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Introduction by the Organisers

This mini-workshop brought together 13 women geometers and physicists in-
terested in recent developments in String Theory.

The topic of this meeting, Geometry and Duality in String Theory, was chosen
because of its present central role in theoretical physics, and because of the richness
of the geometric tools involved in the various notions of duality arising in string
theory. The scientific aim was to strengthen the bridge between mathematicians
and physicists applying and developing these tools to analyse and exploit these no-
tions of duality. The workshop’s interdisciplinary nature also aimed to encourage
further interaction between women mathematicians and physicists. Every partic-
ipant gave a talk in a subject relevant to the main topics of the workshop. The
areas covered by the talks were: AdS/CFT correspondence (C. Nuñez, A. Grassi),
mirror symmetry (X. de la Ossa, A. Grassi, K. Wendland), open-closed string
dualities (A. Grassi), electric-magnetic duality (Tsou S. T.), K-theory (S. Shafer-
Nameki), Singularities of Calabi-Yau manifolds and the McKay correspondence
(T. Friedmann, A. Degeratu, Y. Ito), Conformal Field Theories (K. Wendland,
S. Shafer-Nameki, C. Nuñez), symmetries of M-Theory (A. Taormina), current
cosmological results and phenomenological constraints on String Theory from cos-
mological data (S. Paban), arithmetic of Calabi-Yau manifolds (S. Kadir), and
discrete curves and the Toda-Lattice (N. Kutz). It was very satisfying to see that
the dynamics of the workshop was so positive and interesting, and all talks were
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very well delivered. We had plenty of time for informal discussions, and collabo-
rations were highly encouraged. Indeed, several promising collaborations did start
then.

The idea of such a mini-workshop, with only women speakers, arose from a
scientific gathering of women mathematicians and physicists present at the Eu-
ropean Women in Mathematics meeting held in Malta in August 2001. Clearly,
the reasons as to why there is such a low representation of women in physics and
mathematics are very complex and this is not the place to address them. The
discussion of these issues, while interesting and relevant to justify this scientific
meeting, were not the purpose of the workshop. However, we felt that this small
scale scientific workshop with women speakers contributed to the exchange of in-
formation on latest developments in the area of this workshop, thus helping with
the advancement of participants’ careers, in a first class professional environment.
We also believe this high standard scientific workshop has contributed to increase
the visibility of women working in this field, and we hope would further encourage
women to enter and stay in this rapidly developing area of research. We hope
this increased visibility would also encourage women starting their careers or who
might have had interruptions to their careers. We were therefore very proud that
this meeting gathering women mathematicians and physicts from different parts
of the world interested in various aspects of duality in string theory took place,
and we are grateful to the MFO in Oberwolfach for their support. This workshop
was an excellent opportunity for us to establish and further develop scientific and
personal contacts.

Sadly, one of the organizers of this workshop, Sylvie Paycha, was not able
to participate due to an accident her son had just before the beginning of the
workshop. It is regretable because it was Sylvie who first had the idea of this
workshop and it was she who invested a lot of energy to bring this to fruition.

Finally, we would like to thank Natalia de la Ossa, an expert on gender issues,
for her advise in writing the proposal for this mini-workshop, and for her comments
on this introduction.
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Abstracts

Introduction to Mirror Symmetry

Xenia de la Ossa

This lecture focuses on an example of the type of new mathematical ideas that
have emerged as a consequence of String Theories. I present here an introduction to
the concept of mirror symmetry between pairs of Calabi–Yau manifolds[1, 2, 3, 4].
Mirror Symmetry is but one example of a duality symmetry, a deep relation be-
tween different types of String Theories. I also give an introduction to the geometry
of the moduli space [5, 6] of certain string theories relevant to the discussion of
mirror symmetry.

In this lecture we say that the pair (X ,Y) of Calabi–Yau manifolds is a mirror
pair if the effective Quantum Field Theory of a String Theory compactified on
X , ΓX , is the same as the effective Quantum Field Theory of a String Theory
compactified on Y , ΓY . The mirror symmetry conjecture ascertains that for ev-
ery Calabi–Yau manifold X , there exists another Calabi–Yau manifold Y , such
that ΓX = ΓY . The most elementary consequence of this conjecture is that the
spectrum of both theories coincide. However, when mirror symmetry is stated in
terms of an isomorphism between the parameter spaces of the different theories
involved, isomorphism which is apparent only after all the quantum corrections
to the theory have been included, one finds new and surprising identities between
the physical quantities (correlation functions) of the different theories. Mathe-
matically, these identities between correlation functions correspond to generating
functions for Gromov-Witten invariants. I illustrate this by explaining how the
generating function for the number of rational curves (genus-zero Gromov-Witten
invariants) for a quintic three-fold was originally found [7]. For a proof of the iden-
tities in [7], see [8, 9]. A puzzle that remains to be solved is the integrality of the
isomorphism map between the parameter spaces [10]. A beautiful generalization
of the original ideas of mirror symmetry was proposed by Kontsevich [11] in his
Homological Mirror Conjecture, in which it was proposed an isomorphism between
Fukaya’s A∞–category of Lagrangian Submanifolds of X and the bounded derived
category of coherent sheaves on Y .

