image is a lattice convex polytope
PL. Using this fact, one can count a number of lattice points in PL by applying
Hirzebruch-Riemann-Roch Theorem to the bundle L. This well-known story can
be generalized to an arbitrary T -line bundle over a torus manifold. However, the
moment map image is no longer convex ([9]) and this leads us to the notion of
multi-polytope, which generalizes the notion of simple convex polytope, and allows
us to generalize results on counting lattice points in convex polytopes to multi-
polytopes.

I also discussed the equivariant cohomology of M and the topology of the or-
bit space M/T . When M is toric, M/T is (often) a simple convex polytope, the
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dual ∂(M/T )∗ of the boundary of M/T is a simplicial complex and the equivari-
ant cohomology of M is the face ring (or Stanley-Reisner ring) of the simplicial
complex. When M is a torus manifold, M/T is not necessarily a simple convex
polytope, ∂(M/T )∗ is not necessarily a simplicial complex (but a simplicial poset)
and the equivariant cohomology of M is the face ring of the simplicial poset when
Hodd(M) = 0. These topological ideas or generalization enable us to characterize
h-vectors of simplicial cell decompositions of spheres (more generally, Gorenstein*
simplicial posets), which can be viewed as a topological version of the so-called
g-theorem characterizing h-vectors of simplicial convex polytopes.
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Rational homotopy theory of toric spaces

Taras Panov

(joint work with Nigel Ray)

Since the pioneering work of Davis and Januszkiewicz [2], algebraic topologists
have been drawn increasingly towards the study of spaces which arise from well-
behaved actions of the torus T n. Investigations are no longer confined to the
properties of Davis and Januszkiewicz’s toric manifolds, but have been extended
to related geometrical structures, such as moment-angle complexes [1], subspace
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arrangements, and torus manifolds of Hattori and Masuda [4], as well as the homo-
topy types of associated spaces [8] and their rationalisations and localisations [6].
We refer to this enlarged field of activity as toric topology.

The classical models for good T n-actions are provided by the nonsingular projec-
tive toric varieties of algebraic geometry. The quotient space of any such varietyM
is a simple convex n-polytope Q. The polar polytope of Q is necessarily simplicial,
and its boundary is a simplicial complex K. By duality, Q may be decomposed as
the cone C(K ′) on the barycentric subdivision of K, and the isotropy subgroups of
the action may be recorded by assigning certain combinatorial data to the vertices
of K. It then becomes possible to reconstruct M from T n and K, and much of
toric topology stems from generalising and extending this relationship. For exam-
ple, K may first be weakened to a simplicial sphere, and ultimately to an arbitrary
simplicial complex. General toric spaces are then defined by analogy as quotients
of C(K ′) × Tn.

We use the following notation: T := T n, M := M2n a T -manifold, Q := M/T
the orbit quotient. Particular examples are

• non-singular compact toric varieties:
the T -action is a part of an algebraic (C∗)n-action with a dense orbit;

• (quasi)toric manifolds of Davis-Januszkiewicz:
they are “locally standard” (i.e., locally look like Cn with the standard
T -action) and Q is combinatorially a simple polytope;

• torus manifolds of Hattori–Masuda:
the T -fixed point set is non-empty.

Let K be a simplicial complex on V = {v1, . . . , vm} (e.g., K is the dual to the
boundary of Q). If the only missing faces have dimension 1, then K is known as
a flag complex. Denote by S(V ) the symmetric algebra on V , deg vi = 2. Given
ω ⊆ V , set vω :=

∏
i∈ω vi. The Stanley-Reisner algebra [9] (or the face ring) of K

is given by

Z[K] := S(V )/(vω : ω /∈ K).

A key example is Davis and Januszkiewicz’s space DJ (K), whose integral co-
homology H∗(DJ (K); Z) is isomorphic to Z[K]. The space DJ (K) is homotopy
equivalent to the colimit, or nested union, of the classifying spaces BT σ ⊆ BTm

over the faces σ ∈ K. We therefore have

• (CP∞)∨m ⊆ DJ (K) ⊆ (CP∞)×m;
• DJ (K) ' ET ×T M for K = (∂Q)∗;
• H∗(DJ (K); Z) ∼= H∗

T (M ; Z) ∼= Z[K].

Another important toric space, the moment-angle complex ZK , is defined as the
homotopy fibre of the inclusion DJ (K) ↪→ BTm. We therefore have two homotopy
pullback diagrams

ZK −−−−→ ETm
y

y

DJ (K) −−−−→ BTm

and

M2n −−−−→ ET n
y

y

DJ (K) −−−−→ BT n
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The map DJ (K) → BT n is determined by a choice of a regular sequence in the
Cohen–Macaulay algebra Z[K] = H∗(DJ (K)).

Our aim is to relate

• the topology of M , ZK , DJ (K) and their loop spaces,
• the combinatorics of Q and K, and
• the commutative and homological algebra of Q[K]

through rational homotopy theory.
According to a result of [6], the space DJ (K) is formal and Q[K] (with zero

differential) is a rational model. In [7] we

(1) describe rational models for M and ZK as free extensions of the face ring
Q[K] and recover the cohomology calculations of [2] and [1] accordingly;

(2) show that all toric manifolds and those torus manifolds whose cohomology
is concentrated in even dimensions are formal;

(3) identify the Pontrjagin homology ring of the loop space ΩDJ (K) with
ExtQ[K](Q,Q);

(4) for flag complexes K appeal to results of Fröberg [3] which establish the
Koszul property for the quadratic algebra Q[K], and we deduce an explicit
presentation of H∗(ΩDJ (K),Q) with generators and relations, as well as
calculate its Poincaré series in terms of the h-vector of K;

(5) for arbitraryK describe rational models forΩ DJ (K) in terms of its homo-
topy colimit [10] decomposition, mirroring the results of [8], which present
ΩDJ (K) as a homotopy colimit of a diagram of tori in the category of
topological monoids.

The last item requires a careful analysis of the model category structure [5] in the
related algebraic categories (differential graded algebras, coalgebras, Lie algebras,
etc.), as well as an explicit construction of appropriate homotopy colimits.
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Equivariant vector fields and cohomology

Jim Carrell

1. Opening comments

The purpose of this talk is to give a survey of some results, both old and new, on
the connection between zeros of vector fields and cohomology. The starting point
is the Koszul complex of a holomorphic vector field V on a smooth projective
variety X . Let OX be the sheaf of holomorphic functions on X . The vector
field V defines a derivation V : OX → OX , which extends to give a contraction
operator i(V ) : Ωp → Ωp−1 on the sheaves of holomorphic p-forms on X such that
i(V )2 = 0. In addition, for all φ, ω ∈ Ω∗,

i(V )(φ ∧ ω) = i(V )φ ∧ ω + (−1)pφ ∧ i(V )ω

if φ ∈ Ωp. This gives a complex K∗ of sheaves

0 → Ωn → Ωn−1 → · · · → Ω1 → OX → 0(1)

where n = dimX , and, in turn, a spectral sequence whose first term is E−p,q
1 =

Hq(X,Ωp) with first differential i(V ). The key point, which was proved in a joint
paper with David Lieberman [5] is that if V has zeros, then every differential in
this spectral sequence is zero. This is an application of the Deligne degeneracy
criterion and a lemma due to Lichnerowicz. Consequently E1 = E∞, and we
obtain a C-algebra isomorphism

⊕

s

Hq+s
(
X,Ωq

)
∼=
⊕

s

FsH
q(K∗)/Fs−1H

q(K∗),(2)

where Hq(K∗) denotes the hypercohomology of this Koszul complex and F· is its
canonical filtration.

A second point proved in [5] (also see [7]) is that the hypercohomology groups
Hq(K∗) vanish when q > dim zero(V ). In fact, zero(V ) can be viewed as the
scheme Z defined by the sheaf of ideals i(V )Ω1 ⊂ OX , so when this scheme is
finite (and non trivial), we get the following result:

Theorem 1. When V has isolated zeros, then Hp(X,Ωq) = {0} for all p 6= q
(hence Hp(X,Ωp) = H2p(X,C)), and there exists a C-algebra isomorphism

⊕

p

H2p
(
X,C

)
∼=
⊕

s

FpC[Z]/Fp−1C[Z],

where C[Z] is the coordinate ring of the scheme Z.

For further discussion, see [7].
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2. The semi-simple and nilpotent cases

For the rest of the talk, we will assume that Hp(X,Ωq) is trivial when p 6= q.
This implies, as above, that H2k+1(X,C) = 0 and H2k(X,C) = Hk(X,Ωk) for all
k. Then there are two situations of particular interest. The first is where V is
generated by a torus action on X . In this case Z is reduced and smooth. If Z is
finite, then C[Z] = H0(Z,C) and H∗(X,C) is the associated graded of a certain
filtration of the ring of all C-valued functions on Z. More generally, under the
above vanishing assumption, Hp(K∗) = Hp(Z,Ωp), so we can write

H∗(X,C) ∼= Gr
(
H∗(Z,C)

)
,

for some filtration of H∗(Z,C). Unfortunately, this filtration is difficult to describe
in general, although in the finite case we can state a recent result of K. Kaveh.

Theorem 2. Suppose Z is finite and V is generated by a C∗-action on X. Then
the localization map i∗Z : H∗

C∗(X,C) → H∗
C∗(Z,C) is injective. Thus, for any

α ∈ H∗
C∗(X,C), we can write i∗Z(α) = (f1, f2, . . . , fN ), where N = |Z| and

each fi ∈ C[u] for a certain indeterminate u. If α ∈ H2d
C∗(X,C), put φ(α) =

(f
(d)
1 (0), . . . , f

(d)
N (0)). Then φ

(
H2d

C∗(X,C)
)

= Fd
(
C[Z]

)
.

This describes an explicit connection between equivariant cohomology and The-
orem 1. I was also informed by Volker Puppe that a similar result holds in the
topological setting. For this, see Cohomological Methods in Transformation Groups
by C. Allday and V. Puppe, Cambridge Univ. Press (1993).

Before giving examples, let us describe the second case, which has some truly
surprising features. Here V is generated by an algebraic C-action ϕ : C → Aut(X)
on X , and there is a C∗-action (say λ : C∗ → Aut(X)) on X such that

λ(a)ϕ(z)λ(a−1) = ϕ(a2z) .

Equivalently, X admits an action of the group B of all upper triangular 2 × 2
matrices over C having determinant 1. By a theorem of Horrocks, zero(V ) is
connected, so if zero(V ) is also finite, then V has a unique zero. Moreover, the
C∗-action determines a grading on H0(K∗). The remarkable fact is that even if
zero(V ) is not finite, this grading has the property that H0(K∗) ∼= GrH0(K∗).
Hence, we get

Theorem 3. Suppose Hp(X,Ωq) vanishes if p 6= q and X admits an action of
the group B such that XB is non empty. Then there is an isomorphism of graded
rings between H∗(X,C) and the hypercohomology algebra H0(K∗).

Recently, Behrend and O’Halloran [1] used this result to describe the cohomol-
ogy of the stable map space X = M0,0(P

n, d) of genus zero curves of degree d in
Pn. Incidentally, it is unlikely that one could have Hp(X,Ωq) = 0 if p 6= q and
XB = ∅.

3. Examples and applications

Let us begin with the simplest possible example. Let X = Pn and consider the
C-action on X defined by exp tJ , where J is the (n+1)× (n+1) matrix in Jordan
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canonical form with one Jordan block. Clearly Z is supported by the point [e0]
defined by the first coordinate vector. Now V is generated by exp tJ . Using affine
coordinates w1 = z1/z0, . . . , wn = zn/z0 near [e0], we find that

V = (w2 − w2
1)∂/∂w1 + (w3 − w1w2)∂/∂w2 +

+ · · · + (wn − w1wn−1)∂/∂wn−1 − w1wn∂/∂wn.

Hence

C[Z] = C[w1, . . . , wn]/(w2 − w2
1 , w3 − w1w2, . . . ,−w1wn)

After simplifying we realize that C[Z] is the graded ring

C[Z] = C[w1]/(w
n+1
1 ).

Consequently, there is an isomorphism C[Z] ∼= H∗(Pn,C). To see how the iso-
morphism is obtained, we need to study the localization of the Chern classes of
a V -equivariant vector bundle to Z. We refer to [6] where this computation is
explicitly carried out.

The most useful applications of the above results seem to occur in representation
theoretical settings. Thus let G denote a semi-simple algebraic group over C and
let B be a Borel subgroup. The flag variety G/B parameterizes the set of all Borel
subgroups of G. Suppose T is a maximal torus in B, and let W be the Weyl group
NG(T )/T . If we let W be the semi-simple vector field on G/B generated by a
generic one dimensional torus in T , then W has isolated zeros, and it turns out
that the picture that one gets from Theorem 1 is that

H∗(G/B,C) ∼= Gr C[W · h],

where h ∈ Lie(T ) is the element defining W and W · h is the orbit of h under
W . (For details, see [3].) The only thing we have to describe is the filtration
on C[W · h]. But W · h is closed in Lie(T ) so its coordinate ring C[W · h] is
the quotient of a graded ring by an ideal, hence it has a natural filtration which
defines Gr. This description can be easily identified with the famous Borel picture
of H∗(G/B,C) as the co-invariant algebra of W (see [3]).

On the other hand, a B-action on G/B with the unique fixed point property is
obtained by starting with a regular nilpotent in Lie(B). We refer the reader to [4]
for the complete construction. The point is that V vanishes exactly at the Borel
B, and what one obtains by following through the isomorphism of Theorem 1 is
the famous result of Kostant that asserts H∗(G/B,C) ∼= C[N ∩ Lie(T )] [3].

4. Equivariant cohomology and equivariant vector fields

Finally, we will discuss a recent joint result with M. Brion [2]. Suppose X is a
smooth projective variety admitting a B-action satisfying the fixed point assump-
tion that V has exactly one zero o, and let T denote the maximal torus of B on
the diagonal. Now X has a finite number of B-stable curves, namely the closures
of the orbits of the T -fixed points in X distinct from o. On the other hand, B

acts on P1, so it acts naturally on X × P1 with unique fixed point (o, 0). Hence
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the closure of the orbit B(x,∞), where x ∈ XT , is a T -stable curve Zx in X×P1.
Let

Z =
⋃

x∈XT

(
Zx − (x,∞)

)
.

An interpretation of this curve is given in the following

Theorem 4. The curve Z is an affine T -stable subvariety of X × C such that
every pair of irreducible components of Z meet exactly at (o, 0). More importantly,
the coordinate ring C[Z ] is isomorphic as a graded C-algebra with the equivariant
cohomology algebra H∗

T (X,C).

This result can be viewed as an analogue of the Goresky-Kottitz-MacPherson
picture of T -equivariant cohomology in terms of the momentum graph associated
to a torus action with finitely many T -curves [8]. In fact, the variety Z is well
defined independently of whether X is smooth, as long as we have the condition
that the unipotent radical of B has a unique fixed point. This viewpoint allows
one to extend many of the above results to the case where X is singular.
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Intersection numbers in reduced spaces of q-Hamiltonian spaces

Lisa Jeffrey

(joint work with Joon-Hyeok Song)

The definition of a quasi-Hamiltonian (abbreviated q-Hamiltonian) G-space was
given by Alekseev, Malkin and Meinrenken in [1]: it is a manifold M equipped
with the action of a compact Lie group G, a 2-form ω and a map Φ: M → G
satisfying the following properties:

(1) dω = −Φ∗χ where χ ∈ Ω3(G) is given by χ = 1
12 〈θ, [θ, θ]〉
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(2) iξ#ω = 1
2Φ∗〈θ + θ̄, ξ〉

(3) Ker(ωx) = {ξ#(x), ξ ∈ Ker(Ad(Φ(x)) + 1)

Here, θ (resp. θ̄) is the left-invariant (resp. right-invariant) Maurer-Cartan form,
and ξ is an arbitrary element of the Lie algebra g which generates a Hamiltonian
vector field ξ# on M via the action of G.

