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Introduction by the Organisers

The present workshop gave an overview of recent results and current trends in
geomathematics. The organizers and participants would like to take the oppor-
tunity to thank again the “Mathematisches Forschungsinstitut Oberwolfach” for
having provided an inspiring environment for the meeting and the scientific work.
The pleasant atmosphere contributed to the overall success of the workshop.
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Abstracts

Some Remarks on the Geomathematics Workshop

Willi Freeden

During the last decades technological progress has changed completely the ob-
servational methods in all fields of geosciences and -engineering with a trend to
achieve immediate results, thus reducing time and costs. Modern high speed com-
puters and satellite based techniques are entering more and more disciplines like
geomagnetics, geodesy, geology, meteorology, navigation and many others. The
increasing observational accuracy demands adequate mathematical tools; mathe-
matics concerned with geoscientific problems, i.e., geomathematics, is becoming
more and more indispensable. Geomathematics offers appropriate means of as-
similating, assessing, and reducing the comprehensible form the readily increasing
flow of data from geomagnetic, geochemical, geodetic, geological, and satellite
sources and providing an objective basis for scientific interpretation, classification,
testing of concepts and solution of problems. Undoubtedly, the stage is set for
geomathematics to play a major role in all Earth’s sciences.

The purpose of the meeting was to encourage and enhance the dialogue and
the collaboration between actual research fields on geomathematics (i.e., gravita-
tion, geomagnetics, Earth’s deformation analysis, ocean circulation/wind field, and
satellite technology) and relevant mathematical methods and tools in geomathe-
matics (i.e., special functions of mathematical (geo)physics, differential equations,
boundary value problems, integral transforms, constructive approximation, inverse
problems, numerical methods, scientific computation, data analysis).

The meeting was well attended with over 45 participants from all continents.
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Figure 1. Participants of the workshop: Geomathematics

In the actual research fields five lectures gave an overview of recent develop-
ments and current trends. The other talks concentrated on specific mathematical
techniques in geosciences. All talks demonstrated the diversity as well as the
inter-relationships of the areas of research.

In detail, the Geomathematics workshop was concerned with the following re-
search projects:

• Partial Differential Equations.
(i) Potential Theory

geoid and geopotential determination from oblique-derivative bound-
ary value problems, gravimetry (determination of density and dis-
continuities in the Earth’s interior from gravity data), inverse prob-
lems from satellite applications (determination of the gravitational
field from measurements of the CHAMP (2000), GRACE (2001) and
GOCE (2005) satellite missions), time-dependent gravitational field
determination (from GOCE data), pseudo-differential equations in
’Satellite-to-Satellite Tracking’ and ’Satellite Gravity Gradiometry’

(ii) Theory of Elasticity
Cauchy-Navier-equations of the elastic field (boundary value prob-
lems of elasticity, loading problems at reservoirs, causality to seismic
phenomena)

(iii) Electromagnetism
geomagnetic field determination (determination of the magnetic in-
duction, modelling of electric current densities in the iono- and mag-
netosphere from satellite data, regularization), refraction (i.e. deter-
mination of atmospheric refraction via CCD-camera data, turbulence,
fractal structure)

(iv) Navier-Stokes equations on the sphere (wind field modelling)
• Constructive Approximation
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(scalar, vectorial and tensorial) radial basis functions, uncertainty prin-
ciples, space-frequency behaviour, multivariate approximation (splines,
wavelets and their application to partial differential equations), data anal-
ysis, vectorial spline deformation analysis of the Earth’s crust

• Numerical Methods
numerical integration on the sphere and geoscientifically relevant sur-

faces, domain decomposition methods, fast multipole methods (FMM),
fast wavelet transform (FWT), tree algorithms (pyramid schemes), spline
interpolation and smoothing, best approximation, wavelet denoising (mul-
tiscale signal-to-noise response),

• Scientific Computing/Data Analysis
multiscale modelling of the Earth’s gravitational field (from CHAMP,

GRACE and GOCE data), multiscale modelling of the geomagnetic field
and electric current distributions (from MAGSAT and CHAMP data),
multiscale modelling of density variations in the Earth’s interior from grav-
ity data (using OSA91a, EGM96a), multiscale modelling of the wind field
(from data of the Deutscher Wetterdienst)

In what follows the abstracts of the talks are included in the order of the presen-
tation by the speakers.