One interesting question has to do with the relation between the Calabi–Yau
manifolds in a mirror pair. That is, given a Calabi–Yau manifold, how do we
construct its mirror? Batyrev [12] has constructed a large family of Calabi–Yau
manifolds which are hypersurfaces of toric varieties with the feature that it is
mirror symmetric, in other words, given a Calabi–Yau manifold which is defined
as a hypersurface of a toric variety, he found a procedure to construct the mirror
manifold. By considering also the degrees of freedom corresponding to D-branes
which appear in String Theory, Strominger, Yau and Zaslow [13], proposed a
geometric description of the mirror of a Calabi–Yau manifold. They conjecture
that if a Calabi–Yau manifold has a mirror, then it must be a fibration with general
fibers being three-tori which are Special Lagrangian submanifolds. Furthermore,



they conjecture that the mirror manifold has general fibers which are the “T -dual”
of the three-tori. Mirror symmetry remains a conjecture however progress has been
made in understanding its deep mathematical structure [14].
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Introduction to the McKay Correspondence
and its Manifestations in Physics

Tamar Friedmann

The purpose of this talk was to present the McKay correspondence, which
relates the topology of certain blown-up spaces to the representation theory of
certain finite groups, and to discuss some of its manifestations in string theory.

We started by presenting the relevant finite groups, which are the discrete sub-
groups Γ of SU(2); they have an ADE classification into cyclic (An), binary dihe-
dral (Dn), binary tetrahedral (E6), binary octahedral (E7), and binary icosahedral
(E8) groups. Following this we showed how to construct the corresponding ADE
singularities C2/Γ and how to blow them up, leading to an exceptional divisor
whose dual graph turns out to be the Dynkin diagram of the Lie algebra of the
corresponding A, D, or E type.
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We discussed the topology of the exceptional divisor in the blown-up space,
which has an important place in string theory via the method known as geometric
engineering. This method enables us to answer the following question: what kind
of physics do we get if our compactification manifold has an ADE singularity?
The answer is that the physics is a gauge theory with gauge group given by the
corresponding A, D, or E Lie group. We showed how the gauge fields of this theory
arise in the process of compactification, namely via Kaluza-Klein reduction of 3-
form fields on the 2-cycles of the exceptional divisor, and via wrapping D2-branes
on these 2-cycles.

Next, we presented what is known as the McKay graph or McKay quiver, which
is defined in terms of data coming from the representation theory of Γ. We ex-
plained how the observation that the McKay graph is identical to the corresponding
(extended) ADE Dynkin diagram leads to the McKay correspondence.

Finally, we explained how the McKay graph appears in physics through what are
known as quiver theories: these theories, in which the group Γ acts in a specified
way on a given configuration of D-branes, are direct physical manifestations of
Kronheimer’s hyper-Kahler quotient construction of ALE spaces, which uses the
McKay correspondence in an essential way.

A Stringy View on K-Theory

Sakura Shafer Nameki

Recently K-theory has made its appearance at various places in string theory
and conformal field theory. In this talk I shall explain two such instances:

1) It has been conjectured that charges of D-branes in string theory are clas-
sified by K-theory. This proposal is motivated by tachyon condensation and the
thereby resulting D-brane descent relations of Sen. For various backgrounds the
conjecture has been tested and been confirmed. I shall examplify this with curved
backgrounds, such as D-branes on group manifolds and coset models. In this
case, due to the non-trivial B-field in the background, the relevant K-theories are
twisted. To illustrate this, I shall discuss the SU(2) WZW model in detail, and
present both the charge computation in the CFT as well as give a derivation of
the twisted K-theory τK(SU(2)) using the Rosenberg spectral sequence.

2) Twisted equivariant K-theory has a profound connection to conformal field
theory, via the theorem by Freed, Hopkins and Teleman (FHT). For a simple,
simply-connected, connected Lie group G, the statement of FHT is, that the
twisted G-equivariant K-theory of G is isomorphic as an algebra to the Verlinde
algebra of the WZW model associated to G. The product on the K-theory side is
given by the Pontriyagin product, and the level of the WZW is related to the twist
class τ ∈ H3

G(G, Z). Of key importance is that the equivariance is with respect to
the conjugation action of G on itself. I shall present an extension of this theorem
to N = 2 coset conformal field theories for G and a maximal rank subgroup H ,
stating that the chiral ring is isomorphic to τKH/Z(G), where Z is the common
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centre of G and H . This will be illustrated with the super-parafermion theories
SU(2)/U(1).

AdS/CFT correspondence: the three dimensional case

Carmen Nuñez

This lecture is a short introduction to some ideas supporting the conjectured
duality between gauge theories and gravity, currently known as the AdS/CFT
correspondence.

The fundamental interactions of nature are explained by the Standard Model
of the electroweak and strong forces and by Einstein’s theory of General Relativ-
ity. In the framework of field theory there is no connection between the gauge
theories of the Standard Model and Einstein’s description of gravity, but any field
theory involving gravity suffers from the problem of non-renormalizability. In the
framework of string theory instead, where quantum gravity makes sense, we see
not only that they naturally occur together, but also that the presence of both
gravitational and gauge interactions is perhaps unavoidable in a consistent string
theory.