Examples of q-Hamiltonian spaces include conjugacy classes, the double G×G
of a compact Lie group G, and S4 [1, 2]. A fundamental property is that if M1

and M2 are both q-Hamiltonian G-spaces, then M1 ×M2 is also a q-Hamiltonian
G-space (via the fusion product).

If c ∈ Z(G), the reduced space Mc of M at c is defined by Mc = Φ−1(c)/G.
If c is a regular value of Φ, then Mc is a symplectic orbifold (it is a symplectic
manifold if in addition G acts freely on Φ−1(c)). In [2] (see also [3]) a formula
was given for intersection numbers in Mc, in terms of fixed point data on M (the
components F of fixed point sets of subgroups of the maximal torus T of G, the
values of Φ(F ), and the equivariant Euler classes of the normal bundles to F in
M).

In [7] Jeffrey and Kirwan gave formulas for intersection numbers in reduced

spaces of Hamiltonian G-spaces M̃ in terms of fixed point data. In [8] they
adapted these methods to give formulas for intersection numbers in the moduli
space M(n, d) of semistable holomorphic vector bundles of rank n, degree d and
fixed determinant over a compact Riemann surface, when n and d are coprime.
The space M(n, d) is the motivating example for q-Hamiltonian reduced spaces,
since it is the q-Hamiltonian reduced space Mc of the q-Hamiltonian space G2g

where G = SU(n) and the action of G is by conjugation, and c = e2πid/nI. In
this talk (which describes the results in [9]) we adapt the methods of [8] to give
formulas for intersection numbers in reduced spaces of q-Hamiltonian spaces. By
this means we recover the formulas of [2].

The key steps may be summarized as follows.

Step 1: For a q-Hamiltonian G-space M we define a Hamiltonian G-space M̃ via
the following construction:

M̃
µ

−−−−→ g

π1

y
yc exp

M
Φ

−−−−→ G

The space M̃ has a nondegenerate closed 2-form Ω = π∗
1ω+µ∗σ where σ ∈ Ω2(g)

satisfies dσ = exp∗ χ.

Step 2 (equivariant Poincaré dual): The space M̃ is singular. This leads us

to introduce α ∈ H∗
G(M × g) with the property that for all forms η ∈ Ω∗

G(M̃)

supported on the smooth locus of M̃ , we have
∫

fM
η =

∫

M×g

ηα.
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This enables us to replace the singular space M̃ by the smooth manifold M × g.

The form α is the equivariant Poincaré dual of M̃ .

Step 3 (periodicity): Guillemin-Kalkman [6] and Martin [10] proved that if
a, b ∈ t∗ are two regular values of the moment map for the action of a torus T of

rank r on a Hamiltonian T -space M̃ , one has
∫

µ−1(a)/T

κr(ηe
ω̄) −

∫

µ−1(b)/T

κr(ηe
ω̄) =

∑

i

∫

Mi

κr−1

(
ResY=0

ηeω̄

eMi

)

where κr : H∗
T (M) → H∗(µ−1(a)/T is the Kirwan map in rank r, and Mi is a

component of the fixed point set of a one parameter subgroup S ∼= S1 (whose Lie
algebra is generated by ê1 ∈ t and with Y = 〈ê1, X〉 for X ∈ t), for which the
image of Mi under the moment map intersects a ray between a and b. The final
result expresses κ(ηeω̄) as the iterated residue of a sum over the fixed point set of

the maximal torus T acting on M̃ .
If λ ∈ t (the Lie algebra of T ) satisfies the condition that expλ = 1, then

µ−1(λ+ t)/T ∼= µ−1(t)/T

for all t ∈ t as symplectic manifolds. The only difference is that the (constant)
value of the moment map has been shifted by the addition of λ. We combine this
with the previous paragraph to obtain (when 0 is a regular value for µ)

∫

µ−1(0)/T

κr(ηe
ω̄) =

∑

Mi⊂MS :−|ê1|2<〈ê1,µ(Mi)〉<0

∫

E

κr−1ResY=0
ηeω̄

eMi
(1 − eY )

where Y = 〈ê1, X〉 for X ∈ t. We use this, combined with a key lemma which
asserts that the fixed point set of a circle subgroup acting on a q-Hamiltonian
G-space is itself a q-Hamiltonian H-space where H is a subgroup of G of lower
rank, to enable us to make an argument by induction on the rank of G.

Step 4 (Szenes’ theorem): To recover the formula of Alekseev-Meinrenken-
Woodward [2], we make use of a result of Szenes [11] (see also Brion-Vergne [4, 5])
which expresses an iterated residue as the sum of a meromorphic function evaluated
at points of the weight lattice.
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The Hermitian eigenvalue problem and
a new product in the cohomology of flag varieties

Shrawan Kumar

Let G be a complex semisimple algebraic group and let K be a maximal compact
subgroup with their Lie algebras g and k respectively. Consider the Cartan decom-
position g = k ⊕ p. Choose a maximal subalgebra (which is necessarily abelian)
a ⊂ p and let a+ be a dominant chamber in a. Then any K-orbit in p intersects
a+ in a unique point.

For any n ≥ 2, the celebrated Hermitian eigenvalue problem concerns determin-
ing the following subset ∆n of an+:

∆n :=
{
(a1, . . . , an) ∈ an+ : ∃(x1, . . . , xn) ∈ pn with

∑
xi = 0 and xi ∈ AdK.ai

}
.

By works of several mathematicians including Klyachko, Berenstein-Sjamaar, and
Belkale, ∆n is given by certain inequalities parametrized by standard maximal
parabolic subgroups P of G and n Schubert cohomology classes εPw1

, . . . , εPwn
such

that

εPw1
· · · · · εPwn

= εP ,

where εP is the top cohomology class of G/P .
But, as shown by Kumar-Leeb-Millson, these sets of inequalities are, in general,

not irredundant.
Now, the main topic of this talk is a recent joint work with Belkale. We give

a new commutative and associative product in the cohomology H∗(G/P ) of any
flag variety G/P (which still satisfies the Poincaré duality) and show that the
ineqalities determining ∆n are given in terms of this new product in H∗(G/P ) for
maximal parabolics P . This results in general in far fewer inequalities determining
∆n. We show that for simple groups of rank 3, our new set of inequalities is an
irredundant system.

We believe that similar results can be obtained for the cone determining when
the product of n elements in K is 1 in terms of the modified product in the
quantum cohomology of G/P ’s.
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Equivariant cohomology of supervector bundles

Pascal Lavaud

1. Introduction

The motivation of this work is the generalization of the Berline-Vergne’s local-
ization formula (cf. [3]) to the supergeometric situation (cf. [6, 7]). The first step
consist to construct an equivariant Thom form for an Euclidean oriented supervec-
tor bundle. Since the odd part of an Euclidean supervector bundle is a symplectic
vector bundle, in a first part we study some aspects of equivariant cohomology
of symplectic vector bundles. Let V → M be an equivariant symplectic vector
bundle. We construct an equivariant form with generalized coefficients α which is
integrable along the fibres of V and such that its restriction to M is 1. We give
some of its properties.
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In a second part we recall some basic definitions of supergeometry. We define
change of parity Π on a supervector space V and a “Fourier transform” between
forms on V and forms on ΠV . When ΠV is symplectic and and V0 is oriented, we
show that the “Fourier transform” of the above form α on ΠV gives the Mathai-
Quillen construction of a Thom form on the Euclidean supervector space V .

2. Symplectic case

General situation. Let G be a Lie group with Lie algebra g. Let π : V → M
be a G-equivariant vector bundle of rank k. Let ΓV the sheaf of sections of V .
Let B a G-invariant symplectic structure on the fibers. It induces an orientation
of V . For X ∈ g, we denote by XM the vector field on M generated by the
infinitesimal action of G in the direction of X . For a vector field ζ on M we
denote by ι(ζ) : Ω(M) → Ω(M) the operator of contraction by ζ. Let (Zi) be a
basis of g and (zi) be its dual basis. We put: ι =

∑
i

ziι(ZiM ).

Integrable forms. We say that ω ∈ Ω(V) is integrable (resp. integrable along the
fibres) if ω is compactly supported on M and rapidly decreasing in the direction
of the fibers (resp. is rapidly decreasing in the direction of the fibers). We denote
by ΩR (V) (resp. Ωπ∗

(V)) the set of integrable forms (resp. forms integrable in the

fibers). For ω ∈ Ωπ∗
(V), we denote by

∫
V/M ω its integral along the fibers.

Equivariant forms with generalized coefficients. We denote by

Ω−∞
G (M) =

(
C−∞(g)⊗̂Ω(M)

)G

the set of equivariant forms with generalized coefficients introduced by Kumar-
Vergne [5]. We denote by Ω−∞

G,
R (V) (resp. Ω−∞

G,π∗

(V)) the set of integrable (resp. in-

tegrable along the fibres) equivariant forms with generalized coefficients on V . Let
α ∈ Ω−∞

G,
R (V) (resp. α ∈ Ω−∞

G,π∗

(V)). Let dX be a Lebesgue measure on g and

f(X) ∈ C∞
c (g). Then, by definition:

∫
g
dXf(X)α(X) ∈ ΩR (V) (resp. ∈ Ωπ∗

(V)).

We define the equivariant differential by dg = d − iι. We use the notion of su-
perconnection A on V defined by Mathai-Quillen [9] and of equivariant connection
Ag, equivariant curvature Fg and equivariant moment µ as defined in [2].
A special condition. We assume that there exists a covering of M by open
subsets W ⊂M such that

O(W ) =
{
X ∈ g

/
∀m ∈W, ∀v ∈ Vm \ {0}, B(v, µ(X)v) > 0

}

contains a non-empty open subset.
Definition of the form α. Let (ej) be a local basis of sections of V and (yj) be

its dual basis. We put ε =
∑
j

ejy
j ∈

(
ΓV(M) ⊗

C∞(M)
C∞(V)

)G
= ΓV(V ×

M
V)G. We

lift A to a connection of V ×
M
V → V . We put

α = exp
(
−

1

2
dg

(
B(ε,Agε)

))
= exp

(
−

1

2
B(ε,A2

gε) −
1

2
B(Agε,Agε)

)
∈ ΩG(V).



1060 Oberwolfach Report 20/2004

We denote by j : M ↪→ V the zero section. Thus j∗ : Ω(V) → Ω(M) is the
restriction morphism. We have α ∈ Ω−∞

G,π∗

(V), dgα = 0 and j∗α = 1.

Remark: We have α ∈ ΩG(V) and α ∈ Ω−∞
G,π∗

(V), but α 6∈ ΩG,π∗
(V).

Injection in cohomology. Let ω ∈ ΩG,
R (V). Then in H−∞

G,
R (V) we have the

following equality: ω ≡ π∗(j∗ω)α. It follows that the map HG,
R (V) → HG,

R (M),

ω 7→ j∗ω is injective and
∫
V ω(X) =

∫
M

(∫
V/M α(X)

)
j∗ω(X).

Inverse Euler form. Assume that V has an Euclidean structure Q which is
G- and A-invariant. Let Eg ∈ ΩG(M) be an element of the equivariant Eu-
ler class of V . Let W ⊂ M and U(W ) ⊂ g be open subsets such that for
X ∈ U(W ), the form Eg(X) is invertible on W . Then E−1

g ≡ 1

(2iπ)
k
2

∫
V/M α in

H
(
C∞(U(W ),Ω(W ))G, dg

)
.

“Super” remark: All what has been said above can easily be generalized to
super objects with one technical supplementary condition on the connection A.

3. Super

Supermanifolds. Now we assume that M is a point and V = V = V0 ⊕ V1

is a supervector space. We put dim(V ) = (dim(V0), dim(V1)) = (m,n). For an
homogenous element v ∈ V we denote by p(v) ∈ Z/2Z its parity. A supermanifold
structure on V is given by a sheaf CV of superalgebras such that for any open
subset U ⊂ V0, CV (U) = C∞(U)⊗Λ(V ∗

1 ). Let (x1, . . . , xm) be a basis of V ∗
0

and
(ξ1, . . . , ξn) be a basis of V ∗

1
. Let U ⊂ V0 be open and f ∈ CV (U). Then we write

f =
∑

I∈{0,1}n

ξIfI(x
1, . . . , xm) where fI ∈ C∞(U).

Reverse parity. Let ΠV the supervector space with (ΠV )0 = V1 and (ΠV )1 =
V0. We denote by Π : V → ΠV the “odd identity”. For φ ∈ V ∗ non-zero and
homogeneous and v ∈ V we put (Πφ)(Πv) = (−1)p(φ)φ(v). This can be linearly
extended to an odd isomorphism V ∗ → (ΠV )∗. Similarly for any non-zero homo-
geneous φ ∈ gl(V ) and any v ∈ V we put φ(Πv) = (−1)p(φ)

Πφ(v). This induces an
even isomorphism gl(V ) → gl(ΠV ). This way we identify the two algebras.

Pseudodifferential forms. Let V be a supervector space. We put V̂ = V ⊕ΠV .

Since the tangent space of V is TV = V ⊕ V , the space V̂ is TV with reverse
parity in the fibers. We define the pseudodiffential forms on V as the functions on

V̂ . We denote by Ω̂(V ) = CbV ((V̂ )0) the algebra of pseudodifferential forms on V .

We put dxi = Πxi and dξj = Πξj (p(dxi) = 1 and p(dξj) = 0). For ω ∈ Ω̂(V )
we have ω =

∑
I,J

dxIξJωI,J(x, dξ) where the ωI,J are smooth functions of the

variables xi and dξj . The exterior differential is the vector field on V̂ defined by
d =

∑
i

dxi ∂
∂xi +

∑
j

dξj ∂
∂ξj . Other differential operators as defined in the same way.

Integration. We say that ω ∈ Ω̂(V ) is integrable if all ωI,J are rapidly de-

creasing in the xi and in the dξj . We denote by Ω̂R (V ) the set of integrable
differential forms on V . We assume that V is globally oriented, which means
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that V is oriented as a vector space (without grading). Let ω ∈ Ω̂R (V ). We

put
∫
V
ω = (−1)

(n+m)(n+m−1)
2

∫
bV |d(x,dξ)|ω(1,...,1),(1,...,1)(x, dξ) where |d(x,dξ)| is the

Lebesgue measure on (V̂ )0. This does not depends on the globally oriented coor-
dinate system (x, ξ) (cf. [1]).

We refer for example to [1, 4] for definitions of supergroups. The definition of
equivariant forms is similar to the classical one (cf. [6, 8]).
“Fourier transform.” We put: ηi = Πxi and yj = Πξj . Then (yj , ηi) are

standard coordinates on ΠV . We define a map χ : Ω̂R (V ) → Ω̂R (ΠV ) by

χ(ω) =

∫

V

ω(xi, ξj , dxi, dξj) exp−i
(∑

j

yjdξj + dyjξj +
∑

i

ηidxi + dηixi
)
.

