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Introduction by the Organisers

The Mini-Workshop: Amalgams for Graphs and Geometries, organised by A.
A. Ivanov (London) and S. Shpectorov (Bowling Green) was held May 16-22. This
meeting was well attended with 17 participants with broad geographic represen-
tation from 3 continents. There were 16 talks during the workshop including
an invited talk by Anda Degeratu a participant in the competing String Theory
workshop.

The method of group amalgams is a highly effective way of classifying mathe-
matical objects possessing high degrees of symmetry. The idea of the method is
separation of the study of the local structure of the acting group from the question
of it’s global isomorphism type.

The method of group amalgams has been successfully applied to problems in
graph theory and diagram geometry. It also featured prominently in group theory.
For example, the fact that the Monster sporadic simple group is the universal com-
pletion of the amalgam associated with the tilde geometry formed the foundation
of the solution of the famous Y -group conjecture that the Y555 presentation defines
the Bimonster (the direct product of two copies of the Monster sporadic simple
group extended by a group of order 2). J.H. Conway coined for this theorem the
name ’NICE’ where N is for Norton, I for Ivanov, C for Conway and E for anyone
Else. The proof of the NICE theorem based on the method of group amalgams is
presented in the two volume monograph of the organisers published by Cambridge
University Press.

Recently a dramatic progress was made within the study of flag-transitive di-
agram geometries. The importance of the notion of constrained completions of
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amalgams was realised. Within this framework many geometries of sporadic groups
were characterised as the constrained completions of suitable amalgams. This ap-
proach also gives a general criterion about possible shapes of diagrams of flag-
transitive geometries. This enables the area of diagram geometries to leave it’s
”botanical” stage of example collection and enter the stage of theory building.

Among other applications we would like to mention recent applications of the
amalgam method to the cohomologies of finite groups. These ideas were described
in the notes of M. Aschbacher on calculation of the Schur multiples of some finite
simple groups.

During the workshop we had discussed in detail the proofs of a number of
results obtained along the lines of the amalgam method, as well as of directions of
future research. We believe that the abstract of the talks given at the workshop
facilitate for the younger mathematicians access to these extremely important, yet
very technically complex tools of mathematical research.
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Abstracts

On the classification of distance-transitive graphs

John van Bon

Let Γ be a finite connected undirected graph without loops or multiple edges
and let G ≤ Aut(Γ). We say that G acts distance transitively on Γ if G acts
transitively on the sets of ordered pairs of vertices Γi = {(x, y) | d(x, y) = i}, for
each i = 0, . . . , diam(Γ). The graph Γ will be called distance-transitive if it admits
such a group action. Observe that if Γ is a distance-transitive graph, then Aut(Γ)
acts distance transitively on it but there might be many subgroups that do so too.
Distance-transitive graphs are the most symmetric among all graphs as they have,
in a certain sense, the largest group of automorphisms possible. There are many
examples among which are the Hamming graphs, Johnson graphs and Dual polar
graphs.

We discuss the classification of these graphs and groups. In case the action of
G on the vertex set of Γ is imprimitive then there is a natural way to obtain a new
distance-transitive graph from Γ admitting a group acting primitively on its vertex
set. Therefore in the classification project we assume that the action is primitive.
In a later stage the graphs with an imprimitive group action can be determined.

A first step towards the classification of primitive distance-transitive graphs was
made by C. Praeger, J. Saxl & K. Yokoyama [9] who proved that either Γ is known
or G is an almost simple group or an affine group. Recently the classification of
primitive distance-transitive graph admitting an affine group was completed, see
[1, 2, 3, 4, 5, 6, 7, 8]. We will give an overview of the structure of the proof, which
uses the classification of finite simple groups, and the main ideas involved. In case
G is almost simple one can again invoke the classification of finite simple groups.
We will survey the current status of the project in this case.
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Geometrical McKay Correspondece

Anda Degeratu

A Calabi-Yau manifold is a complex Kähler manifold with trivial canonical
bundle. In the attempt to construct such manifolds it is useful to take into consid-
eration singular Calabi-Yaus. One of the simplest singularities which can arise is
an orbifold singularity. An orbifold is the quotient of a smooth Calabi-Yau mani-
fold by a discrete group action which generically has fixed points. Locally such an
orbifold is modeled on Cn/G, where G is a finite subgroup of SL(n,C).

From a geometrical perspective we can try to resolve the orbifold singularity.
A resolution (X, π) of Cn/G is a nonsingular complex manifold X of dimension n
with a proper biholomorphic map π : X → Cn/G that induces a biholomorphism
between dense open sets. We call X a crepant resolution1 if the canonical bundles
are isomorphic, KX

∼=π∗(KCn/G). Since Calabi-Yau manifolds have trivial canon-
ical bundle, to obtain a Calabi-Yau structure on X one must choose a crepant
resolutions of singularities.

It turns out that the amount of information we know about a crepant resolution
of singularities of Cn/G depends dramatically on the dimension n of the orbifold:

n = 2: A crepant resolution always exists and is unique. Its topology is entirely
described in terms of the finite group G (via the McKay Correspondence).

n = 3: A crepant resolution always exists but it is not unique; they are related by
flops. However all the crepant resolutions have the same Euler and Betti
numbers: the stringy Betti and Hodge numbers of the orbifold [DHVW].

n ≥ 4: In this case very little is known; crepant resolutions exist in rather special
cases. Many singularities are terminal, which implies that they admit no
crepant resolution.

We would like to completely understand the topology of crepant resolutions in the
case n = 3. In this paper we are concerned with the study of the ring structure in
cohomology. This is related to the generalization of the McKay Correspondence.
In what follows we give a description of the problem by moving back and forth
between the case n = 2 and n = 3.
The case n = 2. The quotient singularities C2/G, for G a finite subgroup of
SL(2,C), were first classified by Klein in 1884 and are called Kleinian singularities
(they are also known as Du Val singularities or rational double points). There are
five families of finite subgroups of SL(2,C): the cyclic subgroups Ck, the binary
dihedral groups Dk of order 4k, the binary tetrahedral group T of order 24, the
binary octahedral group O of order 48, and the binary icosahedral group I of order
120. A crepant resolution exists for each family and is unique. Moreover the finite
group completely describes the topology of the resolution. This is encoded in the
McKay Correspondence [McK1], which establishes a bijection between the set of

1Etymology: For a resolution of singularities we can define a notion of discrepancy [R1]. A
crepant resolution is a resolution without discrepancy.
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irreducible representations of G and the set of vertices of an extended Dynkin dia-
gram of type ADE (the Dynkin diagrams corresponding to the simple Lie algebras
of the following five types: Ak−1, Dk+2, E6, E7 and E8).