The original motivation for string theory was the physics of the strong in-
teractions. The large number of mesons and hadrons that were experimentally
discovered in the 1960’s could be interpreted as different oscillation modes of a
string. But it was later discovered that they are actually described by QCD, a
gauge theory based on SU(3). QCD is asymptotically free: the effective coupling
constant decreases as the energy increases. At low energy the theory becomes
strongly coupled and it is not easy to perform calculations. It was suggested by ’t
Hooft that the theory might simplify when the number of colors N is large [1]. The
diagrammatic expansion suggests that the large N limit of QCD is a free string
theory if the string coupling constant is 1/N. This feature is very general and ap-
plies to different kinds of gauge theories. In this way the large N limit connects
gauge theories with string theories: the gauge theory description is useful for the
high energy behavior of gauge theories and the string theory description is useful
for low energy issues such as confinement. This is an example of duality.

The indications for this duality do not specify which string theory is dual to a
particular gauge theory. For four dimensional Yang-Mills theory one would naively
expect to get a bosonic string theory in four dimensions. But we know that this is
inconsistent. The Polyakov action has a Weyl anomaly: under a conformal change
in the metric, the action changes by a Liouville contribution which behaves like
an extra dimension, so if we are interested in four dimensional gauge theories we
have to look for strings at least in five dimensions and we have to specify the space
where the string moves. The AdS/CFT correspondence realizes this idea but with
five additional dimensions, leading to a ten dimensional string theory.

The insight on the correspondence emerged from the study of D-branes. Here
we present a short introduction to D-branes and consider Type IIB superstring
theory in ten flat dimensions with N parallel D3-branes. String theory on this
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background contains two kinds of perturbative excitations, closed strings and open
strings. The closed strings are excitations of empty space and the open strings
end on the D-branes and describe excitations of the D-branes. If we consider the
system at low energies, energies lower than the string scale, then only massless
modes can be excited and an effective lagrangian describes their interactions. The
closed string massless states give a gravity supermultiplet in 10 dimensions, and
their low energy effective lagrangian is that of type IIB supergravity. Close to
the D-branes, in the near horizon region, the spacetime metric is AdS5 ×S5. The
open string massless states give an N = 4 vector supermultiplet in 3+1 dimensions
and their low energy dynamics is described by an N = 4 U(N) super Yang-Mills
theory. This is the original duality discovered by Maldacena [3].

We discuss some of the calculations that support this conjecture, which turns
out to fit well into the holographic description of AdS gravity [4]. We briefly
describe both sides of the correspondence: CFT and AdS spaces, and present the
three dimensional example where the conjecture can be worked out beyond the
supergravity approximation, in the full string theory.
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Crepant Resolutions of Calabi-Yau Orbifolds

Anda Degeratu

A Calabi-Yau manifold is a complex Kähler manifold with trivial canonical
bundle. In the attempt to construct such manifolds it is useful to take into consid-
eration singular Calabi-Yaus. One of the simplest singularities which can arise is
an orbifold singularity. An orbifold is the quotient of a smooth Calabi-Yau mani-
fold by a discrete group action which generically has fixed points. Locally such an
orbifold is modeled on Cn/G, where G is a finite subgroup of SL(n, C).

From a geometrical perspective we can try to resolve the orbifold singularity.
A resolution (X, π) of Cn/G is a nonsingular complex manifold X of dimension n
with a proper biholomorphic map π : X → Cn/G that induces a biholomorphism
between dense open sets. We call X a crepant resolution1 if the canonical bundles
are isomorphic, KX

∼=π∗(KCn/G). Since Calabi-Yau manifolds have trivial canon-
ical bundle, to obtain a Calabi-Yau structure on X one must choose a crepant
resolutions of singularities.

It turns out that the amount of information we know about a crepant resolution
of singularities of Cn/G depends dramatically on the dimension n of the orbifold:

1Etymology: For a resolution of singularities we can define a notion of discrepancy [R1]. A
crepant resolution is a resolution without discrepancy.
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n = 2: A crepant resolution always exists and is unique. Its topology is entirely
described in terms of the finite group G (via the McKay Correspondence).

n = 3: A crepant resolution always exists but it is not unique; they are related by
flops. However all the crepant resolutions have the same Euler and Betti
numbers: the stringy Betti and Hodge numbers of the orbifold [DHVW].

n ≥ 4: In this case very little is known; crepant resolutions exist in rather special
cases. Many singularities are terminal, which implies that they admit no
crepant resolution.