We denote by χ : Ω̂(ΠV ) → Ω̂(V ) the map obtained by exchanging V and ΠV and
replacing −i by i. Let jΠ : {0} ↪→ ΠV be the canonical injection.

We have in particular for ω ∈ Ω̂R (V ):
∫
V
ω = j∗

Π(χ(ω)) and χ
(
χ(ω)

)
=

(2π)m+nω. When V is a G-vector space, χ induces an isomorphism in equivariant
cohomology.
Thom form. We assume that V has an invariant Euclidean structure Q and
is globally oriented. This means that V0 is oriented, Q|V0

is a scalar product
and Q|V1

is a symplectic form. We define a symplectic structure ΠQ on ΠV by
ΠQ(Πv,Πw) = (−1)p(v)Q(v, w). We assume that there exists an X ∈ g0 such that
Q(v,Xv) > 0 for any non-zero v ∈ V1. As in the fist part, we can construct the

form α ∈ Ω̂−∞
G,

R (ΠV ) such that dgα = 0 and j∗
Πα = 1. Then the form θ = χ(α) is a

Thom form on V . This means that θ ∈ Ω̂−∞
G,

R (V ), dgθ = 0 and
∫
V θ(X) = 1. This

gives the same form as the Mathai-Quillen representative of a Thom form (cf. [9]).
Remark: The use of generalized coefficients is necessary. Otherwise we could
evaluate θ(0) ∈ ΩR (V ) which should satisfy dθ(0) = 0. But is easy to see that if

V 6= V0, this implies
∫
V
θ(0) = 0.
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Morse theory on Hamiltonian G-spaces
and bases of equivariant K-theory

Mikhail Kogan

(joint work with Victor Guillemin)

This talk is based on the joint work with Victor Guillemin [GK].
Let M be a compact symplectic manifold, G an n-dimensional compact torus

and σ : G×M →M a Hamiltonian action. Assume the fixed point set MG is
finite. Let T be a circle subgroup of G with the property that MT = MG and
let φ : M → R be the T moment map. This function is a Morse function and all
its critical points are of even index; so, by standard Morse theory, the unstable
manifolds of φ with respect to a G-invariant Riemannian metric define a basis of
H∗(M,R) and by Poincare duality a basis for H∗(M,R) consisting of the Thom
classes of the closures of unstable manifolds. Moreover, these unstable manifolds
are G-invariant so they also define a basis for H∗

G(M) as a module over H∗
G(pt).

In K-theory the situation is a little more complicated. The critical points of φ
carry a natural partial order, which is defined by setting p ≤ q if q is inside
the closure of the unstable manifold of φ at p and then completing this order by
transitivity. So, for any unstable manifold U of φ at p one can consider the union

WU =
⋃
Uq

of unstable manifolds Uq for q ≥ p. It is known that there exist classes in K-theory
which are supported on this set. However, except in certain special cases (e.g.,
algebraic torus actions), it is not known whether there is a genuine (Thom) class
in K-theory associated with U . (For algebraic torus actions such classes can be
defined using the structure sheaf of the closure of U , see [BFM] for details).

We can show, however, that there is another way of attaching to the Morse
decomposition of M a basis of KG(M) which works even in the case of nonalge-
braic torus actions. (In the algebraic case our classes will be different from those
constructed using structure sheaves.) The key idea in our approach is a notion of
local index for a K-class a ∈ KG(M) at a critical point p of φ. This is defined as
follows: Let S be the stable manifold of φ at p, and for small ε > 0 let Sε be the
compact symplectic orbifold obtained from S by the symplectic cutting operation
of Lerman [Ler]. We recall that Sε is obtained from the manifold with boundary

(1) S̃ε = {x ∈ S, φ(x) ≥ φ(p) − ε}

by collapsing to points the T -orbits on the boundary. Then there is a naturally
defined map κε : KG(M) → KG(Sε).

Now let the local index of a ∈ KG(M) at p,

Ip(a) ∈ KG(pt)

be the Atiyah-Segal index of κε(a), that is, the pushforward of κε(a) with respect
to the map Sε → pt. Recall that KG(pt) is just the representation ring R(G) of
the torus G, so that each local index is just a virtual representation of G. Our
main result is the following theorem.
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Theorem 1. Let p be a critical point of φ and U the unstable manifold of φ at p.
Then there exists a unique K-theory class τp ∈ KG(M) with the properties:

(i) Ip(τp) = 1,
(ii) Iq(τp) = 0 for all critical points q of φ except p,
(iii) The restriction of τp to a critical point q is zero unless q ∈ WU .

Moreover, the τp’s generate KG(M) freely as a module over KG(pt).

Let I : KG(M) → KG(MG) be the map which takes the value Ip at p. This we
will call the total index map. (Note that the total index is not an R(G)-module
homomorphism but it is a homomorphism with respect to the subring, R(G/T ),
of R(G).) Theorem 1 implies

Corollary 2. The total index map, I, is an R(G/T ) module isomorphism.

Remark 3. Notice that local indices can also be defined in the setting of equivari-
ant cohomology. Namely, for a ∈ H∗

G(M), we let Ip(a) be the pushforward (the
integral over Sε) of κ′ε(a), where κ′ε : H

∗
G(M) → H∗

G(Sε). An analogue of Theo-
rem 1 holds for equivariant cohomology, and the cohomological analogues of the τp’s
are “the equivariant Poincare duals” of the closures of the unstable manifolds.

We can also prove a constructive version of Theorem 1 for GKM spaces, that
is, an explicit computation of the classes τp. Let us recall some facts about GKM
spaces. The one-skeleton of M

(2) {x ∈M, dimG · x = 1}

is a union of symplectic submanifolds of M . The action σ is defined to be a GKM
action and M a GKM space if each component of the one-skeleton is exactly of
dimension 2 and hence a symplectic two-sphere. Then there is a graph Γ associated
to σ, whose vertices are given by the fixed points and edges are given by the two-
spheres of the one-skeleton. Moreover, Γ is equipped with a function which labels
each oriented edge e = (p→ q) of Γ by the weight αe of the isotropy representation
of G on the tangent space at p of the two-sphere corresponding to e.

One knows that the restriction map

(3) KG(M) → KG(MG) =
⊕̀

i=1

KG(pi)

is injective. Since KG(pt) = R(G), an element of the ring KG(MG) is just a map
on MG,

(4) χ : MG → R(G)

Theorem 4 ([At, KR]1). For each e ∈ E connecting p, q ∈ MG the homomor-
phisms

e2π
√
−1αep : G→ S1 and e2π

√
−1αeq : G→ S1

1An analogous statement for equivariant cohomology is proved in [GKM].
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have the same kernel. Denote this kernel by Ge. Then the element (4) of KG(MG)
is in the image of (3) if and only if for every e ∈ E

(5) re(χp) = re(χq)

p and q being the vertices of e and re the restriction map R(G) → R(Ge).

For GKM manifolds one can translate some aspects of Morse theory into the
language of graphs. Recall that φ is the moment map on M with respect to the
circle T -action. Think of each edge e of the graph connecting vertices p and q
as two oriented edges ep and eq. Then if φ(p) > φ(q) we say that the edge ep
going from p to q is descending and eq from q to p ascending. If U is the unstable
manifold of φ at p then every fixed point, q, inside WG

U is the terminal point of
a path on Γ starting at p and consisting of ascending edges; and this gives one a
way of describing WU in terms of Γ. In particular, we prove an explicit formula for
the image of τp under the imbedding (3), which expresses the restriction of τp to
q ∈MG as a sum of combinatorial expressions associated with the ascending paths
in Γ going from p to q. (An analogous formula for the cohomological counterpart
of τp can be found in [GZ].) This formula follows from the following theorem,
which allows one to compute local indices in terms of restrictions of K-theory
classes to fixed points and vice versa.

Theorem 5. For p ∈ V = MG, let e1, . . . , em be the descending edges with initial
vertex at p. Let the edge ei connect p to qi and be labeled by the weight αi. Then
for any a ∈ KG(M) we have

(6) Ip(a) =

m∑

i=1

π̃ir̃i

( aqi

(1 − ζ)
∏
j 6=i
(
1 − e2π

√−1αj

)
)

+
ap∏m

i=1(1 − e2π
√−1αi)

,

where aq is the restriction of a to q, ζ is the generator of the character ring R(T ),
r̃i is the restriction R(G × T ) → R(Gei

× T ) and π̃i : R(Gei
× T ) → R(G) is the

pushforward map produced by averaging along the fibers of the map Gei
× T → G.

This theorem is proved by applying Atiyah-Segal localization formula [AS] for
the cut space Sε. We can also prove a combinatorial version of this theorem which
is a natural generalization of Lagrange interpolation formula.
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Integrals of equivariant forms in the
setting of non-compact group actions

Matvei Libine

This lecture is based on my expository article [L6]. Let G be a real Lie group acting
on a manifold M , and let g be the Lie algebra of G. Consider an equivariantly
closed form α(X) on M depending on X ∈ g. For X ∈ g, we denote by MX the set
of zeroes of the vector field on M induced by the infinitesimal action of X . Then
the integral localization formula says that the integral of α(X) can be expressed
as a sum over the set of zeroes MX of certain local quantities of M and α:

(1)

∫

M

α(X) =
∑

p∈MX

local invariant of M and α at p.

For compact groups this result was proved by N. Berline and M. Vergne [BV] and
independently by M. Atiyah and R. Bott [AB] more than twenty years ago, but
practically no progress had been made until very recently in generalizing it to
non-compact group actions.

I use an interplay between recent results from representation theory and alge-
braic geometry to find such a generalization (3). This generalization provides, for
instance, a geometric proof of the integral character formula from representation
theory. These results strongly suggest that many theorems which were previ-
ously known in the compact group setting only can be generalized to non-compact
groups.

Let G be a real linear reductive Lie group, denote by GC its complexification,
and set gC = Lie(GC). Let M be a smooth complex projective variety on which
GC act algebraically. The main result is a duality theorem between a certain class
of G-invariant Borel-Moore homology cycles in the holomorphic cotangent space
T ∗M and a certain class of forms depending on X ∈ gC for which the localization
formula holds. Let σ be the canonical complex algebraic holomorphic symplectic
form on T ∗M , and let µ : T ∗M → g∗C be the ordinary holomorphic moment map.
We pick another subgroup U of GC such that, letting u be the Lie algebra of U ,
we have an isomorphism u ⊗R C ' gC. For instance, U may equal G, but in most
interesting situations U is a compact real form of GC (i.e. a maximal compact
subgroup).

The Borel-Moore cycles Λ ⊂ T ∗M over which we integrate are subject to the
following three properties:
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• Λ is G-invariant;
• Λ is real Lagrangian, i.e. Reσ|Λ ≡ 0 and dimR Λ = dimR M ;
• Λ is conic, i.e. invariant under the scaling action of positive reals R>0 on
T ∗M (but not necessarily under the actions of C× or R×).

For example, let N ⊂ M be a closed G-invariant real submanifold, and let Λ be
the conormal space T ∗

NM equipped with some orientation.
Any such cycle Λ can be realized as a characteristic cycle Ch(F) of some G-

equivariant constructible sheaf F (see [KS], [SV1]).
We denote by Ω(p,q)(M) the space of complex-valued differential forms of type

(p, q) on M . We consider forms α : gC → Ω∗(M) which satisfy the following three
conditions:

• The assignmentX 7→ α(X) ∈ Ω∗(M) depends holomorphically onX ∈ gC;
• For each k ∈ N and each X ∈ gC,

α(X)[2k] ∈
⊕

p+ q = 2k
p ≥ q

Ω(p,q)(M);

• The restriction of α to u ⊂ gC is an equivariantly closed form with respect
to U .

For example, U -equivariant characteristic forms associated to U -equivariant vector
bundles over M (see Section 7.1 of [BGV]) satisfy these conditions.

The integrals are defined as distributions on g, so let ϕ ∈ C∞
c (g) be a test

function, and let dX denote the Lebesgue measure on g. The new localization
formula applies to integrals of the following kind:

(2)

∫

Λ

(∫

g

e〈X,µ(ξ)〉+σ ∧ ϕ(X)α(X) dX
)

[dimR M ]
, X ∈ g, ξ ∈ |Λ| ⊂ T ∗M.

The idea to consider integrals of this kind was inspired by the shape of the inte-
gral character formula due to W. Schmid and K. Vilonen [SV1]. These integrals
converge if, say, the moment map µ is proper on the support |Λ|.

Now the main result of [L4] says that if the support of ϕ lies in g′ (g without a
finite number of certain hypersurfaces) then integral (2) can be rewritten as

∫

Λ

(∫

g

e〈X,µ(ξ)〉+σ ∧ ϕ(X)α(X) dX
)

[dimR M ]
=

∫

g

Fα(X)ϕ(X) dX,

where Fα is an Ad(G ∩ U)-invariant function on g′ given by the formula

(3) Fα(X) =
∑

p∈MX

mp(X) ·

(
same term which appeared in the
classical localization formula (1)

)
,

wheremp(X) is a certain integer multiplicity which is exactly the local contribution
of p to the Lefschetz fixed point formula, as generalized to sheaf cohomology
H∗(M,F) by M. Goresky and R. MacPherson [GM]. These multiplicities are
determined in [L4] in terms of local cohomology of F , where F is any sheaf with
characteristic cycle Ch(F) = Λ.
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Notice that the cycle Λ is invariant with respect to the action of the group G
which need not be compact, while the form α : gC → Ω∗(M) is required to be
equivariant with respect to a different group U only, but U may not preserve the
cycle Λ.
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Reduction of Goresky-Kottwitz-MacPherson graphs,
an analogue of symplectic reduction

Charles Cochet

In 1988, Thomas Delzant ([Del]) built a bridge between Hamiltonian geometry and
the world of convex polytopes. For any symplectic compact connected manifold
with Hamiltonian effective action, the dimension of the manifold is at least twice
the dimension of the torus and the image of the manifold by the moment map is
a convex polytope. Moreover, if this dimension is exactly twice that of the torus,
then the convex polytope (named Delzant polytope) characterizes up to isomor-
phism the Hamiltonian manifold. In other terms, all data from the Hamiltonian
manifold is stored in this polytope.

Demazure ([Dem]) introduced the notion of toric manifold (see also [Au] and [G]).
A certain subcategory of these manifolds, containing in particular projective spaces,
satisfies the hypotheses of Delzant’s theorem. Unfortunately, many interesting
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Figure 1. GKM graph of the manifold GL(3,C)/B × G2,5(C)
(screenshot from our program)

manifolds do not fulfill these drastic conditions, for example Grassmannians and
flag manifolds. Thus, during the passage from these manifolds to their associated
polytopes there is loss of data. Hence how to encode all data from a compact
connected manifold with an action of a torus of arbitrary dimension?
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Figure 2. Image by the moment map of the coadjoint orbit U(3)·
V and GKM graph of the flag manifold U(3)/{diagonal matrices}

Goresky, Kottwitz and MacPherson proved ([GKM]) that the ring of equivariant
cohomology of certain compact connected manifolds — GKM manifolds, which we
will discuss later — can be computed with tools from graph theory. Among GKM
manifolds are toric manifolds and homogeneous spaces G/H , where G is a compact
connected group and H a subgroup of G of the same rank.
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Guillemin and Zara have highlighted a graph associated to each GKM manifold.
This graph, oriented and with edges labeled by an axial vector, is called Goresky-
Kottwitz-MacPherson (GKM) graph or 1-skeleton ([GZ2]). For example, in the
Hamiltonian case, this graph takes into account the fact that images of fixed
points by the moment map are linked not only by edges in the sense of polytopes
(intersection of facets), but also sometimes by edges “inside” of the polytope.