Concretely, let {R0, R1, . . . , Rr} be the set of irreducible representations of G,
where R0 denotes the one-dimensional trivial representation. To G and its irre-
ducible representations we associate an (r+1)×(r+1) adjacency matrix A = [aij ]
with i, j = 0, . . . , r. The entries aij are positive integers; they are defined by the
tensor product decompositions

Ri ⊗ Q =
r∑

i=0

aij Rj ,

where Q denotes the natural two-dimensional representation of G induced from
the embedding G ⊂ SL(2,C). McKay’s insight was to realize that the matrix A
is related to the Cartan matrix C of a Dynkin diagram of type ADE, via

(0.1) A = 2I − C̃.

(Here C̃ is the Cartan matrix of the extended Dynkin diagram; the matrix C is

the r × r-minor obtained by removing the first row and the first column from C̃.)

Using McKay’s correspondence it is easy now to describe the crepant resolution
π : X → C2/G. The exceptional divisor π−1(0) is the dual of the Dynkin diagram:
the vertices of the Dynkin diagram correspond naturally to rational curves Ci
with self-intersection −2. Two curves intersect transversally at one point if and
only if the corresponding vertices are joined by an edge in the Dynkin diagram,
otherwise they do not intersect. The curves above form a basis for H2(X,Z). The
intersection form with respect to this basis is the negative of the Cartan matrix.

The first geometric interpretation of the McKay Correspondence was given by
Gonzalez-Sprinberg and Verdier [GV]. To each of the irreducible representations
Ri they associated a locally free coherent sheaf Ri. The set of all these coherent
sheaves form a basis for K(X), the K-theory of X. Moreover, the first Chern
classes c1(Ri) form a basis in H2(X,Q) and the product of two such classes in
H∗(X,Q) is given by the formula

(0.2)

[∫

X

c1(Ri)c1(Rj)

]

i,j=1,...,r

= −C−1,

where C−1 is the inverse of the Cartan matrix. The proof given by Gonzalez-
Sprinberg and Verdier uses a case by case analysis and techniques from algebraic
geometry. Kronheimer and Nakajima gave a proof of the formula using techniques
from gauge theory [KroN].

To summarize, in the case of surface singularities, C2/G, the representation theory
of the finite group G completely determines the topology the crepant resolution.
The Dynkin diagram and the Cartan matrix (and hence the simple Lie algebra g

associated to it) encode everything we want to know about the topology of the
crepant resolution.
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The case n = 3. The finite subgroups of SL(3,C) were classified by Blichfeldt in
1917 [Bl]: there are ten families of such finite subgroups. In the early 1990’s a case
by case analysis was used to construct a crepant resolution of C3/G with the given
stringy Euler and Betti numbers (see [Ro] and the references therein). As a con-
sequence of these constructions, we know that all the crepant resolutions of C3/G
have the Euler and Betti numbers given by the stringy Euler and Betti numbers of
the orbifold (since these numbers are unchanged under flops). In 1995 Nakamura

made the conjecture that HilbG(C3) is a crepant resolution of C3/G. In general,

for G a finite subgroup of SL(n,C), the algebraic variety HilbG(Cn) parametrizes
the 0-dimensional G-invariant subschemes of Cn whose space of global sections
is isomorphic to the regular representation of G. Nakamura made the conjecture
based on his computations for the case n = 2 [INak]; then he proved it in dimen-
sion n = 3 for the case of abelian groups [Nak]. In 1999 Bridgeland, King and
Reid gave a general proof of the conjecture in the case n = 3, relying heavily on
derived category techniques [BKR]. In 2002 Craw and Ishii proved that (at least
in the case G abelian) all the crepant resolutions arrive as moduli spaces [CI].

In the case of surface singularities, an important feature of the McKay Corre-
spondence is that it gives the ring structure in cohomology in terms of the finite
group. For the case n ≥ 3, nothing is known about the multiplicative structures
in cohomology or K-theory.

Let G ⊂ SL(3,C) be a finite subgroup acting with an isolated singularity on
C3/G. Let X be a crepant resolution of C3/G. On this resolution we asso-
ciate a vector bundle Ri to each irreducible representation of G – this is the
extension of the Gonzalez-Sprinberg-Verdier sheaves. These bundles form a basis
of the K-theory of X , and via the Chern character isomorphism, we have that
{ch(R0), ch(R1), . . . , ch(Rr)} basis of H∗(X ; Q).

The idea is to use the Atiyah-Patodi-Singer (APS) index theorem for studying
multiplicative properties of the (Chern classes of the) bundles Ri. In [De2] we
show a that a generalization of Kronheimer and Nakajima’s formula (0.2) holds in
the compactly supported cohomology of X :

(0.3)

[∫

X

(ch(Ri) − rk(Ri))
(
ch(R∗

j ) − rk(Ri)
)]

i,j=1,...,r

= C−1.

Here C is a matrix associated to the finite group G and its embedding into
SL(3,C), generalizing the Cartan matrix of the case n = 2.
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Classification of amalgams related to Phan theory

Ralf Gramlich

The project of establishing a unified theory for Phan’s theorems [10], [11] orig-
inally concentrated on flag-transitive geometries. The following results have been
established until now, see [3], [4], [5], [6].

Theorem. Let q ≥ 4, let n ≥ 3, let ∆ be the Dynkin diagram An, Cn, or Dn, and
let G be a group that contains a weak Phan system of type ∆ over Fq2 . Then G is
isomorphic to a factor group of

• SUn+1(q
2), if ∆ = An;

• Sp(2n, q), if q ≥ 8 and ∆ = Cn
• Spin+(2n, q), if ∆ = Dn and n even; and
• Spin−(2n, q), if ∆ = Dn and n odd.

However, intransitive geometries arise naturally from the construction of flipflop
geometries described in [2], for example the geometry of nondegenerate subspaces
of an orthogonal space, see [1]:
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Theorem. Let n ≥ 3, let F be an arbitrary field of characteristic not two distinct
from F3 and F5, and let V be an (n+1)-dimensional vector space over F endowed
with a nondegenerate orthogonal form. Then the geometry of nondegenerate sub-
spaces of V is simply connected.

One method to cope with the intransitivity is, of course, to restrict oneself to the
study of the geometry consisting of the orbit of a single flag. The major drawback
of this approach is the loss of elements of the geometry. Unfortunately, the more
elements one removes from the geometry the more difficult it is to establish the
simple connectedness of that geometry.

Therefore I would like to propose an alternative approach. Following Stroppel
[12], one can drop the transitivity assumption for one class of types of the geometry,
say the points, and still recover the geometry from the family of stabilizers. This
allows for a number of amalgam-theoretic results for amalgams of intransitive
geometries, see [7].

Finally, using Lie theory and the theory of Schur covers of topological groups
[8], [9], one can use the methods developed for the proof of Theorem to prove the
following result.

Theorem. Let n ≥ 3, let and let G be a group that contains a weak Phan system
of type An over C. Then G is isomorphic to a factor group of SUn+1(C).
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Curtis-Phan-Tits theory

Corneliu Hoffman

This talk describes some recent results which establish a connection between the
Curtis-Tits theorem and a series of results of Phan.