We would like to completely understand the topology of crepant resolutions in the
case n = 3. We are concerned with the study of the ring structure in cohomology.
This is related to the generalization of the McKay Correspondence.
The case n = 2. The quotient singularities C2/G, for G a finite subgroup of
SL(2, C), were first classified by Klein in 1884 and are called Kleinian singularities
(they are also known as Du Val singularities or rational double points). There are
five families of finite subgroups of SL(2, C): the cyclic subgroups Ck, the binary
dihedral groups Dk of order 4k, the binary tetrahedral group T of order 24, the
binary octahedral group O of order 48, and the binary icosahedral group I of
order 120. A crepant resolution exists for each family and is unique. Moreover the
finite group completely describes the topology of the resolution. This is encoded in
the McKay Correspondence [McK1], which establishes a bijection between the set
of irreducible representations of G and the set of vertices of an extended Dynkin
diagram of type ADE (the Dynkin diagrams corresponding to the simple Lie al-
gebras of the following five types: Ak−1, Dk+2, E6, E7 and E8). Using McKay’s
correspondence it is easy to describe the crepant resolution π : X → C2/G. The
exceptional divisor π−1(0) is the dual of the Dynkin diagram: the vertices of the
Dynkin diagram correspond naturally to rational curves Ci with self-intersection
−2. Two curves intersect transversally at one point if and only if the correspond-
ing vertices are joined by an edge in the Dynkin diagram, otherwise they do not
intersect. The curves above form a basis for H2(X, Z). The intersection form with
respect to this basis is the negative of the Cartan matrix.

The first geometrical interpretation of the McKay Correspondence was given by
Gonzalez-Sprinberg and Verdier [GV]. To each of the irreducible representations
Ri they associated a locally free coherent sheaf Ri. The set of all these coherent
sheaves form a basis for K(X), the K-theory of X. Moreover, the first Chern
classes c1(Ri) form a basis in H2(X, Q) and the product of two such classes in
H∗(X, Q) is given by the formula

(1)

[∫

X

c1(Ri)c1(Rj)

]

i,j=1,...,r

= −C−1,

where C−1 is the inverse of the Cartan matrix. The proof given by Gonzalez-
Sprinberg and Verdier uses a case by case analysis and techniques from algebraic
geometry. Kronheimer and Nakajima gave a proof of the formula using techniques
from gauge theory [KroN].
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To summarize, in the case of surface singularities, C2/G, the representation
theory of the finite group G completely determines the topology the crepant res-
olution. The Dynkin diagram and the Cartan matrix (and hence the simple Lie
algebra g associated to it) encode everything we want to know about the topology
of the crepant resolution.
The case n = 3. The finite subgroups of SL(3, C) were classified by Blichfeldt in
1917 [Bl]: there are ten families of such finite subgroups. In the early 1990’s a case
by case analysis was used to construct a crepant resolution of C3/G with the given
stringy Euler and Betti numbers (see [Ro] and the references therein). As a con-
sequence of these constructions, we know that all the crepant resolutions of C3/G
have the Euler and Betti numbers given by the stringy Euler and Betti numbers of
the orbifold (since these numbers are unchanged under flops). In 1995 Nakamura

made the conjecture that HilbG(C3) is a crepant resolution of C3/G. In general,

for G a finite subgroup of SL(n, C), the algebraic variety HilbG(Cn) parametrizes
the 0-dimensional G-invariant subschemes of Cn whose space of global sections
is isomorphic to the regular representation of G. Nakamura made the conjecture
based on his computations for the case n = 2 [INak]; then he proved it in dimen-
sion n = 3 for the case of abelian groups [Nak]. In 1999 Bridgeland, King and
Reid gave a general proof of the conjecture in the case n = 3, relying heavily on
derived category techniques [BKR]. In 2002 Craw and Ishii proved that (at least
in the case G abelian) all the crepant resolutions arrive as moduli spaces [CI].

In the case of surface singularities, an important feature of the McKay Corre-
spondence is that it gives the ring structure in cohomology in terms of the finite
group. For the case n ≥ 3, nothing is known about the multiplicative structures
in cohomology or K-theory.

Let G ⊂ SL(3, C) be a finite subgroup acting with an isolated singularity on
C3/G. Let X be a crepant resolution of C3/G. On this resolution we associate
a vector bundle Ri to each irreducible representation of G – this is the extension
of the Gonzalez-Sprinberg-Verdier sheaves. These bundles form a basis of the K-
theory of X , and via the Chern character isomorphism, {ch(R0), ch(R1), . . . , ch(Rr)}
basis of H∗(X ; Q).

The idea is to use the Atiyah-Patodi-Singer (APS) index theorem for studying
multiplicative properties of the (Chern classes of the) bundles Ri. In [De2] we
show a that a generalization of Kronheimer and Nakajima’s formula (1) holds in
the compactly supported cohomology of X :

(2)

[∫

X

(ch(Ri) − rk(Ri))
(
ch(R∗

j ) − rk(Ri)
)]

i,j=1,...,r

= C−1.

Here C is a matrix associated to the finite group G and its embedding into
SL(3, C), generalizing the Cartan matrix of the case n = 2.

However, the relations (2) are common for all the crepant resolutions of C3/G.
They do not give any insight about what changes when two crepantresolutions dif-
fer by a flop. Using the analytical approach developed in [De2] we prove that given
X with the tautological line bundles R0, . . . ,Rr−1, and given X ′ obtained from
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X via the flop of a (−1,−1) curve C with its tautological bundles R′
0, . . . ,R

′
r−1

we have, [De3]:

(3)

∫

X

c1(R
′
j)

3 =

∫

X

c1(Rj)
3 − degRj |C .
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Three dimensional McKay correspondence and Mirror Symmetry

Yukari Ito

In my talk, I explained the McKay correspondence for 3-dimensional Quotient
singularities. Original McKay correspondence was observed in dimension two by
John McKay in 1979 and developed as a geometrical correspondence between a
set of irreducible representations of the acting group G and the Grothendieck
group of the minimal resolution of quotient singularities by Gonzalez-Sprinberg
and Verdier.