Guillemin and Zara then “forgot” the underlying manifold: the abstract 1-
skeleton was born. Since then, they have investigated properties of this new object
([GZ1], [GZ3], [GZ4]). They found many analogues of notions from symplectic
geometry in graph theory: orientation, cohomology, K-theory, quantization. They
also discovered that several classical theorems from symplectic geometry can be
proved with only GKM graphs, like the Atiyah-Bott-Berline-Vergne localization
theorem ([BV] and [AB]) and the Jeffrey-Kirwan theorem ([JK]).

Under certain hypotheses, one can compute the reduction of an abstract 1-
skeleton by a 1-dimensional torus and at a regular value of a moment map of the
graph. The reduction is still an abstract 1-skeleton. This graph operation imitates
the reduction of a manifold, so that the reduction of the graph of a manifold is
the graph of the reduced manifold (when this makes sense).

3-independant
GKM manifold

manifold
reduction

3-independant
GKM graph

1-skeleton
reduction

GKM orbifold GKM 1-skeleton

The probably most fascinating part of their research was the following. In
the framework of the reduction of a GKM graph by a 1-dimensional torus, the
invariant character of a K-theory element is in fact equal to a character built
only from data coming from the reduced graph (and from the K-theory element),
called the reduced character. This result is the analogue in graph theory of the
assertion “quantization and reduction commute” from the symplectic world ([MS]).
In addition to this, while the invariant character of a K-theory element is a rather
big polynomial, the reduced character is a condensed rational fraction.

Reduction of a 1-skeleton is a fastidious task. If we go beyond low-dimension
examples, we have to face intractable computations. For example the graph of the
Grassmannian of complex 2-planes in C5 is 6-valent and has 10 vertices (hence 30
edges). Its reductions by the torus generated by ξ = (0, 1, 2, 3,−6) are 5-valent
and possess 6, 10, 12 and 14 vertices (hence 15, 25, 30 and 35 edges). Computer
science can be of great help in order to study non-trivial examples.

Consequently I implemented in Maple the reduction of a 1-skeleton. The
output is not only the data of the reduced graph (vertices, edges and axial vectors),
but also a graphical representation of the result. This permitted to validate the
concept of multiple reductions (work in progress). This program is able to calculate
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c = 7/2 (right)

for example the reduction of Grassmannian manifolds of dimension 40 and with
hundreds of fixed points, with standard computers.

Similarly, the computation and the storage of the invariant character are in-
tractable even for small examples. For instance the dilatation of the K-theory
element implies an impressive growth of the number of terms of the character.
For the K-theory element Θ(p) = e2iπθp of the manifold P3(C) and for the 1-
dimensional torus whose infinitesimal generator is ξ = (1, 2,−1,−2), invariant
characters χ(Θn)H for n = 1, 10, 100 and 1000 possess 1, 12, 867 and 83667
monomials, respectively. This is why I also implemented the computation of the
reduced character of a K-theory element of a GKM graph. The output is a sum of
rational fractions whose size remains constant for any dilatation of the K-theory
element.

My two programs, called reduction.mws and caractere.mws, come with many
examples. Procedures generate Grassmannians Gk,n(C) and the cycle with 4N
vertices. The flag manifold U(3)/{diagonal matrices} (whose reduction is a GKM
hypergraph) is also available. A procedure performs the product of 1-skeleta.

The aim of these two programs is to better understand GKM graphs. We
implemented them with Maple, a widespread software whose language is quite
understandable. There are lots of comments inside of my programs, so that a
curious user may understand internal procedures. The sourcecode is freely avail-
able and may be modified. The independence of subroutines permits to adapt the
programs to one’s needs. They are actually the only ones performing these tasks.

The programs can be downloaded at http://www.math.jussieu.fr/~cochet/.
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Combinatorial intersection cohomology: a survey

Karl-Heinz Fieseler

Projective toric varieties and lattice polytopes may be considered as two faces
of the same coin. Accordingly, in the last 25 years, investigations related with
toric varieties and their cohomology have played an increasingly important role in
studying the combinatorics of convex polytopes. This started around 1980 with
Stanley’s spectacular proof of the necessity of McMullen’s conditions (character-
izing the face numbers of simple polytopes) using the cohomology of “rationally
smooth” projective toric varieties. It continued with his introduction of a gener-
alized h-vector for non-simple polytopes, modeled on the properties of the inter-
section cohomology Betti numbers of general projective toric varieties. In the last
five years, attempts to prove the conjectured properties of this generalized h-vector
led to the introduction of a purely combinatorial “virtual” intersection cohomology
for polytopes, inspired by equivariant intersection cohomology of projective toric
varieties. This work culminated in the recent proof of a “combinatorial Hard Lef-
schetz” theorem, which provides the keystone to proving Stanley’s conjectures. –
The aim of the present talk is to survey these developments.
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The most basic combinatorial data of a convex polytope in Rn are the numbers
fi of i-dimensional faces, collected in the f(ace)-vector (f0, . . . , fn) or, equiva-
lently, encoded in the f(ace)-polynomial f(t) :=

∑n
i=0 fit

i. For simple polytopes,
i.e., where each vertex lies on exactly n facets, the possible f -polynomials are
characterized by McMullen’s conditions. These are most conveniently stated in
terms of the h-vector (h0, . . . , hn), i.e., the coefficient vector of the “h-polynomial”
h(t) := f(t−1) =:

∑n
i=0 hit

i: The integers hi are strictly positive, they satisfy the
symmetry relation hi = hn−i, the “unimodality property” hi ≤ hi+1 holds for
i ≤ n/2 − 1, and there are specific estimates for the growth of the differences
hi+1 − hi. By duality, there is a corresponding characterization for the class of
simplicial polytopes.

The h-polynomial occurs in quite a different context if a simple polytope P is
rational : The outer normal fan ∆(P ) determines a projective toric variety X∆(P ).
Since the fan is simplicial, this variety is a rational homology manifold. It turns
out that its Poincaré polynomial agrees with h(t2). This yields Stanley’s “topo-
logical” proof for the necessity of McMullen’s conditions: Symmetry corresponds
to Poincaré duality, positivity and unimodality come from the Hard Lefschetz the-
orem, and the growth conditions follow from the fact that the cohomology algebra
H∗(X∆(P )) – and hence also its factor algebraH∗(X∆(P ))/(ω) with the hyperplane
class ω – is generated by elements of degree 2.

On the other hand, if the simple polytope P is non-rational, then there is no
longer an associated toric variety and thus, no cohomology algebra. Nevertheless,
the above argument for the h-vector still can be used: Regarding P as an inter-
section of half-spaces, any nearby rational polytope has the same combinatorial
type. But there is a more fundamental approach, namely, to associate to P itself –
or rather to the simplicial fan ∆(P ) – a “virtual” cohomology algebra H∗(∆(P ))
with Hilbert polynomial h(t2) as follows: Let V denote the ambient vector space
of ∆(P ), so P “lives” in V ∗. Let us consider A := S(V ∗), the algebra of polyno-
mial functions on V , graded by V ∗ =: A(2), and the homogeneous maximal ideal
m of all polynomials vanishing at 0. For a graded A-module M , we denote with
M := (A/m)⊗AM the graded real vector space obtained by reduction modulo m.
In this setting, we associate to ∆(P ) the graded A-module A∆(P ) of all cone-wise

polynomial functions, and then define H∗(∆(P )) := A∆(P ). This approach is mo-
tivated by the equivariant cohomology of the toric variety X∆(P ) associated to P
in the rational case: There is a natural action of an algebraic torus T . If P is
simple, the variety X∆(P ) is T -equivariantly formal, i.e., the ordinary cohomol-
ogy H∗(X∆(P )) is obtained from H∗

T (X∆(P )) ∼= A∆(P ) by reduction modulo the
homogeneous maximal ideal m in H∗(BT ) ∼= A.

We now consider polytopes that are not simple, so their outer normal fan fails
to be simplicial. If such a polytope P is rational, the associated projective toric
variety X∆(P ) fails to be a rational homology manifold. Neither its Betti num-
bers nor the h-vector of P do enjoy the properties mentioned above. Considering
intersection cohomology instead of the “usual” theory, however, yields an even
Poincaré polynomial Q with “good” properties since both, Poincaré duality and
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the Hard Lefschetz theorem, hold for IH∗(X∆(P )). One may thus assign the poly-

nomial h with Q(t) = h(t2) to the polytope P as generalized h-polynomial. The
corresponding generalized h-vector then enjoys three of the properties that hold
for simple polytopes, namely, positivity, symmetry, and unimodality. In contrast
to the simple case, however, there is no natural algebra structure on IH∗(X∆(P )),
so the proof of the growth estimates does not carry over; furthermore, there is
no immediate connection between this new h-polynomial and the face polynomial.
On the other hand, there is a recursion method to compute h from combinatorial
data of P , so the same recursion allows to assign a generalized h-polynomial also
to non-rational polytopes, cf. [St].

In contrast to the situation for simple polytopes, nearby polytopes in general
do not necessarily have the same combinatorial type. So the following question is
natural: In the non-rational case, does the new h-vector still have the same three
properties: positivity, symmetry, and unimodality? It motivated the search for
a “virtual” intersection cohomology theory IH∗(∆(P )), as in the case of simple
polytopes. In fact, the investigation of the “sheafified” equivariant intersection
cohomology of toric varieties leads to the following construction entirely in terms
of the fan ∆: To apply sheaf theory, the fan is endowed with the “fan topology”,
where the subfans Λ ⊂ ∆ are the open subsets. On that fan space, there is a
natural structure sheaf A of graded rings given by the assignment Λ 7→ AΛ, so
in particular Aσ := A(σ) = S(V ∗

σ ) with Vσ := span(σ). A sheaf F of graded
A-modules is called pure if it is flabby and satisfies the following condition:

(*) For each σ ∈ ∆, the Aσ-module Fσ := F(σ) is finitely generated and free.

A sheaf F on ∆ is flabby iff for each cone σ, the restriction map Fσ → F∂σ
is surjective; if F even satisfies (*), then this surjectivity is equivalent to that of
F σ → F ∂σ. The structure sheaf A clearly satisfies condition (*); it is flabby iff ∆ is
simplicial, which holds for a polytopal fan ∆(P ) iff P is simple. Up to isomorphism,
among the pure sheaves F on ∆ with Fo = R, there is a unique minimal object E

determined by the condition that Eσ
∼=−→ E∂σ even is an isomorphism for each σ 6=

o. It is called the “equivariant intersection cohomology sheaf” of ∆, and IH∗(∆) :=
E∆ is the “virtual” intersection cohomology sought after, cf. [BBFK2, BreLu1].

We now have to analyse how far Poincaré duality and, in the case of polytopal
fans ∆ = ∆(P ), the Hard Lefschetz theorem continue to hold. As to Poincaré
duality, we note that for any oriented fan ∆, the category of pure sheaves admits
an involutive duality functor F 7→ DF . After fixing a volume form on V , that
provides a natural isomorphism DE ∼= E . In fact, the naturality is not immediate
since it relies on the Hard Lefschetz theorem for polytopal fans of lower dimen-
sions. This duality isomorphism provides a natural intersection product “∩” on
IH∗(∆). In particular, this yields Poincaré duality between homogeneous sub-
spaces of complementary dimensions, cf. [BBFK3, BreLu2].

As to the Hard Lefschetz Theorem, one assigns to a polytope P a natural
strictly convex conewise linear function ψ on its outer normal fan ∆ := ∆(P ) as
follows: For each n-dimensional cone σ, the restriction ψ|σ ∈ V ∗ is precisely the
corresponding vertex of the polytope P ⊂ V ∗. The multiplication endomorphism
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µψ : E∆ → E∆ induces the “Lefschetz operator” L := µψ : IH∗(∆) → IH∗+2(∆),

and the Hard Lefschetz Theorem states that each Lk : IHn−k(∆) → IHn+k(∆)
is an isomorphism for k ≥ 0. Its proof follows easily from the “Hodge-Riemann
bilinear relations” (HRR), according to which the pairing

IHn−k(∆) × IHn−k(∆) −→ R , (ξ, η) 7→ ξ ∩ Lk(η)

is (−1)(n−k)/2-definite on the “primitive” subspace IP n−k(∆) := ker(Lk+1). For a
simple polytope P , these relations have been proved in [Mc], to which the general
case can be reduced according to [Ka].

Let us sketch a geometric idea for such a reduction: We successively cut off
“bad” faces from the polytope P , starting with non-simple vertices, and then
proceeding in stages according to the dimension. Since a polytope without bad
faces is simple, this procedure eventually yields the starting point for an induction.
We describe the typical step: We call a face F ⊂ P “bad” if its link is not a
cone C(Q) over some polytope Q. A bad face F of minimal dimension is itself
a simple polytope and admits a “tubular neighbourhood” in P . To cut off F ,
we write F = P ∩ H with a hyperplane H and move H slightly towards the
interior of P . Intersecting P with the two corresponding half-spaces yields a
decomposition P = P1 ∪ P2 into polytopes, with P2 containing F and P1 on the
other side of the hyperplane. By induction hypothesis, HRR holds for P1 since it
has less bad faces than P . The fact that HRR also holds for P2 can be derived
from the lower-dimensional case: The polytope P2 is “hip-roofed” with ridge F ,
and a transversal cross-section is a cone C(Q) over a polytope Q of dimension
n − 1 − dimF . Now HRR for Q implies HRR for C(Q), and for dimF > 0 the
polytope P2 is “trivialized” by moving the ridge to infinity. Patching together the
HRR for P1 and P2 by a Mayer-Vietoris argument yields the result for P .

Hence, even for non-rational polytopes, the generalized h-vector satisfies the
three properties: positivity, symmetry, and unimodality.
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The combinatorics of Hamiltonian circle actions

Susan Tolman

Let a compact torus T act on a compact symplectic manifold (M,ω) with a moment
map Φ: M → t∗. We would like to be able to associate to (M,ω,Φ) a simple
combinatorial object, such as a labelled graph. Ideally, we should be able to say
which graphs arise, and also to use the graphs to calculate the invariants of the
manifolds. When the torus is sufficiently large, it is possible to do this.

Assume, for example, that (M,ω,Φ) is a symplectic toric manifold, that is, that
the dimension of T is half the dimension of M . In this case, the fixed point set
MT is finite. Delzant [De] proved that symplectic toric manifolds are classified by
the discrete set Φ(M).

Suppose, instead, that M is four-dimensional, that T is a circle, and that MT is
finite. Given H ⊆ T , let MH denote the set of points in M with stabilizer exactly
H . Given any finite subgroup H = Z/(kZ) ⊂ T , the closure of each component
of MH ⊂ M is a symplectic sphere with two fixed points, which we will call a
k-isotropy sphere. We define a graph as follows: The vertices are the fixed points
p ∈ MT , labelled by their moment images Φ(p). The edges of the graph are the
isotropy spheres, labelled by their generic stabilizer Z/(kZ). This graph determines
(M,ω,Φ) up to equivariant symplectomorphism [K].

However, in general it is probably not realistic to classify manifolds up to equi-
variant symplectomorphism. For example, even in the case of a two-dimensional
torus acting on a six-dimensional manifold, this classification can involve more
complicated homotopy type invariants which are not naturally captured by a la-
belled graph [KT].