Here is the Curtis-Tits theorem as stated in [1]

Theorem (Curtis - Tits). Let K be the universal version of a finite Chevalley
group of twisted rank at least 3 with root system Σ, fundamental system Π and
root groups Xα, α ∈ Σ. For each J ⊆ Π let KJ =< Xα, ±α ∈ J >. Let D be the
set of all subsets of Π with at most 2 elements. Then K is the universal completion
of the amalgam ∪J∈DKJ .

In the case of the diagram of type An, consider the following amalgam

∪ni=1Li such that Li ∼= SL2(q) < Li, Li+1 >∼= SL3(q), [Li, Lj ] = (1) if |i− j| ≥ 2

. then the universal cover of the amalgam is SLn+1(q)

Theorem (Phan). Consider the following amalgam:

∪ni=1Ui, such thatUi ∼= SU2(q
2) < Ui, Ui+1 >∼= SU3(q

2), [L−i, Lj ] = (1)if |i−j| ≥ 2

then the universal cover is SUn+1(q
2)

The similarity between the two statements is striking. The following construc-
tion sheds some more light on the problem and provides other similar results.

Given a twin building T = (B+,B−, δ∗),

Opp(B) := {(c+, c−) ∈ C+ × C−|δ∗(c+, c−) = 1W }
Chambers x ∈ C+ and y ∈ C− with δ∗(x, y) = 1W are called opposite, hence the
notation. At least in the spherical case, Opp(T ) is a geometric chamber system.
Its corresponding geometry will be denoted by Γop and will be called the opposites
geometry.

Theorem (Muhler). If T = (B+,B−, δ∗) is a spherical twin building associated to
the spherical building B then the geometry Γop is simply connected.

The stabilizers of the elements from a maximal flag are the Levi factors in the
maximal parabolic subgroups of K. Therefore an inductive argument gives the
Curtis-Tits theorem.

More generally let B = (B+, B−) be a twin buiding. A flip is an automorphism
of B with the following properties:

(i) σ2 = Id
(ii) Bσ+ = B−
(iii) d+(x, y) = d−(xσ , yσ), d∗(x, y) = d∗(xσ , yσ)
(iv) ∃C+ ∈ B+ such that d∗(C+, C

σ
+) = 1W .

Construct

Cσ := {(C+, C−)|Cσ+ = C− ; d∗(C+, C−) = 1W } 6= ∅
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We do not know if the chamber system Cσ is geometrizable in general, however
this is the case in each of our examples. In the case of a classical spherical building
we have constructed a series of examples of such flips for which the corresponding
chamber system gives a simply connected geometry and corresponding amalgam
presentation for a classical group. For a list of the results see Theorem from Ralf
Gramlich’s abstract and the references following it.
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Amalgams and representations

A.A. Ivanov

A locally projective amalgam is formed by the stabilizer G(x) of a vertex x and the
global stabilizer G{x, y} of an edge (containing x) in a group G, acting faithfully
and locally finitely on a connected graph Γ of valency 2n− 1 so that (i) the action
is 2-arc-transitive; (ii) the subconstituent G(x)Γ(x) is the linear group SLn(2) ∼=
Ln(2) in its natural doubly transitive action and (iii) [t, G{x, y}] ≤ O2(G(x) ∩
G{x, y}) for some t ∈ G{x, y} \ G(x). D. Ž. Djoković and G.L. Miller [1] used
the classical Tutte’s theorem [2], to show that there are seven locally projective
amalgams for n = 2. In [3] used the most difficult and interesting case of Trofimov’s
theorem [4] to extend the classification to the case n ≥ 3. It turned out that besides
two infinite series of locally projective amalgams (embedded into the affine linear
groups AGLn(2) and into the orthogonal linear groups O+

2n(2)) there are exactly
twelve exceptional ones as in Table 1. Some of the exceptional amalgams are
embedded into sporadic simple groupsM22, M23, Co2, J4 and BM . For each of the
exceptional amalgam n = 3, 4 or 5. In [5] for every locally projective amalgamA we
calculate the minimal degree m = m(A) of its complex representation (which is a
faithful completion into GLm(C)). For the exceptional amalgams the dimensions
are given in Table 2. Analysing the minimal representations we answer three
questions on exceptional locally projective amalgams left open in [3]: we haved

shown that (1) A(1)
4 possesses SL20(13) as a faithful completion in which the third

geometric subgroup is improper; (2) A(2)
4 possesses the alternating group Alt64

as a completion constrained at levels 2 and 3; (3) A(5)
4 possesses Alt256 as as a

completion which is constrained at level 2 but not at level 3.
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some completions

n A G[0]/O2(G[0])
O2(G[0])

bG[2]

K[2]

bG[3]

K[3]

bG[4]

K[4] constrained

at level 2

3 A(1)
3

L3(2)
23

S3oS2

24 -

A(2)
3

L3(2)
23

S5

24 M22

A(3)
3

L3(2)
23

S5

24 -

A(4)
3

L3(2)
23×2

24:(S3oS2)
25 (S8 o 2)+

A(5)
3

L3(2)
23×2

S5

25 Aut M22

4 A(1)
4

L4(2)
1

S5

24:3
1
1 M23

A(2)
4

L4(2)
26

S5×2

21+8
+ :S3

L6(2)
26 Alt64

A(3)
4

L4(2)
21+4+6

S5

24+10.S3

Aut M22

210 Co2

A(4)
4

L4(2)
24+4+6

S5

23+12+2.S3

3·Aut M22

21+12
+

J4

A(5)
4

L4(2)
24+4+6

S5×2
23+12+2.S3

L6(2):2

21+12
+

Alt256

5 A(1)
5

L5(2)
210

S5

23+12.L3(2)
Aut M22

21+12
+ :3

1
1 J4

A(2)
5

L5(2)
25+5+10+10

S5

23.[232].L3(2)
Aut M22

22+10+20.S3

Co2
21+22
+

BM

Table 1. Exceptional Amalgams

A A
(1)
3 A

(2)
3 A

(3)
3 A

(4)
3 A

(5)
3 A

(1)
4 A

(2)
4 A

(3)
4 A

(4)
4 A

(5)
4 A

(1)
5 A

(2)
5

m(A) 7 20 20 14 20 20 63 23 1333 255 1333 4371

Table 2. Dimensions of Minimal Representations
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On the classification of finite simple groups of both even and p -type

Inna Korchagina

In this talk we we discuss a classification of finite simple groups which are of
simultaneously even- and p-type. In particular, we discuss a characterization of
A12HN,Sp8(2) and F4(2). This is a joint work with R. Lyons, and is a contribution
to the revision project of Gorenstein, Lyons and Solomon of the Classification of
Finite Simple Groups.