Interplay between Moment Problems, Inverse Problems
and Sampling Theory

M. Zuhair Nashed

We consider the class of operator equations

(1) Ax = y

where A is a linear operator on a Hilbert space X into a function space of real-
valued continuous functions on a set T with the property that |(Ax)(t)| ≤Mt‖x‖,
x ∈ X , x ∈ T , where Mt is a constant that does not depend on x. Then there
exists a family {at : t ∈ T} of elements in X such that

(2) (Ax)(t) =< at, x >,

so the operator equation (1) becomes

(3) < at, x >= y(t).

Within this framework we give examples of moment problems, inverse problems
and sampling expansions f(t) =

∑

n
f(tn)Sn(t) that can studied in a unified ap-

proach. Reproducing kernel Hilbert spaces play a key role. An extended version
of Backus–Gilbert method for moment problem is formulated and used to solve
the inverse problem (1) in form

(4) < ati , x >= y(ti) + εi, i = 1, 2, . . . , n

and establish convergence. A sampling theory approach is also considered for the
solution of integral equations of the first kind when the range space and solution
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space are reproducing kernel Hilbert spaces that admit sampling expansions of the
form stated above.

On adaptive inverse estimation of linear functionals from random
noisy data – case study: GOCE data processing.

Sergei V. Pereverzyev

The talk is prompted by the question of how to choose the parameter in reg-
ularization of geopotential determination from the data, which will be collected
during future satellite mission GOCE. It is common belief that the choice of the
regularization parameter will be a severe topic for this mission and variety of
choice strategies will definitely be necessary in GOCE data processing, because of
the lack of information about noise characteristic. In the talk we discussed two
scenarios. One of them is that no information about noise is available. In such
a situation one can use only the so-called heuristic methods for the choice of the
regularization parameter. We propose several heuristically motivated rules which
have not been applied so far to satellite gravity gradiometry problem (SGG).
Another scenario is that only the level of random noise is known, but no informa-
tion about the noise covariance structure is available. We discuss an estimation
procedure that adapts to unknown smoothing properties of covariance operator.
To the best of our knowledge the first result in this direction has been obtained in
2003 in cooperation with Alex Goldenshluger (see Bernoulli v. 9(5), 2003, pp. 783-
807). This research addressed the problem of estimating the value of a linear func-
tional from indirect random noisy observations with finite degree of ill-posedness,
and an estimation procedure was proposed which adapts to unknown smootheness
of the solution and of the noise covariance operator. It has been shown that ac-
curacy of this adaptive estimator is worse only by a logarithmic factor than one
could achieve in the case of known characteristics. On the other hand, it is known
that in general SGG-problem has infinite degree of ill-posedness. Nevertheless,
we argue that the parameters of forthcoming GOCE-mission allow to treat SGG-
problem as moderately ill-posed problem with degree of ill-posedness a = 5.5. It
means that above mentioned adaptation procedure could be successfully applied.

Multi-scale Approaches for the Determination of the Earth’s Interior
– from Gravitational and Seismic Data

Volker Michel

Gravity data and seismic data are the most important sources of information for
the recovery of the structures in the Earth’s interior. As it is already well-known,
the mass density function cannot be uniquely determined from pure gravitational
data. The non-reconstructible part, which is infinite-dimensional, is called the
anharmonic density.
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The unique calculation of the harmonic density from gravitational data is never-
theless ill-posed since the solution is instable, i.e., it does not depend continuously
on the given data. In this talk a multi-scale regularization technique for the so-
lution of this so-called gravimetry problem is presented. Particular systems of
wavelets are constructed that allow a multiresolution analysis of the harmonic
density based on gravity models.
Moreover, a new regularization technique for this problem is demonstrated. This
new approach uses certain harmonic spline spaces on the three-dimensional ball.
An outstanding advantage of this technique is that different types of gravitational
data can be merged. So, one can use the gravitational potential, its first radial
derivative (derived from SST) and its second radial derivative (derived from SGG).
Furthermore, those data can be located at many different heights above the surface
(airborne and spaceborne data) as well as on the surface of the Earth (terrestrial
data).
Typical seismological data for the investigation of the Earth’s composition are
travel-times of earthquake waves. From those data, that are related to the po-
sitions of source (hypocenter) and receiver (seismograph), models of the velocity
of the propagating waves are determined. Primarily, there exist two classes of
methods for solving this inverse problem. First, a spherical harmonics expansion
is used for the slowness S. Based on the integral equation