This leads us to consider invariants of M . For instance, the equivariant coho-
mology of M , denoted H∗

T (M), is the ordinary cohomology of the space M×T ET ,
where ET is any contractible space on which T acts freely. The equivariant co-
homology of M is extremely well-behaved. For example, if i : MT → M is the
inclusion of the fixed point set, the restriction i∗ : HT

∗ (M) → HT
∗ (M) is injective.

Moreover, the natural restriction map j∗H∗
T (M) → H∗(M) is surjective.

We say that two symplectic manifolds M and M̃ with Hamiltonian T actions

are cohomologically equivalent if their exists a diffeomorphism from MT to M̃T

with the following two properties:

(1) It induces an isomorphism between the image of i∗ in H∗
T (MT ) and the

image of ĩ∗ in H∗
T (M̃T ).

(2) It induces an equivariant isomorphism between the normal bundles of MT

and M̃T .
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This equivalence implies that the equivariant (and ordinary) cohomology of M and

M̃ are isomorphic as rings, and that this isomorphism respects the equivariant (and
ordinary) Chern classes.

Assume that M is a GKM space, that is, MT is finite and the closure of MH is a
disjoint union of 2-spheres for every codimension-one subgroup H ⊂ T . We define
a graph as follows: The vertices are fixed points, labelled by their moment image.
The edges are components of MH , labelled by their principal isotropy group. Up
to cohomological equivalence, (M,ω,Φ) is determined by its graph.

While there are many interesting GKM spaces, if T is a circle, the only GKM
space is a 2-sphere. Henceforth, we will consider the case that T is a circle. Recall
that, in this case, Φ is a Morse-Bott function. Moreover, for any isolated fixed
point p, there is a unique cohomology class αp ∈ H∗

T (p) whose restriction to p is
the product of the negative weights at p, and which vanishes when restricted to
every other fixed point q whose index is at most the index of p.

Assume that the fixed point set MT consists of isolated fixed points, and that
the action is semi-free, that is, that the stabilizer of every point is either trivial
or the whole circle. In this case, M must be cohomologically equivalent to (S2)n,
where n is half the dimension of M [TW].

Although this seems to indicate that very little information is required to de-
termine the equivariant cohomology of M , a word of caution is needed: it is not
true that every automorphism of MT takes the image of i∗ to itself. For example,
if n = 3 and p is any fixed point of index 2, the restriction αp|q is non-zero for two
of the fixed points of index 4, but not for the third.

The result above has been extended to the case where the fixed set MT contains
components of dimension 2, under the assumption that the second Betti number
is small, by Hui Li. Godinho has extended it in a different direction by proving a
related result when every fixed point has the same weights, up to sign. (She also
needs additional technical restrictions.)

Now assume that M is a six-dimensional manifold, and that MT consists of
precisely four points. For example, this occurs if M is complex projective three-
space, or if M is the Grassmannian of oriented two-planes in R5, and T is a
subgroup of the natural torus action. I am currently trying to show that, up to
cohomological equivalence, these are the only two possible examples. Surprisingly,
the proof is much easier if you assume that no pair of edges can be joined by two
different isotropy spheres. In this case, it follows from two arguments. First, the
integral of any low-dimensional Chern class must be zero and can be computed
using the Atiyah-Bott-Berline-Vergne localization formula. Second, the weights at
the north and south pole of a k-isotropy sphere must agree modulo k. In general,
one needs to consider slightly more complicated possibilities. For instance, suppose
that the minimum and the maximum are joined by both a 2-isotropy sphere and
a 3-isotropy sphere, but the action is otherwise semi-free. This possibility cannot
be eliminated by the conditions above, but can be ruled out by looking carefully
at the cohomology ring of the reduced space.
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R. Goldin and I are beginning a project which we hope will allow us to compute
the equivariant cohomology in a much more general context. Assume that M is
six-dimensional, that the fixed point set MT is finite, and that there exists a
S1-invariant Palais-Smale metric on M .

Consider the stable and unstable manifolds of each fixed point with respect to
the associated gradient flow. Note that these manifolds are S1-invariant. Define
a graph G as follows: The vertices are the fixed points, labelled by their moment
image. For each pair of fixed points p and q with Φ(p) ≤ Φ(q), and each finite
subgroup H ⊂ T (including the trivial subgroup), there is an edge between p and q
for each sphere in the closure of the unstable manifold of p, the stable manifold of
q, and MH itself. The edge is labelled by H and by an orientation. We have fairly
good evidence that, in this case, the equivariant cohomology of M is determined
by the graph. Interestingly, the computation of αp|q involves a sum over paths
ascending from p to q, much like that found by Guillemin and Zara.

We hope that it will be possible to prove a similar result in arbitrary dimensions,
and also that the result will still hold even if their is no S1-invariant Palais-Smale
metric.
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Tori in symplectomorphism groups

Yael Karshon

(joint work with Liat Kessler and Martin Pinsonnault)

Finiteness theorem: Let (M,ω) be a four dimensional compact symplectic man-
ifold and T ∼= (S1)2 a two dimensional torus. Then the set of effective Hamiltonian
T -actions on (M,ω) modulo equivariant symplectomorphisms and modulo auto-
morphisms of T is finite.

Remarks.

(1) This is a “95% theorem,” as its complete proof has not yet been LATEXed.
(2) The image of T in the symplectomorphism group Sympl(M,ω) is a max-

imal torus. This follows from the fact that the orbits of a Hamiltonian
torus action are isotropic.
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Figure 1. Delzant triangle and Hirzebruch trapezoid

(3) If (M,ω) admits a Hamiltonian T -action, then every symplectic T -action
on (M,ω) is Hamiltonian. In this case, the theorem asserts that the num-
ber of conjugacy classes of two-dimensional tori in Sympl(M,ω) is finite.

(4) In contrast, Eugene Lerman has constructed a compact contact manifold
that admits infinitely many non-conjugate toric actions.

As a consequence of a theorem of Delzant, a Hamiltonian T -action on M with
moment map Φ is equivariantly symplectomorphic to the symplectic toric manifold
(M∆, ω∆) associated to the Delzant polygon ∆ = Φ(M) ⊂ t∗. We need to show
that the number of Delzant polygons ∆ such that (M∆, ω∆) is symplectomorphic
to (M,ω), modulo translations and GL(2,Z)-congruence, is finite.

The “size” of an edge of a Delzant polygon is measured by its “rational length,”
which it characterized by being invariant under GL(2,Z)-congruence and transla-
tions and being standard along the coordinate axes. The moment map preimage
of an edge is a symplectic sphere whose symplectic area is 2π times the rational
length of the edge.

Examples of Delzant polygons are a “Delzant triangle,” which corresponds to
CP2, and a “Hirzebruch trapezoid,” which corresponds to a Hirzebruch surface.
See Figure 1. Up to translations and GL(2,Z)-congruence, a Delzant triangle is
determined by the rational length λ of each side, and a Hirzebruch trapezoid is
determined by parameters (a, b, k) where b is its height, a is the average of the
lengths of its top and bottom edges, and k is a non-negative integer such that the
right edge has slope −1/k (or is vertical if k = 0). A Hirzebruch surface is a CP1

bundle over CP1. The moment map preimages of the top and bottom edges are
the “north pole section” and the “south pole section”; the moment map preimages
of the side edges are fibers.

The perimeter and area of a Delzant polygon ∆ are symplectic invariants of
the underlying toric variety (M∆, ω∆): the perimeter is equal to the pairing of ω∆

with the first Chern class c1(TM∆), and the area is equal to the Liouville volume
1
2π

∫
M
ω2

∆/2!.
An equivariant symplectic blowup of size δ of a toric manifold amounts to

“chopping” off a corner of size δ of its polygon. This reduces the perimeter by δ
and the area by 1

2δ
2. The preimage of the new edge is the exceptional divisor. A

homology class which is represented by the moment map preimage of an edge gives
a homology class in the blown up manifold which is represented by the preimage
of at most two edges of the “chopped” polygon. After s blowups, the symplectic
area of such a homology class is bounded by 2s times the perimeter.
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Each Delzant polygon is either a Delzant triangle or is obtained from a Hirze-
bruch trapezoid by a sequence of “corner choppings,” so each symplectic toric
manifold is either CP2 or is obtained from a Hirzebruch surface by a sequence of
equivariant symplectic blow-ups.

Fix a symplectic manifold (M,ω). To prove the finiteness theorem for this
manifold, it is enough to show that the number of tuples (a, b, k; δ1, . . . , δs) such
that (M,ω) is symplectomorphic to a symplectic toric manifold (M∆, ω∆) that
is obtained from a Hirzebruch surface with parameters (a, b, k) by equivariant
symplectic blow-ups of sizes δ1, . . . , δs is finite.

Suppose that (M,ω) is symplectomorphic to a toric manifold (M∆, ω∆) that
is obtained from a Hirzebruch surface with parameters (a, b, k) by a sequence of
equivariant symplectic blowups of sizes δ1, . . . , δs. Let

E1, . . . , Es ∈ H2(M)

be the homology classes of the exceptional divisors. Then

(1) Ei · Ei = −1;
(2) Ei can be represented by an embedded symplectic sphere;
(3) 〈ω,Ei〉 is smaller than 2s times 〈ω, c1(TM)〉.

As a consequence of Gromov’s compactness, there exist only finitely many coho-
mology classes with these properties. Because δi = 〈ω,Ei〉, the set of possible
s-tuples (δ1, . . . , δs) is finite.

The perimeter of the Delzant polygon ∆ is 2(a + b) −
∑s
j=1 δj and its area is

ab− 1
2

∑s
j=1 δ

2
j . Because these are symplectic invariants of (M,ω), we can recover

a+ b and ab from δ1, . . . , δs, so the set of possible values for a and b is finite. Let

N,S, F ∈ H2(M)

be the homology classes coming from the north pole section, south pole section,
and fiber, respectively. Then

(1) S = N + kF ;
(2) 〈ω, S〉 is smaller than 2s times 〈ω, c1(TM)〉;
(3) 〈ω,N〉 is positive;
(4) 〈ω, F 〉 = b.

It follows that the non-negative integer k is bounded from above by 2s〈ω, c1(TM)〉/b.
Because there are finitely many possibilities for the value of b, there are finitely
many possibilities for the value of k. This completes the outline of the proof of
the finiteness theorem.
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Signature quantization

Jonathan Weitsman

(joint work with Victor Guillemin and Shlomo Sternberg)

Let (M, g) be a Riemannian manifold, and let L be a Hermitian line bundle with
connection on M . We consider an elliptic operator given by twisting the signature
operator on M with the line bundle L. We define the signature quantization of M
to be the index of this elliptic operator. We show that this quantization (which we
call Q(M)) satisfies analogs of many of the theorems proved for classical geometric
quantization of symplectic manifolds. For example, we give analogs of the Borel-
Weil-Bott theorem, the Khovanski theorem, the Kostant multiplicity formula, and
the principle that “quantization commutes with reduction.” We also show how
signature quantization behaves under an analog of symplectic cutting. Finally
we review some recent work of Guillemin and Rassart showing how the Steinberg
formula and the Gelfand-Cetlin formulas extend to signature quantization.
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Kirwan surjectivity for orbifold cohomology

Rebecca Goldin & Allen Knutson

(joint work with Tara Holm)

1. The definition of preorbifold cohomology

Let Y be an almost complex manifold with a torus action by T . As a vector space
(indeed, as an H∗

T (pt)-module), we define the preorbifold cohomology by

PH∗,�
T (Y ) :=

⊕

g∈T
PH∗,g

T (Y ),

where PH∗,g
T (Y ) = H∗

T (Y g) is the equivariant cohomology of Y g = {y ∈ Y | g ·y =
y}. The product and grading on PH∗,�

T (Y ) are more subtle. We will come to these
presently.

For a class a ∈ PH∗,�
T (Y ), let ag denote the component of a in the summand

PH∗,g
T (Y ). We will say that a ∈ PH∗,g

T (Y ) or a is supported on Y g if ah = 0 for
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h 6= g. Suppose that Y is compact and T acts on Y locally freely: that is, Stab(y)
is finite for all y ∈ Y . Notice that in this case, PH∗,�

T (Y ) reduces to a finite direct
sum over the finitely many elements in T that appear as stabilizers.

The product on preorbifold cohomology. The definition of the product in
preorbifold cohomology requires the introduction of a new space and an associated
(union of) bundle(s) over its connected components. Let

Ỹ :=
∐

g,h∈T
Y g,h

where Y g,h = (Y g)h.
For any connected component Z of Y g,h, the group 〈g, h〉 generated by g and h

acts on the almost complex vector bundle νZ, the normal bundle to Z in Y , fixing
Z itself. Thus as a representation of 〈g, h〉, νZ breaks up into isotypic components

νZ =
⊕

λ∈〈̂g,h〉

Iλ

where Iλ is a bundle over Z on which 〈g, h〉 acts with representation given by λ.
We define the time of Iλ to be the sum

time(Iλ) = yr(g) + yr(h) + yr((gh)−1).

Note that time(Iλ) is 0, 1, or 2.

Definition 1. For each connected component Z of Ỹ , let E|Z be the vector bundle
given by

E|Z =
⊕

time(Iλ)=2

Iλ.

The obstruction bundle E is the union of E|Z over all connected components Z

in Ỹ . Note that the rank of E may change on different connected components.

Remark 2. Each component Z is T -invariant and hence E|Z → Z is a T -
equivariant bundle. Thus there is a well-defined equivariant Euler class ε of E:
for every component Z, let ε restricted to Z be the equivariant Euler class of E|Z .
The class ε is called the virtual class of E.

Consider the three inclusion maps given by

e1 :Y g,h ↪→ Y g

e2 :Y g,h ↪→ Y h, and

e3 :Y g,h ↪→ Y gh.

The maps e1, e2, e3 clearly extend to maps on Ỹ . They therefore induce the pull-
backs

e∗1, e
∗
2 : PH∗,�

T (Y ) →
⊕

g,h∈T
H∗
T (Y g,h)
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and the pushforward map

(e3)∗ :
⊕

g,h∈T
H∗
T (Y g,h) → PH∗,�

T (Y ).

Definition 3. For a1, a2 ∈ PH∗,�
T (Y ), we define

a1 ^ a2 := (e3)∗(e
∗
1(a1) · e

∗
2(a2) · ε),

where ε is the virtual class of the obstruction bundle E over Ỹ , and the product
occurring on the right hand side is the usual product in the equivariant cohomology
of each piece Y g,h of Ỹ .

Remark 4. If a1 ∈ PH∗,g
T (Y ) and a2 ∈ PH∗,h

T (Y ), then e∗1(a1) · e∗2(a2) ∈
H∗
T (Y g,h). After multiplying by ε, the pushforward map (e3)∗ sends this class

to H∗
T (Y gh), which implies a1 ^ a2 ∈ PH∗,gh

T (Y ).

The R-grading on PH
∗,�

T (Y ). Clearly multiplication in PH∗,�
T (Y ) is not graded

if the degree is assigned in the naive way. However there is a different definition
of degree for PH∗,�

T (Y ) making it into a graded algebra. Let g ∈ T , and y ∈ Y g .
Then TyY = ⊕jLj under the g action. The sum of the years of g on each of these
lines is called the age of g at y. Since this number depends only on the connected
component Z of y in Y g , we let

age(Z, g) =
∑

j

yrj(g).

Let r : Z → Y g be the inclusion map. Let a be a class a ∈ H∗
T (Y g) such that

r∗(a) ∈ H i
T (Z) and a restricts to 0 on other connected components of Y g . Then

considered as an element of PH∗,�
T (Y ), we assign deg(a) = i + 2 age(Z, g). Note

that this grading is real rather than integral.