On Amalgams for Locally s-Arc Transitive Graphs

Cai Heng Li

Let Γ be a finite undirected simple graph that has no vertex of valency less
than 3. For a vertex v ∈ V , denote by Γ (v) the set of vertices adjacent to v. An
s-arc of Γ is an (s+1)-tuple (v0, v1, . . . , vs) of vertices such that vi−1 ∈ Γ (vi) and
vi−1 6= vi+1. For a group G ≤ AutΓ , Γ is called locally (G, s)-arc transitive if,
for any vertex v, the stabiliser Gv acts transitively on the set of s-arcs starting
at v; further, Γ is called locally (G, s)-transitive if Γ is not locally (G, s + 1)-arc
transitive. A locally (G, s)-arc transitive graph Γ is called (G, s)-arc transitive if
G is also transitive on the vertex set V . As usual, for a vertex v of Γ , denote

by G
Γ(v)
v the permutation group on Γ (v) induced by Gv , and denote by G

[1]
v the

kernel of Gv acting on Γ (v).
For an edge {v, w} of Γ , the triple (Gv , Gw, Gvw) is called the amalgam of G and

of Γ . The problem of determining the amalgam is fundamental for understanding
the group G and the graph Γ .

The study of locally s-arc transitive graphs was initiated by a celebrated result
of W. Tutte (1947), that is, s-arc transitive cubic graphs exist only for s ≤ 5.
Since then, studying locally s-arc transitive graphs has been one of the central
topics in algebraic graph theory. The amalgam (Gv , Gw, Gvw) has been known for
several special cases: the vertex transitive case with s ≥ 2, see [9] and [7]; the case
where ‘Moufang condition’ holds, see [10] for references; the cubic graph case, see

[5]; the case where G
Γ(v)
v and G

Γ(w)
w are both rank one Lie type groups, see [1].
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In particular, it was proved in [9] that there exists no non-trivial 8-arc transitive
graphs. B. Stellmacher announced that for general locally s-arc transitive graphs,
s ≤ 9, and he and J. van Bon are jointly working on the project.

It is clear that for a locally (G, 2)-arc transitive graph Γ , G
Γ(v)
v and G

Γ(w)
w

form a pair of 2-transitive permutation groups, and so each of them is known.
The first step for classifying the amalgam (Gv , Gw, Gvw) is to determine the pairs

{GΓ(v)
v , G

Γ(w)
w } of 2-transitive permutation groups. The following statements are

proved in [6], which are independent of Stellmacher and van Bon’s work.

(i) For s = 2, either soc(G
Γ(v)
v ) ∼= soc(G

Γ(w)
w ) and Γ is regular, or some

restricted conditions hold.
(ii) For s ≥ 3, either both (G

[1]
v )Γ(w)\{v} and (G

[1]
w )Γ(v)\{w} are transitive, or

some restricted conditions are satisfied.
(iii) For s ≥ 4, either both G

Γ(v)
vw and G

Γ(w)
vw are soluble, or several very special

cases occur.
(iv) For s ≥ 6, both G

Γ(v)
vw and G

Γ(w)
vw are soluble, and both |Γ (v)| − 1 and

|Γ (w)| − 1 are p-powers with p prime.

A global-action analysis of locally s-arc transitive graphs was developed in [2],
which provides methods for constructing certain locally s-arc transitive graphs.
Several families of locally 2- or 3-transitive graphs constructed in [3] and a family
of locally 5-arc transitive graphs constructed in [4] justify the existence of several
cases in the above statements. They particularly give new almalgams for locally
s-arc transitive graphs.
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Semisymmetric graphs of twice odd order

C.W. Parker

Suppose that Γ is a connected graph and G is a subgroup of the automorphism
group Aut(Γ) of Γ. Then Γ is G-symmetric if G acts transitively on the arcs
(and so the vertices) of Γ and Γ is G-semisymmetric if G acts edge transitively
but not vertex transitively on Γ. If Γ is Aut(Γ)-symmetric, respectively, Aut(Γ)-
semisymmetric, then we say that Γ is symmetric, respectively, semisymmetric.
If Γ is G-semisymmetric, then the orbits of G on the vertices of Γ are the two
parts of a bipartition of Γ. If Γ is G-semisymmetric, then we say that G acts
semisymmetrically on Γ.

Connected semisymmetric cubic graphs (connected graphs in which every vertex
has degree 3) have been the focus of a number of recent articles, we mention
specifically [3, 4, 5, 6, 8] where, for example, infinite families of such graphs are
presented and where the semisymmetric graphs of order 2pq with p and q odd
primes are determined (with the help of the classification of finite simple groups).
We also remark that a catalogue of all the connected semisymmetric cubic graphs of
order at most 768 has recently been obtained by Conder et. al. [1]. The objective
of this talk is to partially describe all groups which act semisymmetrically on a
connected cubic graph of order twice an odd number.

Suppose that Γ is a G-semisymmetric cubic graph. Let {u, v} be an edge in Γ.
Set Gu = StabG(u), Gv = StabG(v) and Guv = Gu ∩ Gv. Then as G acts edge
transitively on Γ and u is not in the same G-orbit as v, we have [Gu : Guv ] = [Gv :
Guv ] = 3. Suppose that K /G and K ≤ Guv . Then K fixes every edge of Γ and
hence K = 1. As Γ is connected, the subgroup 〈Gu, Gv〉 acts transitively on the
edges of Γ and so we infer that G = 〈Gu, Gv〉. We have shown that G satisfies

G1 G = 〈Gu, Gv〉;
G2 [Gu, Gu ∩Gv ] = [Gv, Gu ∩Gv ] = 3; and
G3 no non-trivial subgroup of Guv is normalized by both Gu and Gv (is

normal in G).

This group theoretic configuration has been studied by Goldschmidt in [7] where
he shows that the triple (Gu, Gv , Guv) is isomorphic (as an amalgam) to one
of fifteen possible such triples. So understanding semisymmetric cubic graphs
is the same as understanding completions of the Goldschmidt amalgams. For
the investigations in this talk, we are interested in finite groups G which are
completions of a Goldschmidt amalgam (Gu, Gv, Guv) and which have for which
[G : Gu] + [G : Gv ] = 2[G : Gv ] equal to twice an odd number. Since Guv is a
2-group by Goldschmidt’s Theorem, this means that Guv is a Sylow 2-subgroup
of G. If G is as above and Guv ∈ Syl2(G), then we call G a Sylow completion of
the amalgam (Gu, Gv , Guv).

Suppose that G is a Sylow completion of a Goldschmidt amalgam (Gu, Gv, Guv).
Then a normal subgroup R of G is called a regular normal subgroup of G provided
R acts semiregularly on the vertices of the coset graph Γ = Γ(G,Gu, Gv , Guv).



1326 Oberwolfach Report 25/2004

Theorem. Suppose that G is a Sylow completion of a Goldschmidt amalgam.
Then there exists a regular normal subgroup R of G of odd order such that G/R
is isomorphic to one of the groups indicated in column two of Table 3.

We also give the graph theoretical version of this theorem .

Theorem. Suppose that G acts semisymmetrically on a connected, cubic graph of
twice odd order. Then there exists a normal subgroup R of G of odd order which
acts semiregularly on the vertices of Γ such that G/R is isomorphic to one of the
groups indicated in column two of Table 3.