T =

∫

L

S(x) dx,

where L is the path of a ray associated to a seismic wave (on the surface of the
Earth or inside the planet) and T is the corresponding travel-time, the expansion
coefficients of S are determined. The use of this approach has become rare because
the global character of a polynomial does not fit the locally varying structure of
the Earth’s crust.
Second, blocks with, e.g., constant or linear slowness in each block are used as
a model. Based on the same integral equation the parameters of the blocks are
determined. Of course, the corresponding linear equation system can show numer-
ical instabilities if the block sizes are not chosen appropriately.
In this talk it is demonstrated that spherical wavelets, which are based on spher-
ical harmonics but are strongly space-localizing, can be an interesting alternative
for future research on this topic. For the case of surface waves an appropriate new
method is proposed.

Gravitation

Erwin Groten

With new dedicated LEO (= Low Earth Orbiting)-type satellite projects as
well as numerous altimetric satellite missions the precise determination of gravity
variations and the detailed gravity field of the Earth gained increasing interest.
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Whenever supplemented by new air borne gravity field observations and local sur-
veys we are now able to use substantially improved gravity data to obtain deeper
knowledge on mass distribution and mass transport within the Earth, as far as
solid, liquid and fluid density distribution is concerned. Moreover, much better in-
formation recently became available on Newtonian Gravitational Constant as well
as its product with the mass of the Earth, i.e. the terrestrial gravitational constant
which act as scale constants. Care is necessary in dealing with related reference
frames, so gravity has to be clearly separated from gravitation. Whereas geodesy
is based on Newtonian gravitation, space geodesy and astrometric as well as as-
trophysical considerations are usually based on Einsteinian relativistic concepts.
Deviations from classical theories and recent developments in terms of Yukawa’s
corrections, E. Majorana’s shielding concept etc. as well as gravitational waves
and related detectors and experimental concepts are discussed. A clear distinction
is necessary in dealing with temporal changes of gravity (such as Earth’s rota-
tion changes) and changes of gravitation generated by mass transport (sea level
and hydrological effects) where the latter can now be detected with high precision
from GRACE and similar observations. However, also steric sea level variations
and non-steric ocean circulation effects need to be clearly distinguished and sepa-
rated. CHAMP substantially contributes to separate the model space of harmonic
functions and potential theory from observation space (i.e. reality) by deliver-
ing reliable information on atmospheric density distribution and related temporal
variations, based on atmospheric limb studies. GOCE will basically improve the
knowledge on the higher harmonics of the Earth’s gravitational field.
Numerical aspects and related phenomena and accuracies are discussed, and fu-
ture prospects are outlined; see also [1], [2], [3].
Mathematical forms of representations are described in terms of wavelet, spherical
and spheroidal analysis. Problems associated with the introduction of approxima-
tions, such as Somigliana’s field of a level ellipsoid are outlined. It is demonstrated
that with satellite altimetry, airborne gravity measurements and satellites of LEO-
type the importance of ill-posed problem and related regularizations in geodesy
has tremendously increased. Moreover, integral equations have widely replaced
relatively simple integral transformations.
Thus, besides the need to solve very large linear (and, to some extent, non-linear)
equation systems the necessity to apply sophisticated mathematical techniques has
strongly increased in geosciences.
Besides the terrestrial aspects, also the precise determination of orbits in space,
mainly in relativistic celestial frames, became of prime relevance. Also gravity
field determination within the solar system (Moon, Planets, Comets) is a topic
within gravitation theory which gains increasing interest. Thus gravitation as the
prime force in space geodesy deserves a revival.

References

[1] E. Groten, Ist die Modellbildung in der Geodäsie hinreichend zukunftstauglich?, ZfV Heft
3/2003, Wißer-Verlag, Augsburg (2003), 192-195.
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[3] E. Groten, Fundamental Parameters and Current (2004) Best Estimates of the Parameters
of Common Relevance to Astronomy, Geodesy, and Geodynamics, Journal of Geodesy 77,
10-11, The Geodesist’s Handbook (2004), 724- 731.

Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces

Stephan Dahlke

(joint work with Gabriele Steidl and Gerd Teschke)

General Setting. One of the classical tasks in applied analysis is the efficient
representation/analysis of a given signal. Usually, the first step is the decomposi-
tion of the signal into suitable building blocks. Current interest especially centers
around Riesz bases of wavelet type. However, in recent studies, it has turned
out that the use of Riesz bases may have some serious drawbacks, e.g., their lack
of flexibility. Therefore, one natural way out suggests itself: why not using a
slightly weaker concept and allowing some redundancies, i.e., why not working
with frames? In general, given a Hilbert space H, a collection of elements {ei}i∈Z

is called a frame if there exist constants 0 < A1 ≤ A2 <∞ such that

A1‖f‖2
H ≤

∑

i∈Z

|〈f, ei〉H|2 ≤ A2‖f‖2
H.

Our aim is to construct (Banach) frames for specific smoothness spaces on domains
and manifolds, the so–called coorbit spaces.
Group Theoretical Background. Let G be a locally compact, topological Haus-
dorff group which possesses a unitary, irreducible and strongly continuous repre-
sentation U in a Hilbert space H. Consider the homogeneous space X = G/P ,
where P is a closed subgroup of G, and fix a Borel section σ : X → G. Assume
that U is strictly square integrable mod (P , σ), i.e., there exists ψ ∈ H such that

∫

X

〈f, U(σ(h)−1)ψ〉H U(σ(h)−1)ψ dµ(h) = f,

where µ denotes some G–invariant measure on X . Then

(5) Vψ : H → L2(X), Vψf(h) := 〈f, U(σ(h)−1)ψ〉H
is an isometry from H onto the reproducing kernel Hilbert space

M2 := {F : 〈F ∈ L2(X), R(h, ·)〉 = F (h)} R(h, l) := Vψ(U(σ(h)−1)ψ)(l).

Weighted Coorbit Spaces. Fix a positive, continuous weight function w on G
satifying w(g ◦ g̃) ≤ w(g)w(g̃), g, g̃ ∈ G, and consider the weighted Lp–spaces

Lp,w(X) := {f measurable on X : ‖f‖Lp,w
:=

(
∫

X

|f(h)|pw(σ(h))pdµ(h)

)1/p

<∞}.
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Let us impose the fundamental condition

(6)

∫

X

|R(h, l)|w(σ(h))

w(σ(l))
dµ(h) ≤ Cψ.

We define the space

H1,w := {f ∈ H : Vψf ∈ L1,w(X)}, ‖f‖H1,w
:= ‖Vψf‖L1,w

,

which is densely embedded in H and therefore induces a Gelfand triple H1,w ↪→
H ↪→ H ′

1,w. By using (6), the operator Vψ in (5) can be extended to an operator
on H ′

1,w by

Vψf(h) := 〈f, U(σ(h)−1)ψ〉H′

1,w×H1,w
.

Therefore, similar to [3, 4], we can define smoothness spaces, the so–called weighted
coorbit spaces by

Mp,w := {f ∈ H ′
1,w : Vψf ∈ Lp,w(X)}, ‖f‖Mp,w

:= ‖Vψf‖Lp,w
.

Banach Frames for Weighted Coorbit Spaces. Given some compact neigh-
borhood U of the identity in G, a family X = (xi)i∈I in G is called U–dense if
⋃

i∈I Uxi = G. Let us consider the subset

Iσ := {i ∈ I : σ(X) ∩ Uxi 6= ∅} .
We define the U–oscillation with respect to the analyzing wavelet ψ as

oscU (l, h) := sup
u∈U

|〈ψ,U(σ(l)σ(h)−1)ψ − U(u−1σ(l)σ(h)−1)ψ〉H|.

In this setting, we can formulate our main theorems. The first one is a decomposi-
tion theorem which says that discretizing the representation U(σ(·)−1) by means
of a U–dense set indeed produces an atomic decomposition of Mp,w.