2. The case of Hamiltonian T -spaces

Suppose that Y is a Hamiltonian T -space with proper moment map Φ. Let F
be a fixed component of Y T . Then T acts on νF and it breaks up into isotypic
components

νF =
⊕

λ

Iλ,

where the sum is over weights λ ∈ T̂ . For each component Iλ, we define the
experience of Iλ under the elements g1, . . . , gn to be

exper(Iλ, g1, . . . , gn) = yr(g1) + · · · + yr(gn) − yr(g1g2 · · · gn).

We denote this by exper(Iλ) when the group elements are understood. Note that
exper(Iλ) is an integer between 0 and n− 1.

Definition 5. Let Y be a Hamiltonian T -space. The product ? on PH∗,�
T (Y ) is

given as follows. Let a1, . . . , an ∈ PH∗,�
T (Y ) =

⊕
g∈T PH

∗,g
T (Y ) be elements such

that ai ∈ PH∗,gi

T (Y ) for i = 1, . . . , n. We define a1 ? · · · ? an by its restriction on
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each piece of the fixed point set. For F a connected component of (Y g1g2···gn)T ,
define

(1) (a1 ? · · · ? an)|F =
∏

i

(ai|F )
∏

Iλ⊂νF
e(Iλ)

exper(Iλ),

where e(Iλ) ∈ H∗
T (F ) is the equivariant Euler class of Iλ. For any fixed point

component F ′ of Y g with g 6= g1g2 · · · gn, we define (a1 ? · · · ? an)|F ′ = 0.

3. Results

Theorem 6. Let Y be an almost complex manifold with a T action preserving the
almost complex structure. Then (PH∗,�

T (Y ),^) is a graded, associative ring. If
Y is a Hamiltonian T space, then the identity map is a ring isomorphism between
the rings (PH∗,�

T (Y ),^) and (PH∗,�
T (Y ), ?).

Theorem 7. Suppose Y is compact and T acts on Y locally freely. Then

PH∗,�
T (Y ) = H∗

orb(Y/T ),

where H∗
orb(Y/T ) is the orbifold cohomology as defined by Chen and Ruan.

Using this and the surjectivity results of Kirwan [K], we obtain:

Corollary 8. Let Y be a Hamiltonian T -space, with moment map Φ : Y → t∗.
Suppose that 0 is a regular value of Φ. Then

PH∗,�
T (Φ−1(0)) ∼= H∗

orb(Y//T ),

where the cohomology is taken with coefficients in any ring. Moreover, the natural
map

κ : PH∗,�
T (Y ; Q) −→ H∗

orb(Y//T ; Q)

induced by inclusion of the level set on each piece Y g is a surjection.

The kernel of κ can be easily computed in many examples.

4. Computational facility

We now introduce a subring of PH∗,�
T (Y ) which is more computable, but in many

cases contains all information necessary to compute PH∗,�
T (Y ). Let Γ be the group

generated by all elements of T occurring as finite stabilizers. We assume Γ is finite.

Definition 9. The Γ-subring PH∗,Γ
T (Y ) is a subring of PH∗,�

T (Y ) given as a
vector space by

PH∗,Γ
T (Y ) : =

⊕

g∈Γ

PH∗,g
T (Y ).

In the case that T acts on Y locally freely, this ring equals PH∗,�
T (Y ). In

the case that Y is a Hamiltonian T -space with moment map Φ, we note that
PH∗,g

T (Y ) → H∗(Y g//T ) is a surjection for each g. If g is not a finite stabilizer,
then Y g ∩Φ−1(0) = ∅. In other words, all elements in PH∗,g

T (Y ) are in the kernel
when g 6∈ Γ. Thus the orbifold cohomology of the reduced space may computed
with the Γ-subring alone.
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Equivariant cohomology and the Maurer-Cartan equation

Eckhard Meinrenken

(joint work with Anton Alekseev)

Let G be a compact, connected Lie group, acting smoothly on a manifold M . In
[6] Goresky-Kottwitz-MacPherson described the following “small Cartan model”
for the equivariant cohomology of M ,

(1) (Sg∗)inv ⊗ Ω(M)inv, 1 ⊗ d−
∑

j

pj ⊗ ι(cj).

Here cj are primitive generators of (∧g)inv, and the pj are generators of (Sg∗)inv

corresponding to the dual basis by Chevalley’s transgression theorem. One of
the results in [6] states that the small Cartan complex is quasi-isomorphic to the
standard (large) Cartan complex of equivariant differential forms. Our main result
is an explicit cochain map from the small Cartan model into the standard Cartan
model, intertwining the (Sg∗)inv-module structures and inducing an isomorphism
in cohomology. This construction involves the solution of an interesting Maurer-
Cartan equation, and leads to a refinement of Chevalley’s transgression theorem.
We will also address similar questions for the Chevalley-Koszul complex [7, 9],
viewed as a “small model” for the cohomology of principal bundles.
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Liège, Masson et Cie., Paris, 1950.

[4] M. Franz, Koszul duality and equivariant cohomology, arXiv math.AT/0307115.
[5] , Koszul duality and equivariant cohomology for tori, Int. Math. Res. Not. (2003),

no. 42, 2255–2303. MR 1 997 219
[6] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and

the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83.



Cohomological Aspects of Hamiltonian Group Actions and Toric Varieties 1085

[7] W. Greub, S. Halperin, and R. Vanstone, Connections, curvature, and cohomology, Aca-
demic Press, New York, 1976, Volume III: Cohomology of principal bundles and homoge-
neous spaces.

[8] J. Huebschmann, Homological perturbations, equivariant cohomology, and Koszul duality,
arXiv math.AT/0401160.
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The singular Cartan model

Matthias Franz

Let G be a compact connected Lie group with classifying space BG. We denote
by x1, . . . , xr the generators of the exterior algebra Λ = H(G), and by ξ1, . . . , ξr
the generators of the symmetric algebra S∗ = H∗(BG) which correspond under
transgression to the generators of Λ∗ = H∗(G) dual to the xi. (For the moment,
all (co)homology is with real coefficients.) Recall the “small Cartan model”

(1) S∗ ⊗ Ω∗(X)G, d = 1 ⊗ d+

r∑

i=1

ξi ⊗ xi

which computes the equivariant cohomology of aG-manifoldX , and the Chevalley–
Koszul complex

(2) Λ∗ ⊗ Ω∗(Y ), d = 1 ⊗ d+

r∑

i=1

xi ⊗ ξi,

which computes the cohomology of aG-principal bundle over a manifold Y . (Cf. Eck-
hard Meinrenken’s talk in this report.) The complexes (1) and (2) are actually the
Koszul-dual modules of the differential graded (dg) Λ-module Ω∗(X)G and the dg
S∗-module Ω∗(Y ), respectively.

I will show how to generalise this to cohomology with coefficients in an arbitrary
principal ideal domain R. (See [1], [2], [4].) In order to do so, we will replace
differential forms by (normalised) singular cochains. This will also allow us to
work with arbitrary topological spaces instead of manifolds.

So let G be a topological group whose homologyH(G) = H(G;R) is an exterior
algebra Λ =

∧
(x1, . . . , xr) on finitely many generators of odd degrees. This is

equivalent to H∗(BG) being a symmetric algebra S∗ = R[ξ1, . . . , ξr] on finitely
many generators of even degrees. In characteristic 0 it suffices that G be connected
and H(G) free and finite-dimensional. This holds, for example, for G = (S1)r,
U(n), SU(n) or Sp(2n) and R = Z. Recall that the singular chain complex C(G) =
C(G;R) of a group G is a dg algebra by the Pontryagin product induced by the
group multiplication. (Passing to homology, we get the product in H(G).)
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Instead of G-manifolds, we allow arbitrary topological G-spaces. The singular
chain complex C(X) of a G-space X is a dg module over C(G), hence also its
dual C∗(X).

For a generalisation of the Chevalley–Eilenberg complex, we consider spaces
over BG, i.e., maps Y → BG from some topological space Y to BG. (Recall that
any principal G-bundle P → Y is induced from the universal G-bundle EG →
BG by some map Y → BG, unique up to homotopy.) The map of dg alge-
bras C∗(BG) → C∗(Y ) gives C∗(Y ) the structure of a dg C∗(BG)-module.

In order to imitate the constructions (1) and (2), we would like to define a Λ-
action on the C(G)-module C∗(X) and an S∗-action on the C∗(BG)-module C∗(Y ).
But it is not clear how to do this because representatives ci ∈ C(G) of the gen-
erators xi ∈ Λ will not commute in general (unless G is commutative), nor do
representatives ξ′i of the generators ξi ∈ S∗ (unless r = 1). This implies that the
naive imitations of the maps (1) and (2) are not differentials any more.

The key idea is to introduce higher order terms in both differentials to compen-
sate for the lack of strict commutativity. In other words, on S∗ ⊗C∗(X), we look
for a differential of the form

(3) d = 1 ⊗ d+
∑

06=α∈Nr

ξα ⊗ cα,

where α is a multi-index and cα ∈ C(G). (The ci used above corresponds to cα
for α, the i-th canonical basis vector.) This (necessarily S∗-equivariant) map is a
differential for all X if and only if the cα satisfy the relations

(4) ∀ 0 6= α ∈ Nr dcα =
∑

β+γ=α

cβ · cγ ,

Similarly, on Λ∗ ⊗ C∗(Y ) we consider the differential

(5) d = 1 ⊗ d+
∑

∅6=π⊂[r]

xπ ⊗ γπ,

where [r] = {1, . . . , r} and (xπ) is the canonical R-basis of Λ induced by the xi.
The condition on the γπ reads

(6) ∀ ∅ 6= π ⊂ [r] dγπ = −
∑

µ∪̇ν=π
(−1)|µ| sign (ν, µ) γµ ∪ γν ,

where |µ| denotes the size of the set µ and sign (ν, µ) the sign of the permutation
defined by the partition µ ∪̇ ν = π.

Theorem 1. The equations (4) and (6) have solutions with [ci] = xi and [γi] = ξi
for all i.

For equation (6), there is actually an explicit formula for the γπ in terms of
repeated cup-1-products of arbitrarily chosen representatives γi (Gugenheim–May
[3]).
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Theorem 2. With these differentials, the complex S∗⊗C∗(X) computes the equi-
variant cohomology of X as module over S∗, and the complex Λ∗ ⊗ C∗(Y ) the
cohomology of the pull-back P of EG→ BG along Y → BG as module over Λ.

Actually a stronger statement is true: these complexes are quasi-isomorphic to
C∗(XG) and C∗(P ) as modules ‘up to homotopy’ over S∗ and Λ, respectively.
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The equivariant cohomology of hypertoric varieties

Megumi Harada

In order to construct a toric variety as a Kähler quotient of Cn by a torus, one
begins with the combinatorial data of an arrangement H of n cooriented, rational,
affine hyperplanes in Rd. The normal vectors to these hyperplanes determine
a subtorus T k ⊂ Tn (k = n − d), and the affine structure determines a value
α ∈ (td)∗ at which to reduce, so that we may define X = Cn //α T

k. Using the
same combinatorial data, one can also construct a hypertoric variety as studied
in [1, 6, 7, 5], which is defined as the hyperkähler quotient M = Hn////(α,0) T

k of

Hn ∼= T ∗Cn by the induced action of the same subtorus T k ⊂ Tn [1]. These are
non-compact varieties containing as a subvariety the Kähler variety X . It is well
known that the toric variety X does not retain all of the information of H; indeed,
it depends only on the polyhedron ∆ obtained by intersecting the half-spaces
associated to each of the cooriented hyperplanes. Thus it is always possible to add
an extra hyperplane to H without changing X . In contrast, the hypertoric variety
M remembers the number of hyperplanes in H, but its equivariant diffeomorphism
type depends neither on the coorientations nor on the affine structure of H.

In joint work with Nicholas Proudfoot [4] and Tara Holm [3], we have studied
the equivariant topology of the hypertoric variety M equipped with a T d × S1

action, where the T d is the standard quotient T d action on a toric or hypertoric
variety, and the extra S1 action descends from the scalar action of S1 on the
fibers of T ∗Cn. This extra S1-action turns out to be a key ingredient that encodes
additional combinatorial structure of H. Namely, this S1-action is sensitive to both
the coorientations and the affine structure of H, even on the level of equivariant
cohomology. One can also recover the toric variety X as the minimum of the S1

moment map, so in some sense the structure of a hypertoric variety M along with
this circle action is the universal geometric object from which both M and X can
be recovered.



1088 Oberwolfach Report 20/2004

In both [4] and [3] we give a computation of the T d×S1-equivariant cohomology
of M . Both uses the full combinatorial data of H. In [4] the description uses a
Kirwan surjectivity argument and the Chern classes of certain natural equivariant
line bundles over M . Thus, H∗

Td×S1(M) is presented as a quotient of a polynomial

ring. On the other hand, in [3] we give a description of H∗
Td×S1(M) using a Kirwan

injectivity argument, thus describing it as a subring of the equivariant cohomol-
ogy of the isolated fixed points MT . This computation requires us to generalize to
the non-compact setting a theorem of Goresky, Kottwitz, and MacPherson, which
computes T -equivariant cohomology rings of compact Hamiltonian T -spaces sat-
isfying some technical conditions [2]. The essential observation in [3] is that the
Morse-theoretic arguments for the GKM theorem given in, e.g., [8] go through with
only slight modifications in the setting when there is a direction of the moment
map which is proper and bounded below. This is the case for smooth hypertoric
varieties. We finish by giving a combinatorially explicit isomorphism [3] between
the quotient and GKM descriptions of H∗

Td×S1(M).
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Projective flatness, Fourier transform, and Maslov index

Siye Wu

(joint work with William Kirwin)

In quantum mechanics, the momentum space and position space wave functions
are related by the Fourier transform. We investigate how the Fourier transform
arises in the context of geometric quantization. We consider a Hilbert space bun-
dle over the space of compatible complex structures on a symplectic vector. This
bundle is equipped with a projectively flat connection. The parallel transport is
obtained by solving a partial differental equation and can be expressed by an in-
tegral kernel operator. We show that parallel transport along a geodesic in the
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Hilbert space bundle is a rescaled orthogonal projection or Bogoliubov transfor-
mation. We then construct the kernel for the integral parallel transport operator.
Finally, by extending geodesics to the boundary (for which the metaplectic cor-
rection is essential), we obtain the Bargmann and Fourier transforms as parallel
transport in suitable limits. The above has been a joint work with William Kirwin.

The space of real Lagrangian subspaces is the Shilov boundary of Siegel’s upper-
half-space, which has a natural Kähler form. When there are three points on the
Shilov boundary and three geodesics connecting them pairwise, there is a surface
bounded by the three geodesics. It turns out that the triple Maslov index is,
up to a factor, the integral of the Kähler form on this surface. This result can be
generalized to other Hermitian symmetric spaces (or symmetric domains) classified
by E. Cartan.

In the fermionic setting, one considers a Euclidean structure on a real vector
space. Each maximal complex isotropic subspace is a polarization that defines
a spinor representation of the Clifford algebra. There is also a projectively flat
connection on the bundle of representaion spaces over the space of polarizations.
The analogue of the Maslov triple index can also be considered.