The proofs of these theorems use some carefully chosen parts of the classification
of finite simple groups. Further details and relationship with results in [1], [3], [4],
[5], [6] and [8] were explained in fuller details in the presentation.
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Cohen-Macauley geometries

Antonio Pasini

A flag complex of a diagram geometry has objects of the geometry as vertices
and flags as simplices. A finite-dimensional complex is called spherical if all its
maximal simplices have the same dimension n, and the reduced homology vanishes
in all dimensions except (possibly) for n. A geometry is called spherical if its flag
complex is spherical, and Cohen-Macaulay if all residues are spherical too.

This talk reports on a joint work by V. Burichenko and A. Pasini. The main
result of this talk is the following: affine polar spaces are Cohen-Macaulay. As a
byproduct, a new proof of 2-simple connectedness of affine polar spaces is obtained.
Similar results for biaffine spaces are proved. Results of this kind can be used to
compute low-dimensional cohomology of groups acting on geometries. The crucial
step in the proof is a certain nontrivial geometric property of affine polar spaces.
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Division Type G/R Condition
1 G1 3

G1
1 Sym(3)

2 G1 32

G1
1 32.2

G2
1 3 × 6

G3
1 Sym(3) × Sym(3)

3 G2 33.Alt(4)

G3
2 Sym(3) o 3

G1
2 33.Sym(4)

G2
2 33.Sym(4)

G4
2 Sym(3) o Sym(3)

4 G3
1 PSL2(p) p a prime, p ≡ 11, 13 (mod 24)

5 G2 PSL2(p) p a prime, p ≡ 11, 13 (mod 24)

G1
2 PGL2(p) p a prime, p ≡ 11, 13 (mod 24)

6 G2
2 Alt(7)

G4
2 Sym(7)

7 G1
2 PSL2(p) p a prime, p ≡ 23, 25 (mod 48)

8 G1
2 PSL2(p

2) p a prime, p ≡ 5, 19 (mod 24)
G4

2 PΣL2(p
2) p a prime, p ≡ 5, 19 (mod 24)

9 G3 PSL2(p) p a prime, p ≡ 7, 9 (mod 16)
10 G3 PSL2(p

2) p a prime, p ≡ 3, 5 (mod 8)

G1
3 PΣL2(p

2) p a prime, p ≡ 3, 5 (mod 8)
11 G4 PSL3(p) p a prime, p ≡ 5 (mod 8)

G1
4 PSL3(p).2 p a prime, p ≡ 5 (mod 8)

12 G4 PSU3(p) p a prime, p ≡ 3 (mod 8)

G1
4 PSU3(p).2 p a prime, p ≡ 3 (mod 8)

13 G5 M12

G1
5 Aut(M12)

14 G5 G2(p) p a prime, p ≡ 3, 5 (mod 8)

G1
5 Aut(G2(3))

Table 3. Sylow Completions of Goldschmidt Amalgams
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Completions of Goldsmidt amalgams

Peter Rowley

Let A = A(P1, P2, P3) be one of the fifteen Goldsmidt amalgams given in [3] and
let G be a faithful completion of A. We then have

P1

ψ1

B

ϕ1

ϕ2

G

P2

ψ2

Where ϕ1, ϕ2, ψ1, ψ2 are group monomorphismsm and ϕ1ψ1 = ϕ2ψ2. we iden-
tify Pi with Imψi, i = 1, 2.

Here we give a short survey of which groups are completions of Goldsmidt amal-
gams. In [8] Wester gave the matrix group descriptions of the universal completion
for a number of the Goldsmidt amalgams.

In the case when G is finite Thiel showed in [7] that SL3(2
a) is a completion of

the G3 amalgam provided a 6= 2. This result was extended to

Theorem (Parker and Rowley [4]). The subgroups SL3(q) and L3(q) are
completions of the Goldschmidt G3-amalgam if and only if q 6∈ {4, 9}
SU3(q) and U3(q) are completions of the Goldschmidt G3 amalgam if

and only if q 6∈ {3, 5}
If G is a sporadic simple group we have

Theorem (Parker and Rowley [6]). M11,M12, J1,M22,M23, HS,McL,C03, Co2
are not completions of the Goldschmidt G3 amalgams whereas all the other sporadic
groups, with the possible exception of M , are.

For Goldsmidt G4 amalagam we have

Theorem (Parker and Rowley [5]). Suppose G ≤ GL3(k) with k a finite field of
characteristic p. if G is a completion of the Goldschmidt amalgam G4 then p is
odd and G ∼= SL3(q) if p ≡ 1 (mod 4) and g ∼= SU3(p) if p ≡ 3pmod4.

When G is symmetric we have following two results:

Theorem (Conder [2]). For all but finitely many n the group Sn is a completion
of G1

3 amalgam.

Theorem (Bundy, Rowley[1]). If n 6∈ {1, 2, 3, 4, 6} then Sn is a completion of the
Goldschmidt G3

1 amalgam.

For a recent classification of Sylow-completion of the Goldschmidt amalgam see
the abstract of C Parker’s talk.
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Y -representation and 21-node system of the Monster

and the moonshine module

Hiroki Shimakura

Our purpose is to study the Monster M (or interesting finite groups) and to
explain its mysterious phenomena by using vertex operator algebras (VOAs). For
details of the axiom of vertex operator algebras, see [FLM].

1. Automorphism group of V +
L

One of the typical VOAs is the VOA VL associated to an even lattice L. The
automorphism group Aut(VL) of VL has the subgroup O(L̂) induced by the auto-

morphism group O(L) of L: O(L̂) ∼= Hom(L,Z2).O(L). We take an element θ of

O(L̂) induced by the −1-symmetry. Then V +
L = {v ∈ VL| θ(v) = v} is a subVOA

of VL. In [Sh1], a method of determining of Aut(V +
L ) is given. In particular, the

following hold:

Proposition 1.1. [Sh1]

(i) Aut(V +
L ) is finite if and only if L has no roots.

(ii) Suppose that L has no roots. Then Aut(V +
L ) ⊆ CAut(VL)(θ)〈θ〉 if and only

if L is obtained by Construction B from a binary code.
(iii) Aut(V +

L ) has ”nice” symmetries if L is isomorphic to
√

2E8 and the

Barnes-Wall lattice BW16 of rank 16. In particular, Aut(V +√
2E8

) ∼= O+
10(2)

and Aut(V +
BW16

) ∼= 216 · Ω+
10(2).

V +
L is important from the viewpoint of finite group theory by (1). (For example,

Aut(VL) is infinite for any even lattice L.) A new relation between lattices and
VOAs is given by (2). The VOAs V +√

2E8
and V +

BW16
are deeply related to the

maximal 2-local subgroup of the Monster of shape 210+16 · Ω+
10(2).
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2. Application to the moonshine module

The moonshine module V \ was constructed in [FLM]: V \ = V +
Λ ⊕V T,−Λ , where

Λ is the Leech lattice and V T,−Λ is an irreducible V +
Λ -module. Moreover, they

showed that V \2 is a deformation of the algebra constructed by Griess and that
Aut(V \) ∼= M. For a sublattice L of Λ, V \ contains V +

L as a subVOA. By using
this embedding, some maximal 2-local subgroups of the Monster are described in
terms of V +

L in [Sh2].