Theorem 1. Let a compact neighborhood U of the identity in G be chosen such
that

(7)

∫

X

oscU(l, h)
w(σ(h))

w(σ(l))
dµ(l) ≤ γ and

∫

X

oscU (l, h)
w(σ(h))

w(σ(l))
dµ(h) ≤ γ ,

where γ < 1. Let X = (xi)i∈I be a U–dense family. Furthermore, suppose that for
some compact neighborhood Q ⊆ U of the identity

(8) µ{h ∈ X : σ(h) ∈ Qσ(hi)} ≥ CQ > 0

holds for all i ∈ Iσ and that

(9)

∫

X

sup
q∈Q

|〈U(σ(h)−1)ψ,U(σ(l)−1q)ψ〉H| w(σ(h))

w(q−1σ(l))
dµ(l) ≤ C̃Q

with a constant C̃Q < ∞ independent of h ∈ X. Then Mp,w, 1 ≤ p ≤ ∞, has the
following atomic decomposition: if f ∈ Mp,w, 1 ≤ p ≤ ∞, then f can be represented
as

f =
∑

i∈Iσ

ciU(σ(hi)
−1)ψ,
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where the sequence of coefficients (ci)i∈Iσ
= (ci(f))i∈Iσ

∈ `p,w depends linearly on
f and satisfies

||(ci)i∈Iσ
||`p,w

≤ A||f ||Mp,w
.

If (ci)i∈Iσ
∈ `p,w, then f =

∑

i∈Iσ
ciU(σ(hi)

−1)ψ is contained in Mp,w and

||f ||Mp,w
≤ B||(ci)i∈Iσ

||`p,w
.

Given such an atomic decomposition, the problem arises under which con-
ditions a function f is completely determined by the moments or coefficients
〈f, U(σ(hi)

−1)ψ〉H′

1,w×H1,w
and how f can be reconstructed from these coefficients.

This question is answered by the following theorem which shows that our gener-
alized coherent states indeed give rise to Banach frames.

Theorem 2. Impose the same assumptions as in Theorem 1 with
(10)
∫

X

oscU(h, l)
w(σ(h))

w(σ(l))
dµ(l) ≤ γ̃

Cψ
and

∫

X

oscU (h, l)
w(σ(h))

w(σ(l))
dµ(h) ≤ γ̃

Cψ
,

where γ̃ < 1, instead of (7) and with

(11)

∫

X

sup
q∈Q

|〈U(σ(h)−1)ψ,U(σ(l)−1q)ψ〉H|w(q−1σ(l))

w(σ(h))
dµ(l) ≤ C̃Q

where C̃Q < ∞ is a constant independent of h ∈ X, instead of (9). Let R fulfill
the additional property

∫

X

|R(h, l)|w(σ(h))

w(σ(l))
dµ(l) ≤ Cψ .

Then the set

{ψi := U(σ(hi)
−1)ψ : i ∈ Iσ}

is a Banach frame for Mp,w. This means that

i) f ∈ Mp,w if and only if (〈f, ψi〉H′

1,w×H1,w
)i∈Iσ

∈ `p,w;

ii) there exist two constants 0 < A′ ≤ B′ <∞ such that

A′ ‖f‖Mp,w
≤ ‖(〈f, ψi〉H′

1,w×H1,w
)i∈Iσ

‖`p,w
≤ B′ ‖f‖Mp,w

;

iii) there exists a bounded, linear reconstruction operator S from `p,w to Mp,w

such that S
(

(〈f, ψi〉H′

1,w×H1,w
)i∈Iσ

)

= f.

A detailed description can be found in [1, 2].
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Polynomial Interpolation, Approximation, Cubature
and Point Designs on the Sphere

Robert S. Womersley

This talk looks at point distributions of the unit sphere S2 which are good for
polynomial interpolation and cubature, and also have good geometric properties.

Choices include approximation method (interpolation, hyperinterpolation, least
squares), basis functions (spherical harmonics, reproducing kernel functions, non-
polynomial locally supported functions), point sets (product rules, Lebedev, mini-
mum energy, extremal) and cubature weights (from polynomial exactness, equal).

A good approximation/integration scheme must be implementable (not in-
volve unknown integrals over the sphere), have good numerical properties (well-
conditioned linear systems), be efficient (fast to evaluate, low number of points,
basis functions with (close to) local support) and have good theoretical properties
(high degree of polynomial exactness, low operator norm, good worst case error,
positive cubature weights, geometrical regularity). Extremal systems of points [12]
and extremal spherical designs [2] satisfy many of these criteria.