I discussed a result by Nakajima and myself which generalizes the McKay corre-
spondence to 3-dimensional case. Then I showed an intersection formula in terms
of the multiplicities of the irreducible representations in the tensor product between
an irreducible representation and a 3-dimensional regular representation. We do
not yet understand the how to interpret this formula mathematically. However,
I mentioned that one can find the same formula in some papers on local mirror
symmetry, a similarity which I commented in my talk.

I hope that this similarity can be explained both in physics and Mathematics
in the near future.

Open-closed String dualities in geometry

Antonella Grassi

In my lecture I discussed the geometric aspects of open/ closed string dualities
(also known as Large N-dualities). I presented some of the main results obtained
in this area in the past 6 years or so, focusing on particular examples to illustrate
some of the many ideas involved. I emphasized, in particular, applications to
algebraic and symplectic geometry and connections with the topics of other talks
presented at the workshop.

The open/closed dualities involve transformations among Calabi-Yau three-
folds, holomorphic curves with and without boundaries, Chern Simons theory on
(real) 3 manifolds and knot invariants. Vafa, Gopakumar and Ooguri noted, via
a string theory analysis, that topological and knots invariants of S3 determine,
and are determined, by “local” Gromov-Witten invariants of a certain Calabi–Yau
manifold X . The key point is that S3 is a vanishing cycle in a Calabi–Yau Y which
is deformed to a singular Calabi–Yau Y0; X is a Calabi–Yau resolution of Y0. The
topological and knot invariants of S3 are determined via U(N) Chern–Simons the-
ory on S3 (as introduced by Witten); the local Gromov-Witten invariants of X
are in a neighborhood of the birational contraction X → Y0. The transformation
between Y and X is a “Calabi–Yau transition”.

It is natural to ask if there exists an appropriate generalization for global,
rather than local, invariants. It turns out that the (closed) Gromov-Witten in-
variants of X agree, with a suitable identification of the parameters, with “mod-
ified open Gromov-Witten invariants” of Y . There is no general theory to define
“open Gromov-Witten” invariants, which should compute enumerative invariants
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of maps from open Riemann surfaces to Y , where the image of the boundary is
constrained to be on Lagrangian submanifolds (the vanishing cycles, in our case).
However, under some assumptions it is possible to compute the open invariants.
The modified invariants arise by combining the open enumerative invariants with
knots and links invariants determined in the vanishing cycles by the boundaries
of open holomorphic curves, via Chern–Simons theory. I also discussed briefly the
mirror dual of this set up.

Electric–Magnetic Duality: abelian and nonabelian

TSOU Sheung Tsun

It is well known that Maxwell’s theory of electromagnetism is dual symmetric
between electricity and magnetism, where duality is defined by the Hodge star
operation on the 2-form field strength Fµν

Fµν = − 1
2 εµνρσF ρσ .

Schematically, we can relate:

Aµ exists as

potential for Fµν

(F = d A)
Poincaré
⇐⇒

Defining constraint
∂µF µν = 0

(d F = 0)

~w�
~w�Gauss

Principal Aµ

bundle trivial
Dirac
⇐⇒

No magnetic
monopole ẽ

GEOMETRY PHYSICS

It is also known (through the work of Gu and Yang, for example) that this
duality does not generalize to the nonabelian Yang–Mills case. We reformulate
the Yang–Mills action in loop space and use a constrained variation to prove that
Yang–Mills theory is dual-symmetric, where now the duality operation is in terms
of loop space variables and generalizes the Hodge star operation (but reduces to it
in the abelian case). Schematically, we can draw a parallel with the abelian case:
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Aµ exists

; phase factor
; loop space curvature

ext.Poincaré
⇐⇒

Defining constraint
Gµν = 0

(loop space flat)

~w�
~w�

Principal Aµ

bundle trivial
definition
⇐⇒

No magnetic
monopole g̃

GEOMETRY PHYSICS

A hint that this dual symmetry persists in a quantum theory is indicated by
proving the ’t Hooft commutation relation for the corresponding quantum opera-
tors. Moreover, the resulting dual symmetry suggests a way to solve the generation

puzzle in particle physics: applied to confined colour SU(3), we get a broken S̃U(3)
which can be identified with the three generations of fermions, as observed in na-
ture. The resulting model we call the Dualized Standard Model (for a review,
see Acta Physica Polonica 33B (2002) 4041–4100, updated in European Physical
Journal C30 (2003), 51–54.).