Let us explain how to obtain symmetries of V \ from VOAs in the case where
V = V +√

2E8
⊗ V +

BW16
⊂ V \. Consider a certain decomposition of V \ as irreducible

V -modules into 210 components: V \ = ⊕d∈EV \(d), |E| = 210. By using the
representation theory on V +

L , for any d1, d2 ∈ E, there uniquely exists an element
d3 ∈ E such that

V \(d1)(n)V
\(d2) ⊂ V \(d3),

where (n) is the binary operator on V \. Hence we obtain a binary operation
(d1, d2) 7→ d3 on E. In fact, this operation gives a group structure on E. For
f ∈ Hom(E,C×), we define a linear automorphism gf of V \: gf (v) = f(d)v if v ∈
V \(d). Then gf ∈ Aut(V \). Therefore we obtain an elementary abelian 2-subgroup

Hom(E,C×) of order 210 of Aut(V \). In [Sh2], it is shown that NAut(V \)(E) ∼=
210+16 · Ω+

10(2) without using the properties of the Monster. The author hopes
that our arguments will give a “nice” explanation of some aspects of the Monster.

3. 21-node system and the moonshine module

One of the mysterious phenomena on the Monster M is the 21-node system (or
the Y -representation): M is isomorphic to a certain Coxeter group with an extra
relation. Our purpose is to explain the mysterious non-Coxeter relation in terms
of vertex operator algebras.

Miyamoto [Mi1] found the 21 involutions of V \ satisfying the Coxeter relation
of the 21-node system. However, the non-Coxeter relation is not checked yet.

Combining the results of [Co] and [Mi2], we obtain the one-to-one correspon-

dence between the idempotents of V \2 with norm 1/16 and the 2A-involutions of
M. Moreover, Conway [Co] showed that the inner product of idempotents is deter-
mined by the conjugacy class of the product of the corresponding 2A involutions
of M.

Question: Find 21-involutions (or 12-involutions forming the Y -diagram) with
suitable inner products and explain the non-Coxeter relation in terms of vertex
operator algebras.
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Simply connected geometries for G2(3).2
and the Thompson sporadic group Th

S Shpectorov

The Thompson sporadic simple group Th is one of the few sporadic groups,
whose uniqueness still has no computer-free proof. One of the reasons for this sit-
uation is the absence of a good, simply connected geometry, on which Th acts flag-
transitively. Such a geometry, together with the result on the uniqueness of the
related amalgam of maximal parabolics, would provide means for the identification
of Th, which is a crucial step towards its uniqueness.

The Thompson group is a group with a large extraspecial subgroup. For such
groups one can define, as in [MS], a family of elementary abelian subgroups called
singular subgroups. In the case of Th, all singular subgroups can easily be classified,
giving five conjugacy classes of orders 21 through 25. In terms of geometries, only
singular subgroups of orders 21 and 25 are of interest, and they give two types of
elements, which we call lines and points, respectively. Incidence between points
and lines is defined by containment of the corresponding singular subgroups.

To be simply connected, a finite geometry must have rank at least three, so
we need one further type of elements. The point-line incidence graph contains a
family of subgraphs isomorphic to the incidence graph of the generalized hexagon
of 3D4(2). These subgraphs become elements of the third type, called hexagons.
The resulting rank three geometry Γ(Th) satisfies, as a point-line geometry, a nice
set of axioms, which we omit here.

Theorem. The geometry Γ(Th) is simply connected.

We now outline the scheme of the proof.
The Thompson groups contains in the normalizer of a subgroup A of order three

a section isomorphic to G2(3).2. This section acts on the points of Γ(Th) fixed
by A and this leads to a similar flag-transitive geometry Γ(G2(3).2). We prove
that this smaller geometry is simply connected, which via Tits’ lemma, yields that
the universal completion of the amalgam A(G2(3).2) of the maximal parabolics in
G2(3).2 is isomorphic to G2(3).2.

Let now A(Th) be the amalgam of maximal parabolics in Th, and let G be its
universal completion. To prove Theorem , one only needs to show that G ∼= Th.
Within A(Th) one can choose a subgroup A of order three, so that the normalizers
of A in the members of A(Th), taken modulo A, form an amalgam isomorphic to
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A(G2(3).2). By the above, we conclude that G must contain a new subgroup,
which is an extension of A by G2(3).2.

Now, the amalgam formed by two of the three members of A(Th) and the new
subgroup, is exactly the amalgam looked at by Havas, Soicher, and Wilson [HSW].
They show that the latter amalgam necessarily generates Th, which leads to the
conclusion that G ∼= Th, proving Theorem . Notice, however, that this proof is not
computer-free, as the result in [HSW] is obtained by Todd-Coxeter enumeration.
We hope in the future work to establish simple connectedness of the geometry
Γ(Th) in a computer-free way.
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On groups of local characteristic p

G. Stroth

Looking at the finite simple groups one realizes that most maximal 2–locals
have a very restricted structure. Let G be a finite simple group of characteristic
2–type. Let S be a Sylow 2–subgroup and M be a maximal 2–local containing
S but such that Ω1(Z(S)) is not normal in M , then usually Ω1(Z(O2(M))) is a
small module for M/CM (Ω1(Z(O2(M)))). Further M/CM (Ω1(Z(O2(M)))) has
not many components. In the quasi thin group paper [AS] M. Aschbacher and S.
Smith proved the following theorem

Theorem. Let G be a quasi thin K-group of even type, T be a Sylow 2–subgroup
of G, T ≤ M0 ≤ M , M a maximal 2-local of G, and H a subgroup of G minimal
subject to T ≤ H 6≤ M and O2(H) 6= 1. Assume that V is a normal elementary
abelian 2–subgroup of M0 which satisfies O2(M0/CM0(V )) = 1, O2(M0) = CT (V ),
and H ∩M normalizes V or O2(M0). Then either O2(〈M0, H〉) 6= 1 or V is a
2F–module for M0/CM0(V ) with cubic offender A.

Here a 2F–module V with cubic offender A means CA(V ) = 1, |V : CV (A)| ≤
|A|2 and [V,A,A,A] = 1. Recall that by Thompson replacement FF -modules are
also 2F–modules with cubic offenders. M. Aschbacher and S. Smith claimed that
this theorem should also hold without the assumtion that G is quasi thin. In the
first part of the talk we sketch a proof of that generalized theorem.

For this we need a few definitions

• We call a group H of characteristic p–type if CH (Op(H)) ≤ Op(H)
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• We call a group G of local characteristic p , if all nontrivial p-locals of G
are of characteristic p-type

• Let H be of characteristic p -type, then let YH be the maximal normal
elementary abelian subgroup of H with Op(H/CH(YH)) = 1.