Equivariant integration over the Higgs moduli

András Szenes

In joint work with Tamás Hausel, I proved a conjecture of Moore, Nekrasov and
Shatashvili (hep-th/9712241) on the equivariant volumes of Higgs moduli in the
rank-2 case, and formulated a precise conjecture in the higher rank case.

The theme of this work is “integration commutes with reduction” in a novel way.
As our test example, consider the Grassmannian Gr(2, 4) of 2-planes in complex
4-space, and denote by E the dual of the tautological rank-2 bundle on it. The
topological intersection number

∫
Gr(2,4) c1(E)4 has the geometric interpretation

of the number of lines in 3-space intersecting 4 given generic lines. There are 2
different localization principles which one can apply to computing this number
(which happens to equal to be equal to 2).

One of them is the Bott fixed point formula. Denote the linear weights of the
U(1)4 action on Gr(2, 4) by a, b, c, d. Then the fixed point formula is a sum over

the fixed point set F =
(
4
2

)
:

(1)
∑

σ∈(4
2)

σ ·
(a+ b)4

(a− c)(a− d)(b− c)(b− d)
,

where σ acts on a function of a, b, c, d by permuting the variables and we mean(
4
2

)
= S4/(S2 × S2).

The other is the Jeffrey-Kirwan-Witten reduction principle. It uses the fact
that Gr(2, 4) may be obtained as a (GIT) quotient of the linear space of 2-by-
4 matrices by the group GL(2). One needs to take the compact diagonal torus
U(1)2 ⊂ GL(2); denote the linear weights of this torus by t and v. The fixed point
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set of this commutative subgroup consists of a single point: the zero matrix. The
contribution at this point is given by a residue:

(2) Res
t=0

Res
v=0

−(t− v)2(t+ v)4 dt dv

2t4v4
.

To formulate our results, we need to consider generalizations of this example in
several directions:

• to the Berline-Vergne equivariant localization, i.e to integration of equi-
variant forms;

• to non-compact manifolds with proper moment maps;
• to hyperkähler reduction instead of the usual GIT/symplectic reduction.

Then the conjecture of Moore, Nekrasov and Shatashvili appears as an equality
similar to that between (1) and (2), but in a more complex context. In this case, the
Grassmanian is replaced by a more complicated space: the moduli space of rank-2
stable Higgs bundles on a Riemann surface. This space is not compact; however
it has a dual structure similar to the one described above for the Grassmanian:

• It maybe obtained as an infinite-dimensional hyperkähler quotient.
• It has a circle action with a proper moment map.

Using non-rigorous path integral methods, Moore, Nekrasov and Shatashvili
computed the equivariant volume of this moduli space and arrived at a formula,
which, in the rank-2 case may be formulated as follows: There exists a rational
function of one variable R(n) such that the equivariant volume is

∑
R(p), ep = ±

u− p

u+ p
,

where u is the equivariant parameter. The sum is taken over the solutions of the
so-called Bethe-Ansatz equations,

Our results: studying the circle action,

• we prove a generalization of the conjecture for the rank-2 case;
• formulate a precise conjecture for the higher rank case.

The details of our computations will be published in a forthcoming publication.

Jump formulas in equivariant cohomology

Paul-Émile Paradan

Let (M,ω) be a symplectic manifold equipped with a Hamiltonian action of a
torus T , with Lie algebra t. We denote by Φ: M → t∗ the moment map of this
action. Let us assume that Φ is proper, and that the T -action on M is effective.
For every regular value ξ of Φ, we consider the reduction Mξ := Φ−1(ξ)/T , which
is a compact symplectic orbifold. Let H∗

T (M) be the T -equivariant cohomology of
M . Associated to the data (M,T,Φ) we have, for every regular value ξ of Φ, the
Kirwan morphism [4]

Kirξ : H∗
T (M) → H∗(Mξ).
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and the Kumar-Vergne isomorphism [5]

kvξ : H∗(Mξ) → H−∞
T (Φ−1(ξ))

associated to the T -principal bundle Φ−1(ξ) → Mξ. Here “ H−∞
T ” denotes the

equivariant cohomology with generalized coefficients defined by Kumar and Vergne
in [5]. So for every regular value ξ of Φ one defines a map

pξ : H
∗
T (M) → H−∞

T,c (M)

as the composition of kvξ ◦Kirξ with the direct image morphism H−∞
T (Φ−1(ξ)) →

H−∞
T,c (M) related to the inclusion of the compact submanifold Φ−1(ξ) ⊂M .

For every η ∈ H∗
T (M) the integral

∫
M pξ(η) is a generalized function on t

supported on 0 such that

(1)

∫

t

(∫

M

pξ(η)

)
(X)dX =

1

|Sξ|

∫

Mξ

Kirξ(η).

Here dX is normalized by Vol(T, dX) = 1, and |Sξ| is the cardinality of the generic
stabilizer of T on Φ−1(ξ). We denote by I(M, η, ξ) the rhs of (1).

Proposition 1. There exists a cohomology class Pξ ∈ H−∞
T,c (M) such that pξ(η) =

ηPξ. The cohomology class Pξ is well defined for every ξ.

Idea of the proof: In [6, 7], we have defined a notion of partition of unity in
equivariant cohomology. Let Hξ be the Hamiltonian vectors field of the function
‖Φ − ξ‖2, and consider the T -invariant 1-form λξ = (Hξ ,−)M defined with the
help of a T -invariant Riemannian metric (−,−)M . The cohomology class Pξ ∈
H−∞
T,c (M) is defined by the following closed equivariant form:

1

(2iπ)dimT
(
χξ + dχξ [Dλξ]

−1λξ
)
.

Here [Dλξ ]
−1 is an inverse of the equivariant 1-form Dλξ defined on the open

subset M − Cr(‖Φ − ξ‖2), and χξ is a smooth T -invariant function on M with
compact support, equal to 1 in a neighborhood of Φ−1(ξ)) and with the condition
that Support(f)∩ Cr(‖Φ−ξ‖2) = Φ−1(ξ). We have proved in [6] that pξ(1) = Pξ .

Now the study of the map ξ → Pξ gives a new way to recover the properties of
the map ξ 7→ I(M, η, ξ) = 1

|Sξ|
∫
Mξ

Kirξ(η) [8].

Proposition 2. The map ξ 7→ Pξ is locally constant on the open subset of regular
values of Φ.

So I(M, η, ξ) = I(M, η, ξ′) if ξ and ξ′ belong to the same connected component
of regular values of Φ.

Let ∆ be an hyperplane of t∗, equipped with an orientation o, and which sepa-
rates two connected components of regular values of Φ. Let T∆ ⊂ T be the subtorus
of dimension 1 with Lie algebra t∆ := {X ∈ t| 〈ξ − ξ′, X〉 = 0, ∀ξ, ξ′ ∈ ∆}. Let
MT∆ be the submanifold of points fixed by T∆, and let M∆ be the open subset of
MT∆ ∩ Φ−1(∆) on which T/T∆ acts locally freely. The symplectic manifold M∆
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carries a Hamiltonian action of T/T∆ with moment map Φ∆ : M∆ → ∆ equal to
the restriction of Φ on M∆.

We choose a decomposition T = T∆×T/T∆, where T/T∆ denotes a subtorus of
T . Associated to this decomposition we have H−

T (M∆) ' H−
T/T∆

(M∆)⊗H−
T∆

(M∆)

where − ∈ {∗,−∞}. Let ξ ∈ ∆ be a regular value of Φ∆ and let ξ± ∈ t∗ be two
regular values of Φ belonging respectively to two connected components of regular
values of Φ separated by ∆, with the condition that the line (ξ+, ξ−) intersects ∆
at ξ.

Let N∆ be the T -equivariant normal bundle of MT∆ in M , and let Eul(N∆) ∈
H∗
T (MT∆) be the T -equivariant Euler class of N∆. When restricted to M∆,

Eul(N∆)|M∆ can be seen as a polynomial function with values in the subalge-
bra H∗(M∆)bas of basic elements of H∗(M∆). Following [6], we defined inverses
Eul−1

± (N∆) ∈ C−∞(t∆,H∗(M∆)bas) by

Eul−1
± (N∆)(X) = lim

s→+∞
1

Eul(N∆)|M∆(X ± isβ)
,

where β ∈ t∆−{0} is compatible with the orientation o of ∆. Since the polynomial
Eul(N∆)|M∆ is invertible in a smooth way on t∆ − {0}, the difference

(2) δo∆ := Eul−1
− (N∆) − Eul−1

+ (N∆)

is a generalized function on t∆ supported on 0. We will consider δo∆ as a coho-
mology class in H−∞

T∆
(M∆). Following Proposition 1, one has a cohomology class

P∆
ξ ∈ H−∞

T/T∆,c
(M∆) associated to the value ξ ∈ ∆.

Proposition 3. We have

(3) Pξ+ − Pξ− = (i∆)∗
(
P∆
ξ δ

o
∆

)
in H−∞

T,c (M)

where δo∆ ∈ H−∞
T∆

(M∆) and (i∆)∗ : H−∞
T,c (M∆) → H−∞

T,c (M) is the direct image
map.

With δo∆ one defines a residue map Reso∆ : H∗
T (M) → H∗

T/T∆
(M∆) (see [8]), and

from (3) we get the formulas of Guillemin-Kalkman [2]

I(M, η, ξ+) − I(M, η, ξ−) = I(M∆,Reso∆(η), ξ),

for every η ∈ H∗
T (M)
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Conjugation spaces

Jean-Claude Hausmann

(joint work with Tara Holm and Volker Puppe)

Let τ be a continuous involution on a space X , seen as an action of the cyclic
2-group C = {I, τ}. Let ρ : H2∗

C (X) → H2∗(X) and r : H∗
C(X) → H∗

C(Xτ ) be
the restriction homomorphisms (cohomology with Z2-coefficients). Suppose that
Hodd(X) = 0. An H∗-frame for (X, τ) is a pair (κ, σ), where

(a) κ : H2∗(X) → H∗(Xτ ) is an additive isomorphism dividing the degrees in
half, and

(b) σ : H2∗(X) → H2∗
C (X) is an additive section of ρ.

Moreover, κ and σ should satisfy the equation

(1) r◦σ(a) = κ(a)um + `tm

for all a ∈ H2m(X) and all m ∈ N, where `tm stands for any polynomial of degree
< m in the variable u. An involution admitting anH∗-frame is called a conjugation
and a space together with a conjugation is called a conjugation space. We prove
the following properties for conjugation spaces.

Proposition 1. Let (σ, κ) be an H∗-frame for an involution. Then σ and κ are
ring homomorphisms.

Proposition 2 (Naturality and uniqueness of H∗-frames). Let f : Y → X be an
equivariant map between spaces with involution. Let (σX , κX) and (σY , κY ) be
H∗-frames for the involutions on X and Y . Then H∗

Cf ◦σX = σY ◦H∗f and
H∗fτ ◦κX = κY ◦H∗f . In particular, the H∗-frame for a conjugation is unique.

By the Leray-Hirsch theorem, the section σ gives rise to an isomorphism of

Z2[u]-modules σ̂ : H∗(X)[u]
≈
→ H∗

C(X). As σ is a ring homomorphism by Propo-
sition 1, one has the following complete describtion of the ring H∗

C(X) in terms of
H∗(X).

Corollary 3. Let (κ, σ) be the H∗-frame for a conjugation on X. Then

σ̂ : H∗(X)[u]
≈
→ H∗

C(X)

is an isomorphism of Z2[u]-algebras. Moreover, σ̂ is functorial for equivariant
maps.
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Our main examples of conjugation spaces are spherical conjugation complexes.
Let Y be a topological space with an involution τ . Let D2k be the closed disk
of radius 1 in R2k, equipped with a linear involution with exactly k negative
eigenvalues. Let α : S2k−1 → Y be an equivariant map. Then the involutions on
Y and on D2k induce an involution on the space X = Y ∪αD2k. We say that X is
obtained from Y by attaching a conjugation cell of dimension 2k. For k = 0, this
amounts to the disjoint union with a point. More generally, one can attach to Y
a set Λ of 2k-conjugation cells, via an equivariant map α :

‘
ΛS

2k−1
λ → Y .

Proposition 4. Let Y be a conjugation space and let X be obtained from Y by at-
taching a collection of conjugation cells of dimension 2k. Then X is a conjugation
space.

A spherical conjugation complex is a space (with involution) obtained from ∅
by successive adjunction of collection of conjugation cells. The adjective “spher-
ical” emphasizes that the collections of conjugation cells do not need to occur in
increasing dimensions. Proposition 4 implies the following

Corollary 5. A spherical conjugation complex is a conjugation space.

Example 6. The complex projective space CP k with the involution being the com-
plex conjugation. Its standard cell decomposition makes CP k a spherical conju-
gation complex and therefore a conjugation space. Let a be the generator of
H2(CP k) and b = κ(a) that of H1(RP k). One can show that Equation (1) is here
r◦σ(am) = (bu+ b2)m.

Example 6 generalizes in the following way. Let X be a space together with an
involution τ and a continuous action of a torus T . We say that τ is compatible
with this torus action if τ(g · x) = g−1 · τ(x) for all g ∈ T and x ∈ X . It follows
that τ induces an involution on on the fixed point set XT . We are interested in
the case where X is a compact symplectic manifold for which the torus action is
Hamiltonian and the compatible involution is smooth and anti-symplectic. Using
a Morse-Bott function obtained from the moment map for the T -action, we prove
the following

Proposition 7. Let X be a compact symplectic manifold equipped with a Hamil-
tonian action of a torus T and a smooth anti-symplectic compatible involution. If
XT is a spherical conjugation complex, then X is a spherical conjugation complex.

Examples of such Hamiltonian spaces include:

(a) co-adjoint orbits of any semi-simple compact Lie group, with the Chevalley
involution,

(b) smooth toric manifolds, and
(c) polygon spaces.

Consequently, these examples are conjugation spaces. The existence of a ring
isomorphism κ is classical for Grasmannians, and known for toric manifolds [DJ]
and polygon spaces [HK]. When X is a GKM-space with isotropy weights pairwise
independent over Z2, it has been proved in [S] and in [BGH] that κ is induced



Cohomological Aspects of Hamiltonian Group Actions and Toric Varieties 1095

from a ring isomorphism κ̂ : H2∗
T (X) → H∗

T2
(Xτ ), (T2 being the 2-torus of T ).

This covers the case of co-adjoint orbits of SU(n) and of toric manifolds. We hope
that this refined equivariant result may be also be reproved and generalized using
conjugation spaces.

For more examples, one can prove that there are infinitely many C-equivariant
homotopy types of spherical conjugation complexes with three conjugation cells,
for instance in dimension 0, 2 and 4. Torus manifolds of [HM] are likely to produce
other families of conjugation spaces. Finally, the category of conjugation spaces is
closed under various operations, including direct products and connected sums.