Let Pn(S
2) denote the space of all spherical polynomials of degree at most n,

and let dn = dim Pn(S
2) = (n + 1)2. Let φi, i = 1, . . . , dn be a basis for Pn(S

2).
A system of points xj ∈ S2, j = 1, . . . , dn is a fundamental system if and only
if the basis matrix Φ = φi(xj), i, j = 1, . . . , dn is nonsingular. Let φ : S2 → Rdn

have components φi(x), i = 1, . . . , dn. The norm of the interpolation operator as
a map from C(S2) to C(S2), is the Lebesgue constant

‖Λn‖ = max
x∈S2

‖Φ−1φ(x)‖1.

One important criterion is how ‖Λn‖ grows with n.

For projections on S2, the minimal operator norm, O(n
1
2 ), is achieved by or-

thogonal projection, which is not implementable. Hyperinterpolation replaces the
inner product in orthogonal projection by a discrete inner product using m points
with positive weights which is exact for all polynomials of degree up to 2n. Sloan

and Womersley [11] showed that hyperinterpolation achieves the optimal O(n
1
2 )

order. This was extended to higher dimensional spheres and a regularity condition
removed by Reimer[7]. Hyperinterpolation produces a polynomial approximation,
but is not interpolatory unless m = dn, which is not possible for n ≥ 3. Numerical
experiments [13] suggest a growth of O(n) for modest values of n, but achieving
this is still an open question.

Extremal fundamental systems are chosen to maximize the determinant of a
basis matrix Φ, and are independent of the choice of basis. They have the nice
property that the Lebesgue constants are bounded by dn = (n + 1)2. Numeri-
cally [12] the growth looks more like O(n+ 1) for n up to 100. Extremal systems
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also have nice geometrical properties. For any system of m points x1, . . . , xm on
S2, the packing radius (half the minimum angle between points) is

qm =
1

2
min
i6=j

cos−1(xi · xj).

For extremal systems qdn
≥ π/4n, although numerical evidence [13] suggests qdn

grows more like π/2n. The covering radius (mesh norm) is

hm = max
x∈S2

min
j=1,...,m

cos−1(x · xj).

A measure of the geometric regularity of a point set is the mesh ratio ρm =
hm/qm ≥ 1. For calculated extremal points ρdn

≤ 1.9 for all n ≤ 100 (10, 201
points) and n = 127, 128, 191.

For a fundamental system the cubature weights w are the unique solution of
the linear system

Φw = b,

where bj =
∫

s2 φj(x)dω(x), j = 1, . . . , dn. Ideally we would like Gauss rules, with
dn points, but exact for all polynomials of degree up to 2n. This is not possible
for n ≥ 3 due to the non-existence of tight spherical n-designs. Lebedev rules [6]
with octahedral symmetry have very high degrees of precision for low numbers of
points. However the octahedral symmetry concentrates points in certain areas, as
do product Gauss rules. Extremal systems of dn points numerically have positive
weights, with wi/wavg ≥ 0.5 for n ≤ 100, where wavg = |S2|/dn. However there
is currently no proof that the weights are positive for all n.

Another measure of the quality of cubature rules is the behaviour of the worst
case error. Recent work by Hesse and Sloan [4], reported at this conference, give

an error estimate of O(d
s
2
n ) for the worst case error in Hs. Their results include

positive weight cubature rules based on extremal systems. Moreover they show
that this estimate is optimal, giving integrands which achieve this upper bound.

The condition number of the basis matrix is critically dependent on the choice
of the interpolation points. Systems of dn points may theoretically be fundamental
systems, but have such large condition numbers that in practice they are useless.
The calculated extremal systems have spherical harmonic basis matrices with con-
dition number less than 25 for degree n ≤ 100. Thus there are no numerical
difficulties in solving the linear systems for the interpolation or cubature weights.