• Let H be of characteristic p -type, S be a Sylow p–subgroup of H . Set
H0 = NH(S ∩ CH(YH)). Then YH0 = YH and CS(YH0 ) = Op(H0).

• A group G is called a Kp–group if all simple composition factors of all
nontrivial p–locals of G are cyclic, alternating, a group of Lie type or one
of the 26 sporadics.

Now we can state the little theorem

Theorem. Let G be a group of local characteristic p with Op(G) = 1. Let S be
a Sylow p–subgroup of G. Either there is exactly one maximal p-local containing
S or there is some maximal p–local H with S ≤ H and YH is a 2F–module with
cubic offender A.

Here is a sketch of the proof.

Choose some maximal p-local H with YH 6≤ Z(S) and YH maximal. This is
possible if there is more than one maximal p-local containing S. Suppose first
that there is some p–local L of G such that YH 6≤ Op(L) and S ∩ L is a Sylow
p–subgroup of L. The following argument is due to U. Meierfrankenfeld. Using
this we were able to drop the asumption G to be a Kp–group from the version of
the theorem presented at the conference. Choose LH = 〈YH , Y gH〉 minimal such
that Op(LH) 6= 1, S ∩ LH is a Sylow p–subgroup of LH and YH 6≤ Op(LH).
Now if a ∈ YH \ Op(LH) and b ∈ (Y gH ∩ Op(LH)) \ YH , then [a, b] 6∈ YH ∩ Y gH .
Hence |YHOp(LH)/Op(LH)| ≤ |[YH , b](YH ∩ Y gH )| ≤ |YH ∩ Op(LH)/YH ∩ Y gH | =
|Y gH ∩ Op(LH)/YH ∩ Y gH |. Hence Y gH ∩ Op(LH)/YH ∩ Y gH is a 2F–offender on YH .
As [Y gH ∩ Op(L), YH , Y

g
H ∩ Op(LH)] ≤ YH ∩ Y gH , it is a cubic offender.

So we may assume that there is no such L. This in particular shows that YH ≤
Op(CG(x)) for all 1 6= x ∈ YH . Now choose P minimal with S ≤ P , Op(P ) 6= 1
but P 6≤ H . As YH ≤ Y〈H0,P 〉, we get with the maximality of YH that (H0, P ) is
an amalgam. Suppose YP 6≤ Z(S). Then there is some maximal p–local M such
that P ≤ M and YM 6≤ Z(S). Then (H0,M0) is an amalgam and so either YH
or YM is an FF–module and we are done. So we may assume that YP ≤ Z(S).
Let b be the parameter of that amalgam. If b is even, we have that YH is an FF -
module. So we may assume that b is odd. As YH ≤ Op(P ), we get b ≥ 3. Now a
general argument, which also is independent of Kp–group assumptions (variation
of the L–lemma [MSS], or a slightly stronger version of Stellmachers qrc - lemma
[Ste], using the fact that YH ≤ Op(CG(x)) for all 1 6= x ∈ YH , which replaces the
possibility of being a dual of an FF -module by strong dual FF -module with qua-
dratic offender, which then is an FF–module too.) gives that YH is a 2F–module.
Recall that the pushing - up situation of the qrc–lemma does not show up as by
the choice of P we have that YH 6≤ Z(Op(P )).
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To get more information, maybe also the information about M/CM (YM ) one has
to implement more assumptions. This has been done by U. Meierfrankenfeld, B.
Stellmacher and G. Stroth [MSS] in the so called structure theorem. For this we
have to make a few definitions. As seen before NG(Ω1(Z(S))) plays a special role.
Let G be as before (i.e. of local characteristic p and Op(G) = 1).

• Denote by C̃ a maximal p-local containing NG(Ω1(Z(S))).
• Set E = Op(F ∗

p (CC̃(YC̃))), here F ∗
p (X) is the preimage of F ∗(X/Op(X)).

• Non E -uniqueness. There is more than one maximal p-local of G con-
taining E. Then the actual status is that we either have a nice amalgam,
a nice pushing - up situation or F ∗(G) ∼= M22, M23, M24, Ln(q) or An,
[MSS1], [MSS2] .

In what follows we will assume that we have E–uniqueness, so C̃ is the unique
maximal p-local containing E. Set Q = Op(C̃). Let M be any p-local, M 6≤ C̃ .
Then a consequence of E–uniqueness is Q 6≤ Op(M). Set M0 = 〈QM 〉 and let M
be with M0 maximal. Then the structure theorem describes F ∗(M0/Op(M0)) and

the action of M0 on YM . Here we will just give the version where YM 6≤ Op(C̃).

Theorem. Let G be a Kp–group of local characteristic p. Assume E–uniqueness,
and let M0 be as before. Set M0 = M0S and K = F ∗(M0/CM0(YM )). Then one
of the following holds

i) K is quasisimple and isomorphic to SL(n, q), Sp(2n, q)′, Ω±(n, q), or
E6(q), q a power of p. Further [K,YM ] contains one of the modules
below.

ii) K ∼= SL(n, q)′ × SL(m, q)′, YM is the tensor product module of the two
natural modules..

iii) p = 2, K ∼= 3A6, M22 or M24 and [YM ,K] is a 6–dimensional , 10–
dimensional, 11-dimensional module, respectively.

iv) p = 3, K ∼= M11 or 2M12 and YM is the 5–dimensional or 6-dimensional
module.

v) M0 is a minimal parabolic
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group prime module restriction
SL(n, q) p natural
SL(n, q) p alternating square
SL(n, q) p symmetric square p odd
SL(n, q2) p V (λ1) ⊗ V (λσ1 )
Sp(2n, q) p natural
Sp(2n, q) p spin n ≤ 5

3A6 2 6-dim
Ω±(n, q) p natural
Ω±(2n, q) 2 half spin n ≤ 6
E6(q) p V (λ1)
M11 3 5-dimensional
2M12 3 6-dimensional
M22 2 10-dimensional
M24 2 11-dimensional

Based on this theorem we have established the H-structure theorem [S], which
reads as follows

Theorem. Let G be a Kp–group of local characteristic p. Let R be the subgroup
generated by all p-locals containing S. Assume that Op(R) = 1 and E–uniqueness.
Let M0 be as before and assume YM 6≤ Q. Then one of the following holds

(1) There is a subgroup H of G with M 0 ≤ H, Op(H) = 1 such that for
F ∗(H) the parabolics containing S are as in one of the following groups

i) A group of Lie type in characteristic p and of rank at least three
ii) p = 2 and we have He, Co2, Co1, M(24)′, J4, Suz, F2, F1, or

U4(3).
iii) p = 3 and we have M(24)′, Co1 or F1

(2) p = 2 and M is an extension of an elementary abelian group of order

16 by L3(2), C̃ is an extension of an extraspecial group of order 32 by
Σ3 × Σ3. Further there are minimal parabolics P1, P2 with P1/O2(P1) ∼=
P2/O2(P2) ∼= Σ3 and O2(〈P1, P2〉) = 1.