The Entropy of the Microwave Background
and the Acceleration of the Universe

Sonia Paban

While String Theory has to make progress in the absence of new high energy
experimental results, the field of Cosmology is enjoying an abundance of data, in
particular, from the increasingly precise measurements on the microwave back-
ground. One of the most surprising new findings has been that the expansion of
the universe is accelerating. Other results include the very approximate flatness
of the universe, and strong bounds on its topology. This talk presented an intro-
duction to current cosmological results as well as a brief introduction to inflation.
The development of String Theory has been seriously affected by this new data.
Though the current precision is not enough to single out the cause of the acceler-
ation it is possible that its origin is a cosmological constant. Understanding the
magnitude of such a contribution as well as its compatibility with the framework
of String Theory has spurred an intellectual activity among string theorists. The
most relevant points of this debate were only briefly presented during the talk due
to a lack of time.
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The Symmetry of M-Theories

Anne Taormina

A maximally oxydised theory associated with a simple group G is a theory of
gravity coupled to forms and dilatons defined in the highest possible space-time
dimension D which, upon dimensional reduction to three, is expressible in terms
of a coset space G/H where H is the maximally compact subgroup of G. The max-
imally oxydised actions corresponding to all simple groups G have been classified
[1] and they comprise in particular pure gravity in D dimensions, the bosonic part
of the low energy effective action of M-theory and the low energy effective action
of the bosonic string. It has been conjectured that these actions possess the much
larger triply-extended Kac-Moody symmetry G+++. G+++ algebras are defined
from the Dynkin diagrams obtained by adding three nodes to those of G [2]. One
first adds the affine node, then a second node connected to it by a single line to
define the doubly-extended G++ algebras, then similarly a third node connected
to the second one to define the triply-extended algebras G+++. Such G+++ sym-
metries were first conjectured in [3] for pure gravity in D dimensions (A+++

D−3 ), the

low energy effective action of M-theory (E+++
8 ≡ E11) and of the 26-dimensional

bosonic string (D+++
24 ≡ K27). The generalisation to all G+++ was proposed in

[4].
The study of specific classical solutions of maximally oxydised theories provides

some ways of testing the existence of such G+++ symmetries. On the one hand,
explicit representations of their Weyl group for Kasner-type solutions have been
obtained for all simple G+++ [4], and their relation to cosmological billiards [5] has
been brought to light. On the other hand, the maximally oxydised theories also
admit zero binding energy configurations of intersecting closed extremal branes.
In such configurations, some branes may open on host closed branes. Properties of
extremal branes reveal symmetries of the underlying theory, which are compatible
with the presence of a G+++ Kac-Moody algebra [6].

The results reported here point towards the existence of triply-extended symme-
tries not only for M-theory and for the bosonic string but for all oxydised theories.
The M-theory quest is generally viewed as the privileged way to reach a unified
theory of gravity and matter. From the point of view developed here, the bosonic
part of the M-theory effective action is just one amongst many sharing the same
universal type of symmetry. In addition, the embedding of superstrings into the
bosonic string [7, 8] whose effective action is also an oxydised theory, suggests that
the degrees of freedom hidden in different G+++ may be related to each other.
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On degenerating sequences of CFTs and their geometric interpretation

Katrin Wendland

(joint work with Daniel Roggenkamp)

Phenomena like mirror symmetry [1] are closely linked to degeneration phe-
nomena, both in geometry and conformal field theory (CFT): Consider a CFT
obtained from a non-linear sigma model construction on a Calabi-Yau variety X .
If for X one performs a large complex structure or a large radius limit, as needed
in the analysis of mirror symmetry, instanton contributions are suppressed in the
correlation functions of the CFT. That is, the CFT yields exact data from geome-
try in such a limit. Degeneration phenomena can therefore be expected to provide
the key to the decoding of geometry from CFT.

While geometric degeneration phenomena have been studied in detail by math-
ematicians, see e.g. [2, 5, 7, 4], their counter parts in CFT are less well understood.
In [9] we give an intrinsic notion of limiting processes in CFTs. According to our
definition the limit of a sequence of CFTs is not necessarily a full-fledged CFT:
Though we construct a limiting pre-Hilbert space which carries limiting OPE-
coefficients and a representation of two commuting copies of limiting Virasoro
algebras, e.g. the torus partition functions need not converge. Indeed, as moti-
vated above, we have to allow for degenerate limits of CFTs in order to build
the bridge to geometry. We characterize such degenerate limits by the existence
of an infinite dimensional subspace H of the limiting pre-Hilbert space which is
generated by states with vanishing left- and right dimensions with respect to the
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limiting Virasoro actions. This is in accord with the notion of classical limits in-
troduced by Moore and Seiberg in [8]. The limiting OPE-constants allow us to
recover the structure of an algebra A which acts on H and as we prove is commuta-
tive. Moreover, an appropriate rescaling of the energy operator obtained from the
limiting Virasoro algebra provides us with a self-adjoint operator H on H which
according to unpublished results by Kontsevich [6] has the properties of a general-
ized Laplacian without constant term. We adapt ideas by Fröhlich and Gaw

‘
edzki

[3] to implement Connes’ approach to non-commutative geometry and interpret
a closure of A as space of continuous functions C0(M) on a manifold M . H is
then interpreted as generalized Laplacian with respect to a Riemannian metric
g on M together with a dilaton Φ ∈ C∞(M) such that H acts on L2(M, dvoleg)

with g̃ =
(
e2Φ
)2/ dimR(M)

g. The limiting data of our CFTs allow us to explicitly
determine g and Φ, i.e. to determine a geometric interpretation (M, g, Φ) of the
limit.