Natural bundles over conjugation spaces are the conjugate equivariant bundles
introduced by Atiyah [A] under the name of “real bundles”. These are complex

vector bundles η = (E
p

−→ X) together with an involution τ̂ on E which covers
τ and is conjugate linear on each fiber. Then E τ̂ is a real bundle ητ over Xτ .
Using the naturality of H∗-frames and the Schubert cells in Grasmannians, one
proves that κ(c(η)) = w(ητ ), where c() denotes the (mod 2) total Chern class and
w() the total Stiefel-Whitney class. This is true provided some tameness of the
embedding Xτ ⊂ X , which holds for smooth actions on manifolds or for spherical
conjugation complexes.
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Equivariant Schubert calculus

Matthieu Willems

1. Introduction

Let G be a connected complex semi-simple group, B ⊂ G a Borel subgroup of
G and H ⊂ B a Cartan subgroup of B. We denote by T the maximal compact
torus of H and by X = G/B the flag variety associated to this data. The torus
T acts on X by t.(gB) = (tg)B for t ∈ T and g ∈ G. The set of fixed points
of the action of T on X can be identified with W = NG(H)/H , the Weyl group
of G, which is generated by r simple reflections si. We denote by αi ∈ h∗ the
corresponding simple roots and by α∨

i ∈ h the corresponding simple coroots (h
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is the Lie algebra of H). For a simple root αi, we set Pαi
= BsiB ∪ B. The

T -equivariant cohomology of X (with complex coefficients) is an algebra over the
T -equivariant cohomology of a point, which can be identified with the symmetric

algebra S of h∗. In fact, H∗
T (X) is a free module over S with basis {ξ̂w}w∈W

defined by the relations ∫

Xv

ξ̂w = δv,w,

where Xv is the closure of the Schubert cell Xv = BvB/B ⊂ X . One of the
problems in the Schubert calculus is to calculate the polynomials pwu,v ∈ S such
that

ξ̂uξ̂v =
∑

w∈W
pwu,v ξ̂

w.

2. Bott-Samelson varieties

We use Bott-Samelson varieties to give a method to compute these polynomials.
Let w = sµ1 · · · sµN

be a reduced decomposition of an element w of W . We
denote by Γ = Γ(µ1, . . . , µN ) the Bott-Samelson variety associated to the sequence
µ1, . . . , µN . It is the space of orbits of the action of BN on Pµ1 ×· · ·×PµN

defined
by

(g1, g2, . . . , gN )(b1, b2, . . . , bN ) = (g1b1, b
−1
1 g2b2, . . . , b

−1
N−1gNbN ).

We will denote by [g1, g2, . . . , gN ] the class of (g1, g2, . . . , gN) in Γ. The torus T
acts on Γ by

t[g1, g2, . . . , gN ] = [tg1, g2, . . . , gN ].

We set E = (Z/2Z)N . The set of fixed points of the action of T on Γ can be
identified with E because ΓT '

∏
1≤i≤N NPµi

(H)/H ' (Z/2Z)N .

We define a T -invariant cell decomposition Γ =
∐
ε∈E Γε, where Γε is the set of

classes [g1, g2, . . . , gN ] such that

∀1 ≤ i ≤ N,

{
gi ∈ B if εi = 0,
gi /∈ B if εi = 1.

Since each Γε is an even cell, the S-algebra H∗
T (Γ) is a free S-module with a basis

{σ̂ε}ε∈E defined by the relations
∫

Γε′

σ̂ε = δε′,ε.

For ε ∈ E , we set π+(ε) = {1 ≤ i ≤ N, εi = 1}, and for 1 ≤ j < i ≤ N , we
set aj,i = µi(µ

∨
j ). For 1 ≤ i ≤ N , we denote by (i) the element of E defined by

(i)j = δi,j .

Theorem 1. We have the following relations:

(1) σ̂ε =
∏

i∈π+(ε)

σ̂(i)

(2) σ̂2
(i) = µiσ̂(i) −

∑
j<i aj,iσ̂(i)σ̂(j).
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3. Schubert calculus

We define a T -equivariant map g : Γ → X by

g([g1, . . . , gN ]) = g1 × · · · × gN [B].

For ε ∈ E , we set l(ε) = card(π+(ε)). The following theorem explains the link
between the cohomology of Γ and the cohomology of X .

Theorem 2. Let v be an element of W . We have:

g∗(ξ̂v) =
∑

ε∈E, l(ε)=l(v)
and g(ε)=v

σ̂ε.

Using Theorems 1 and 2, we can give a method to compute the polynomials pwu,v
(see [6] for more details). It gives an expression in terms of simple roots and Cartan
numbers. Unfortunately, it is not a positive formula (in the sense of Graham [4]).
In [2] Haibao Duan gives similar formulas for the ordinary cohomology of X , and
in [3] he uses his formulas to give a program for multipying Schubert classes in
ordinary cohomology.
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Actions on flag manifolds

Volker Hauschild

Let G be a compact connected Lie group. Consider a connected subgroup U ⊂ G
and the corresponding homogeneous space X = G/U . Then G acts on X in the
standard way by left translation. It is a classical question in transformation group
theory if this action represents the only way G can act on X . There are some
examples which show that there are indeed homogeneous spaces of G which allow
different G-actions, see e.g. [7]. As a rule for big subgroups U , however, one would
expect that there are not many G-actions on G/U . This has been confirmed by the
results of [2, 3, 4], [5], [6]. Call a homogeneous space G/U standard if every locally
smooth action of G on G/U is conjugate to the standard action by left translation.
For example, in the notes [3, 4] it has been shown that the flag manifold G/T is
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standard where T ⊂ G is a maximal torus. In this talk I shall consider the case of
the complex Grassmannians Gn+1,2 = SU(n+ 1)/S(U(n− 1) × U(2)).

Theorem 1. The complex flag manifold SU(5)/S(U(3)× U(2)) is standard.

In the following we suppose X = SU(n+ 1)/S(U(n− 1) × U(2)) for general n
and only at the end of the proof we specialize to n = 4. Observe that the induced
action of the maximal torus T on X has a nonempty fixed space by the standard
equality of the Euler numbers: e(X) = e(XT ). Let p ∈ XT and let Gp be the
corresponding isotropy group. By dimension reasons and the classification of the
maximal rank subgroups of Lie groups the connected component G 0

p must be
conjugate to one of the following subgroups:

SU(n+ 1), S(U(n) × U(1)), S(U(n− 1) × U(2)).

The first case would mean that G = SU(n+1) has a fixed point on X , a possibility
excluded by Theorem 4.6 in the note [1].

The third case means that the orbit G(p) has the same dimension as X itself
and so must coincide with the full manifold. Since X is simply connected, it
follows that Gp is connected and the action must be transitive with isotropy group
S(U(n − 1) × U(2)). Therefore if we are able to eliminate the second case, our
theorem is proved.

Let σp be the slice at p. Then Gp acts on σp via a linear representation whose
principal isotropy group must be positive-dimensional. Now we have dimσp =
2n − 4. But the least-dimensional nontrivial real representation of SU(n) is the
realification of the standard complex representation, which has real dimension 2n.
It follows that the subgroup SU(n) of G 0

p acts trivially on σp, and consequently
the principal isotropy group of the whole action must be a finite extension of
S(U(n)×U(1)) and then all isotropy groups are of maximal rank or it must be a
finite extension of SU(n). The second case can be excluded in the following way:
One can verify that under the hypothesis of the theorem there are no nontriv-
ial homomorphisms H∗(X ; Q) → H∗(CPn;Q). Using this fact and some simple
theory of characteristic classes one sees that the principal isotropy group must
be conjugate to SU(n). In this case one can show that H∗(X ; Q) must be a flat
module over H∗(CPn; Q), which is not possible. We conclude that every isotropy
group must be of maximal rank. Let

X(T ) =
{
x ∈ X

∣∣ gTg−1 ⊂ Gx for some g ∈ G
}
.

It follows that X = X(T ). If XT is the fixed set of the induced T -action, then
the Weyl group WG = NT/T acts on XT in a natural way. Moreover one can
easily verify that in this situation the subset XT

0 of those fixed set components of
T which intersect the principal orbit type X(H) nontrivially must be identical to

XT. It follows that the inclusion XT ⊂ X induces an isomorphism

XT /WG ∼= X(T )/G ∼= X/G.

Since X is connected, WG must act transitively on the set of connected compo-
nents of XT. Let F0 ⊂ XT be a connected component of XT and let W0 ⊂ WG
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be the stabilizer of F0. Now the full G-action on X is completely determined
by the induced W0-action on F0. For the equivariant cohomology (with rational
coefficients) of the G-action it is not difficult obtain the following isomorphism of
graded H∗(BG)-algebras:

H∗
G(X) ∼= (H∗(BT ) ⊗H∗(F0))

W0 .

Projecting modulo the ideal generated by the elements of positive degree inH∗(F0)
W0

induces a surjection of H∗(BG)-algebras

H∗
G(X) → H∗(BT )W0 .

This in turn induces a surjective Q-algebra homomorphism

H∗(X) → H∗(G/T )W0 .

We observe that W0 must be the the Weyl group of SU(n) and therefore

H∗(G/T )W0 ∼= H∗(CPn).

We therefore have a nontrivial homomorphism

H∗(X) → H∗(CPn).

But it can be shown that for G5,2 = SU(5)/S(U(3) × U(2)) every graded homo-
morphism

h : H∗(G5,2) → H∗(CP4)

of graded Q-algebras must be trivial in the sense that the image of h is inH0(CP4).
This excludes our case and the theorem is proved.
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Morse interpolation for Hamiltonian GKM spaces

Catalin Zara

(joint work with Victor Guillemin)

A Hamiltonian GKM space is a compact symplectic manifold (M 2m, ω) with a
Hamiltonian action of a compact torus T n of dimension n ≥ 2, such that (1) the
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fixed point set MT is finite and (2) for each fixed point p ∈ MT , the weights
αp,1, . . . , αp,m of the (complex) representation of T on the tangent space TpM are
pairwise linearly independent.

An equivariant cohomology class f ∈ H∗
T (M ; C) is determined by its restrictions

to fixed points, and the first condition above implies that H∗
T (M) is a subring of

the ring Maps(MT , S(t∗)), where t∗ is the dual of the Lie algebra t of T and S(t∗)
is the symmetric algebra. The second condition allows us to construct a simple
combinatorial object that encodes the conditions which have to be satisfied by
an element f ∈ H∗

T (M) ⊂ Maps(MT , S(t∗)) ([GZ1]). This combinatorial object
is a regular graph Γ = (V,E), with m edges meeting at each vertex, and with
a labeling α : E → t∗ of the oriented edges by weights of T . The vertices of
the graph correspond to the fixed points p ∈ MT , the edges correspond to non-
trivial connected components of the sets of points fixed by codimension one subtori
T ′ ⊂ T , and the labels of the oriented edges with initial vertex p are the weights
αp,1, . . . , αp,m. From the pair (Γ, α) one constructs a graded ring

Hα(Γ) =
{
f : V → S(t∗) : f(p) ≡ f(q) mod αe for every edge e = (p, q) of Γ

}

and H∗
T (M) ' Hα(Γ) as graded rings ([GKM]). Both graded rings are free S(t∗)-

modules, and our goal is:

Construct a canonical basis of H∗
T (M) as elements of Hα(Γ).

Fix a circle S ⊂ T such that MS = MT and let ξ ∈ t be the infinitesimal
generator of S. Then the ξ-component φξ : M → R of the moment map φ : M → t∗

is a Morse function onM . In the combinatorial setting, ξ induces a partial ordering
on the graph Γ. We say that an oriented edge e is ascending if αe(ξ) > 0 and is
descending if αe(ξ) < 0; for two vertices p and q, we say that p ≺ q if there exists
an ascending path from p to q.

For each p ∈ V , there exists a class τp ∈ Hα(Γ) such that: (1) τp is supported
on the flow-up Fp = {q ∈ V : p � q}, (2) τp,q(:= τp(q)) is homogeneous, of
the same degree for all q ∈ Fp, and (3) τp,p is the product of weights associated
to descending edges with initial vertex p. A collection {τp}p∈V of such classes
is a basis of Hα(Γ) over S(t∗). There might be several classes τp satisfying the
conditions above, but one can use local index maps similar to the ones defined in
[GK] to select a canonical class.

For q ∈ V , let e1, . . . , ek be the descending edges from q, let q1, . . . , qk be the
other vertices of these edges, and let α1, . . . , αk be the weights associated to these
edges. The local index map Iq : Hα(Γ) → S(t∗) is defined by

Iq(f) =
f(q)∏
αi

+

k∑

i=1

ρi(f(qi))

(−αi)
∏
j 6=i ρi(αj)

,

where ρi : S(t∗) → S(t∗) is the ring morphism determined by

ρi(β) = β −
β(ξ)

αi(ξ)
αi for all β ∈ t∗ .



Cohomological Aspects of Hamiltonian Group Actions and Toric Varieties 1101

In this form, it is quite hard to see that Iq(f) ∈ S(t∗); however, this becomes
obvious from the following description of the local index: f(q) is a solution of the
system of congruences {g ≡ f(qi) mod αi, for all i = 1, . . . , k}. Such a solution
is defined only up to an element of (

∏
αi)S(t∗), and (

∏
αi)Iq(f) is the element

that corresponds to the solution f(q). Moreover, the formula for Iq(f) is the
localization formula ([AB], [BV]) for computing an integral over a symplectic cut
of the stable manifold at q: the first term corresponds to the fixed point q, and
the sum corresponds to fixed points in a weighted projective space (see [GK] for
the similar construction in equivariant K-theory). Using local index maps, one
can define canonical classes τp:

For every p ∈ V , there exists a unique class τp ∈ Hα(Γ)
such that Iq(τp) = δp,q for all q ∈ V .

The homogeneity and support conditions follow from these conditions.
The combinatorial construction of τp,q is an iterated Lagrange interpolation

process, and τp,q is a sum of contributions of ascending paths from p to q. The
contribution E(γ) of an ascending path γ is a rational expression on t, depending
on ξ (see formula 4.9 in [GZ2]). By sending the coordinates of ξ to 0 one at a time,
most of these contributions become zero. We call a path relevant if the resulting
contribution E′(γ) is not zero, and we denote the set of relevant paths from p to
q by Ωrelp,q . Then

τp,q =
∑

γ∈Ωrel
p,q

E′(γ) ,

and this formula appears to be a “path integral” formula, via localization.
If M is the Grassmannian of k-dimensional complex planes in Cn, with the

Tn-action induced from a linear action on Cn, then the graph Γ is the Johnson
graph: the vertices are k-element subsets of {1, . . . , n} and the edges join vertices
p and q if #(p∩ q) = k− 1, i.e. if q = p−{i}∪{j} for some i ∈ p and j 6∈ p. For a

suitable choice of ξ, the edge p
(i,j)
−→ q is ascending if and only if i < j, and a path

p = p0
(i1,j1)
−→ p1

(i2,j2)
−→ · · ·

(im,jm)
−→ pm = q

is relevant if and only if i1 > i2 > · · · > im. To each relevant path from p to
q we attach a permutation v ∈ Sk ([Za]), and the space Ωrelp,q is parametrized by
{v ∈ Sk : v � wp,q}, where wp,q is a (231)-avoiding permutation. Then the
relevant paths from p to q correspond to fixed points for an action of T k over a
smooth Schubert variety, and τp,q is, via the localization formula, the integral of
an equivariant form, hence the term “path integral.”

For the flag manifold of complete flags in Cn, the vertices of Γ correspond to
permutations w ∈ Sn, and two vertices p and q are joined by an edge if and only
if they differ by a transposition. If v � w, then the relevant paths from v to w are
the ascending paths

v = v0 → τi1j1v = v1 → τi2j2v1 = v2 → · · · → w
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for which j1 ≤ j2 ≤ . . . . Let w0 be the longest element in Sn and u = (u1, u2, . . . , um)
be a particular reduced word for vw0. The relevant paths from v to w correspond
bijectively to subwords (not necessarily reduced) u′ of u which are words for ww0,
in such a way that the number of edges of a path is the same as the number of
deleted letters for the corresponding subword (compare with [Ku, Lemma 3.5]).
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