(3) p = 3 and M and C̃ are as in Co3. There are two minimal parabol-
ics P1, P2 such that P1/O3(P1) ∼= L2(9), P2/O3(P2) ∼= SL(2, 9) and
O3(〈P1, P2〉) = 1.

(4) M0 is a minimal parabolic.

Of course there is a problem. The H-structure theorem just gives information
about H but not about the simple group G. In fact the group H might be a proper
subgroup of G. If p = 2 and H has the structure of a group of Lie type, in fact
then H is a group of Lie type, A. Hirn is working in classifying all examples where
H 6= G as a Ph. D. thesis. The case p = 3 and we have one of (1)(iii) above will
be done by M. Salarian as a Ph. D. thesis. Here we will forget about Kp-groups
and groups of local characteristic p. The theorems will read as follows.
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Theorem. Let G be a finite group containing two subgroups H1 and H2 where
H1

∼= 31+122Suz : 2 and H2
∼= 38Ω−(8, 3), where H1 and H2 share a Sylow

3–subgroup of G and H1 = NG(Z(O3(H1))), then G ∼= F1.

Theorem. Let G be a finite group containing two subgroups H1 and H2, where
H1

∼= 31+4Sp(4, 3) : 2 and H2
∼= 362M12, where H1 and H2 share a Sylow 3–

subgroup of G and H1 = NG(Z(O3(H1))), then G ∼= Co1.

Theorem. Let G be a finite group containing two subgroups H1 and H2, where
H1

∼= 31+10U5(2) : 2 and H2
∼= 37O(7, 3), where H1 and H2 share a Sylow 3–

subgroup of G and H1 = NG(Z(O3(H1))), then G ∼= M(24)′.

The first theorem has been proven.

The case (1) of the H–structure theorem with H a group of Lie type in odd
characteristic is still open. It would be interesting to prove :

Let G be a group containing a subgroup H which is a group of Lie type in charac-
teristic p and of rank at least three. If H is strongly p–embeded (i.e. NG(P ) ≤ H
for any nontrivial p–subgroup P of H), then G = H.

Case (2) of the H-structure theorem has been dealt with by M. Aschbacher [Asch].
We get F ∗(G) = G2(3).

The case (3) is still open. The claim is that in this case G = Co3.
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Vertex stabilizers of graphs and tracks

V.I. Trofimov

The track method is a method of reconstruction of finite vertex stabilizers of
groups of automorphisms of graphs from their restrictions to the neighborhood. In
the first part of the talk, I discuss main ideas of this method which, in a sense, can
be seen as the amalgam method realized along some special track of the graph.

In the second part of the talk, I discuss how the track method can be modified
to be used in connection with the following conjecture.

Conjecture. Let Γ be an undirected connected locally finite graph, G be a
vertex-transitive group of automorphisms of Γ, and x ∈ V (Γ). Then at least one
of the following holds:

1) there exists an imprimitivity system σ of G on V (Γ) with finite (may be
one-element) blocks such that Gσxσ is finite;

2) the graph Γ is hyperbolic (i.e. for some positive integer n, the graph Γn with
the vertex set V (Γn) = V (Γ) and the edge set E(Γn) = {{y1, y2}|0 < dΓ(y1, y2) ≤
n} contains the regular tree of valency 3).

In this context the following result is important.

Theorem. Let Γ be an undirected connected locally finite non-hyperbolic graph,
G be a vertex-transitive group of automorphisms of Γ, x ∈ V (Γ), and g ∈ G.
For each integer i, put xi = gi(x). Let H be the subgroup of G generated by g
and the pointwise stabilizer in G of the set {..., x−1, x0}, and let X be the H-orbit
containing x. Then there exists an imprimitivity system σ of HX on X with finite
(may be one-element) blocks such that (HX)σ is a cyclic group.

Automorphisms of Moufang polygons

Richard Weiss

Let Γ be a Moufang polygon, let G denote its automorphism group and let
G† denote the subgroup of G generated by all the root groups of Γ. Then G†

is a normal subgroup of G and, except in three small exceptional cases, G† is a
simple group. In Chapter 37 of [2], the structure of the quotient group G/G† is
determined for almost all families of Moufang polygons. For example, if Γ is the
Moufang triangle defined over a commutative field K, then G/G† is isomorphic to
Aut(K) ·K∗/(K∗)3. In recent work, we have determined the structure of G/G†

for the exceptional quadrangles of type E6 and E7. Tom De Medts has solved
this problem for the exceptional quadrangles of type F4 [1]. The two cases for
which there is still no satisfactory result are the exceptional quadrangles of type
E8 and the hexagons of type E8 (i.e. the hexagons defined over a 27-dimensional
quadratic Jordan division algebra).
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On the Quillen dimension property

Satoshi Yoshiara

What is the most important prime for a given finite group? It should be 2 if
the group is nonabelian simple, but the characteristic of a finite Chevalley group
also plays an important role. The aim of my talk is to provide an approach to
this problem from the view point of subgroup complexes, and to show the list of
interesting primes to each sporadic simple group. Roughly speaking, a prime p is
‘interesting’ for a finite group G if the simplicial complex of chains of nontrivial
p-subgroups of G can be shrinked much.

For a finite group G and a prime p, let Sp(G) (resp. Ap(G) and Bp(G)) be a
partially ordered set consisting of nontrivial p- (resp. elementary and radical, that
is, R with Op(NG(R)) = R) subgroups of G. Each of these posets, X , is associated
with the simplicial complex ∆(X ) of chains. The geometric realizations |∆(X )| are
homotopically equivalent to each other, whence they give the identical (reduced)

homology groups H̃n(X ) := H̃n(|∆(X )|,Q) for n = 0, 1, . . .. It is evident that the
dimension of the complex ∆(A) coincides with mp(G) − 1, where mp(G) denotes

the p-rank of G. Thus H̃n(X ) vanishes if n ≥ mp(G).

It is natural to observe the smallest dimension n for which H̃n(X ) does not
vanish. Note that we may not find such n. In that case, |∆(X )| is contractible
to a point, and the remarkable Quillen’s conjecture says that we have Op(G) 6= 1.
The conjecture was affirmatively solved for p ≥ 7 in [AS], where the following
notion was introduced: We say that the Quillen dimension property (QD) holds

for (G, p) if np(G) := min{n | H̃n(X ) 6= 0} exists and np(G) = mp(G) − 1.
A prime p is called interesting to a finite group G if (QD) fails. In [AS], it is

shown that the possible interesting primes to most of the groups of Lie type (resp.
the alternating groups) are 2, 3, 5 and the characteristics (resp. 2 and 3). To each
sporadic group, the list of interesting primes is obtained [Yo3]. They are 2, 3 (to
many), 5 (to McL, Ly, HN , M), 11 (to J4) and 13 (to M). This is immediately
verified in view of the list of radical p-subgroups (determined by Yoshiara and
others e.g.[Yo1], [Yo2]), but the cases with p = 5 and G = HN , BM or M require
certain amount of calculations.
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