Our notion of limiting processes of CFTs surpasses (but is compatible with)
known results from deformation theory: We apply our techniques to the discrete
family of (non-supersymmetric) diagonal unitary Virasoro minimal models, prove
that they give a convergent sequence of CFTs according to our definition, and
explicitly determine the geometric interpretation of its large level limit. A different
large level limit of these Virasoro minimal models was proposed in [10].
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The Arithmetic of Calabi-Yau Manifolds

Shabnam Kadir

We are interested in studying arithmetic properties of Mirror symmetry. Mirror
symmetry is a conjecture in string theory according to which certain ‘mirror pairs’
of Calabi-Yau manifolds give rise to isomorphic physical theories. (A Calabi-Yau
manifold is a complex variety of dimension d with trivial canonical bundle and
vanishing Hodge numbers hi,0 for 0 < i < d, e.g. a one dimensional Calabi-Yau
variety is an elliptic curve, a 2-dimensional Calabi-Yau is a K3 surface, and in
dimensions three and above there are many thousands of Calabi-Yau manifolds).

Physicists concerned with mirror symmetry usually deal with Calabi-Yau mani-
folds defined over C, here however, in order to study the arithmetic, we shall reduce
these algebraic Calabi-Yau varieties over discrete finite fields,Fq, q = pr, where p
is prime and r ∈ N; these are the extensions of degree r of the finite field, Fp. The
data of the number of rational points of the reduced variety, Nr,p(X) = #(X/Fpr),
can be encoded in a generating function known as Artin’s Congruent Zeta Func-
tion, which takes the form:

(4) Z(X/Fpr , t) ≡ exp

(
∑

r∈N

Nr,p(X)
tr

r

)
.

The motivation for choosing the above type of generating function is due to
the fact that this expression leads to rational functions in the formal variable, t.
This result is part of the famous Weil conjectures (no longer conjectures for at
least the last 30 years [D1, Del]). The Weil conjectures show that the Artin’s Zeta
function for a smooth variety is a rational function determined by the cohomology
of the variety, in particular, that the degree of the numerator is the sum of the
odd Betti numbers of the variety and the denominator, the sum of the even Betti
numbers. As mirror symmetry interchanges the odd and even Betti numbers of
the Calabi-Yau variety, it is a natural question to investigate the zeta functions
of pairs of mirror symmetric families. Hence, there is speculation as to whether a
“quantum modification” to the Congruent Zeta function can be defined such that
the zeta function of mirror pairs of Calabi-Yau varieties are inverses of each other.
Notice that the above conjecture cannot hold using the “classical definition” (4)
above because this would mean that for a pair of manifolds, (X, Y ), we would have
to have Nr,p(X) = −Nr,p(Y ), which is not possible.

In order to study these questions, we shall be considering families with up to two
parameters, and use methods very similar to [CdOV1, CdOV2]. In particular, we
study a one parameter family of K3 surfaces and a two parameter family of Calabi-
Yau threefolds, octic hypersurfaces in weighted projective space P4

(1,1,2,2,2) [8],
the mirror symmetry of which was studied in detail in [CdOFKM]. We shall be
concerned with Calabi-Yau manifolds which are hypersurfaces in toric varieties, as
this provides a powerful calculational tool, and it enables one to use the Batyrev
formulation of mirror symmetry [Bat].
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The method of computation involves use of Gauss sums, that is the sum of
an additive character and a multiplicative character. For the purpose of counting
rational points the Dwork character is a very suitable choice for the additive char-
acter along with the Teichmüller character as multiplicative character. The Dwork
character was first used by Dwork [D1] to prove the rationality of the congruent
zeta function for varieties (this is one of the Weil conjectures). The number of ra-
tional points can be written in terms of these Gauss sums, thus enabling computer
aided computation of the zeta function.

The mirror of the Calabi-Yau manifolds can be found using the Batyrev mirror
construction [Bat]. This is a construction in toric geometry in which a dual pair of
reflexive polytopes can be related via toric geometry to mirror symmetric pairs of
Calabi-Yau manifolds. Using this construction and using Gauss sums it is possible
to also find the zeta function of the mirror Calabi-Yau manifold. In [CdOV2],
the mirror zeta function was found to have some factors in common with the
original zeta function, namely a contribution to the number of points associated
to the unique interior lattice point of the polyhedra. We shall find the same
phenomenon for the octic where there is a sextic, R(0,0,0,0,0), that appears in both
the original family and the mirror. For the octic, on the mirror side, there was
also a contribution related to a zero-dimensional Calabi-Yau manifold(studied in
[CdOV1]) which was sensitive to a particular type of (non-conifold) singularity.
This contrasts with the the fact that zeta function of the original family had a
contribution related to a particular monomial (not on the polyhedron) that is
sensitive to the presence of conifold points.

In [CdOV1] it was shown that the number of rational points of the quintic
Calabi-Yau manifolds over Fp can be given in terms of the periods; our calculations
verify this relation for the octic. The periods satisfy a system of differential equa-
tions known as the Picard-Fuchs equations, with respect to the parameters. The
Picard-Fuchs equations for the quintic (and also the octic) simplify considerable
because of the automorphisms of the manifold, A. The elements of the polynomial
ring can be classified according to their transformation properties under the au-
tomorphisms, that is into representations of A, and owing to the correspondence
with the periods, their periods can be classified accordingly.

We shall be particularly interested in the behaviour of zeta functions of singular
members of such families, as for singular varieties there is no guiding principle
similar to the Weil conjectures for the smooth case. In the computations involving
the two parameter family of Octic Calabi-Yau manifolds, it is observed that the
zeta function degenerates in a consistent way at singularities. The nature of the
degeneration depended on the type of singularity. In this case there were two
types of singularity: a one dimensional locus (in the base space) of conifold points
and another one dimensional locus of points where the Calabi-Yau manifold was
birational to a one dimensional family, which had previously been studied by
Rodriguez-Villegas [R-V].
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Number theorists have been interested in the cohomological L-series of Calabi-
Yau varieties over Q or number fields [Yui]. One important question is the mod-
ularity of Calabi-Yau varieties, i.e. are their cohomological L-series completely
determined by certain modular cusp forms? and Number Theory is the proof
of the Taniyama-Shimura-Weil conjecture of the so-called modularity of elliptic
curves defined over Q by A. Wiles et al. Wiles’ idea is to exploit 2-dimensional
Galois representations arising from elliptic curves and modular forms of weight
2 on some congruence sup-groups of PSL(2, Z), and establish their equivalence.
Number theorists are trying to use his methods to explore the arithmetic of Calabi-
Yau threefolds. In particular, rigid Calabi-Yau threefolds defined over the field of
rational numbers are equipped with 2-dimensional Galois representations, which
are conjecturally equivalent to modular forms of one variable of weight 4 on some
congruence subgroup of PSL(2, Z) [Yui]. For not necessarily rigid Calabi-Yau
threefolds over the rationals, the Langlands Program predicts that there should
be some automorphic forms attached to them. Modularity was observed for the
octic family of Calabi-Yau threefolds at the special values in the moduli space
where there was birationality with the one parameter family, and simultaneously,
a conifold singularity. Not only were the results in [R-V] verified, but new ex-
amples of modularity were observed, cusp forms for which were found using the
tables of Stein [St].
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Discrete Curves and the Toda lattice

Nadja Kutz

The one-dimensional Toda lattice hierarchy can be interpreted as being generated
by certain flows on discrete curves in C2 which are maps:

γ : Z → C2

k 7→ γk =

(
xk

yk

)
(5)

The determinants of two neighbouring curve points:

gk = det(γk, γk+1) = xkyk+1 − ykxk+1(6)

uk = det(γk−1, γk+1)(7)

are in this interpretation more or less the Flaschka-Manakov variables of the Toda
lattice hierarchy. In the talk it was shown, how to construct flows on discrete
Curves in C2, which yield the Toda flows on the Flaschka-Manakov variables. In
looking for a geometrical interpretation it was displayed that curves, which show
certain invariance under the flows or reductions therof have a special geometric
shape. In particular curves in C2 whose determinants are constant under the Toda
flows are socalled discrete quadrics, i.e. curves, whose points are lying on a quadric.
It is a wellknown fact that the Toda lattice hierarchy reduces to the Volterra
hierarchy for every second flow in the hierarchy. This is obtained by requiring
uk = λgkgk−1. In this reduction the crossratio of 4 neighbouring points evolves
according to the equations of the Volterra hierarchy. Yet there exist another family
of flows on discrete curves which give the flows of the Volterra hierarchy. These
are obtained in the reduction: gk = 1. Here again the crossratio of 4 neighbouring
points evolves according to the equations of the Volterra hierarchy. In that sense
there exist two families of flows on discrete curves which are dual two each other.
The above mentioned quadrics are the only curves whose shape is preserved by
the two dual flows.

Another hint for the geometrical nature of the Toda flows was given by the fact
that curves in C (obtained by interpreting x and y as homogenous coordinates for
CP 1 and the assumption that the curve doesn’t hit infinity), with the constraint
gk = 1 whose determinants are invariant under the discrete KdV flow (= “second”
flow of the Volterra hierarchy) are generalized discrete elastic curves.

In addition a Poisson structure for closed discrete curves was given, which yield
all three known local Poisson brackets of the Toda lattice. The simplicity of
the structure gives another indication that the above interpretation of the Toda
hierarchy is rather natural.

The talk was based on the two articles: “Discrete curves in CP 1 and the
Todalattice,” Tim Hoffmann, Nadja Kutz, to appear in Stud. Appl. Math.
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(math.DG/0208190)
“Tri-hamiltonian Toda lattice and a canonical bracket for closed discrete curves,”
Nadja Kutz, Lett. Math. Phys. 64, Issue 3, 229-234 (2003) (math.DG/0304083)

Finally at the end of the talk it was shown how special time-discretized flows
on discrete curves can be used to construct a doubly discrete Liouville equation,
which plays an important role in String theory. We followed here the construction
as given in:

“Strongly coupled quantum discrete Liouville Theory” L.D. Faddeev, R.M.
Kashaev, A. Yu. Volkov; Commun.Math.Phys. 219 (2001) 199-219.

Reporter: Xenia de la Ossa, Sylvie Paycha, and Tsou Sheung Tsun
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