A spherical n-design [3] is a set of m points on S2 such that equal weight
cubature wj = |S2|/m = wavg for j = 1, . . . ,m is exact for all polynomials

p ∈ Pn(S
2). Classically the interested has been in finding the minimum number of

points m to be exact for polynomials of degree ≤ n, with lower bounds n2/4+O(n)
on m. A tight spherical n-design is one which achieves these lower bounds on the
number of points, but these do not exist for n ≥ 3 [1]. The smallest number of
points for which existence of spherical n-designs is known ism = O(n3) [5]. Instead
of trying to minimize the number of points, we look for spherical n-designs with
m = dn = (n+ 1)2 (the optimal order, but not the optimal constant).
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As the cubature weights for extremal systems are close to equal and have very
well-conditioned basis matrices, they provide excellent starting points for finding
spherical n-designs. This has been done [2] for n ≤ 50. Moreover the equal
cubature weight condition is a system of dn − 1 nonlinear equations, in 2dn −
3 variables (using a spherical parametrization with some rotational invariance
removed). This leaves some degrees of freedom, which can be used to maximize
the determinant of the basis matrix. Thus an extremal spherical n-design is a set
of dn points on S2 which maximizes the determinant of a basis matrix subject to
the constraint that the equal weight cubature rule at these points is exact for all
polynomials p ∈ Pn(S

2). Calculated extremal spherical designs are close to the
extremal systems, and also numerically have good geometrical properties.

Many other quantities, such as the Reisz s-energy [10] for s > 0,

Es(x1, . . . , xm) =

m
∑

i=1

m
∑

j=1

j 6=i

1

|xi − xj |s

for s > 0 are used to characterize well-distributed points on the sphere. For s = 1
the asymptotic energy [10] is m2 − cm3/2 where c ≈ −1.106. Both the extremal
systems and extremal spherical designs numerically have c ≈ −1.1, giving another
indication of their good geometric distribution.
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Numerical Integration on the Sphere

Kerstin Hesse

(joint work with Ian H. Sloan)

The most common and widely used cubature rules on the sphere S2 are product
rules with positive weights. In this talk I am particularly concerned with positive
weight product rules Qn which integrate all spherical polynomials up to degree n
exactly, that is, Qnp = Ip for all p ∈ Pn(S

2), where If :=
∫

S2 f(x) dω(x). Such
product rules can for example be generated as follows: (a) an equal weight rule
with n + 1 equally spaced points is used to discretize the integral with respect
to the azimuthal coordinate φ ∈ [0, 2π); such a rule integrates all trigonometric
polynomials of degree ≤ n exactly, (b) a positive weight cubature rule with O(n)
points and algebraic polynomial degree of exactness n is used to discretize the
integral with respect to the coordinate t = cos θ, θ ∈ [0, π]. Clearly such product
rules Qn have positive weights, use O(n2) points, and integrate all spherical poly-
nomials of degree ≤ n exactly. However they have one huge disadvantage: the
geometrical distribution of the points is rather ‘uneven’, as points cluster at the
poles. Also we would like to obtain information about the convergence behaviour
of such product rules (in comparison to other types of cubature rules). That is,
how does the worst-case cubature error of a sequence of product rules (Qn)n∈N

behave depending on the degree of exactness n?
In this talk I compare interpolatory cubature based on extremal fundamental

systems with such product rules, and present recent results from joint work with
Ian H. Sloan. These results establish an upper bound for the worst-case cubature
error for a class of cubature rules, and show that this estimate is optimal. This
class contains product rules and, assuming positivity of the weights, interpolatory
cubature based on extremal fundamental systems.

Let dn := dim(Pn(S
2)) = (n+ 1)2 be the dimension of the space Pn(S

2) of all
spherical polynomials of degree ≤ n. A fundamental system {xj}j=1,...,dn

⊂ S2

is a point set for which the interpolation problem to find Λnf ∈ Pn(S
2) such

that Λnf(xj) = f(xj) for all j = 1, . . . , dn is uniquely solvable for all continuous
functions f . In other words, it is a point set for which the determinant of the

interpolation matrix [Φk(xj)]
k=1,...,dn

j=1,...,dn
is non-zero, where Φ1, . . . ,Φdn

is any basis

for Pn(S
2). A fundamental system is called an extremal fundamental system if it

maximizes the determinant of the interpolation matrix (with respect to any basis
of Pn(S

2)). An interpolatory cubature rule based on an (extremal) fundamental
system is defined by

(12) Qnf :=

∫

S2

Λnf(x) dω(x),

that is, the interpolating polynomial Λnf of f with respect to the (extremal)
fundamental system is integrated exactly. The interpolating polynomial can be

written in Lagrange representation as Λnf =
∑dn

j=1 f(xj)Lj , where Lj ∈ Pn(S
2)

is the jth Lagrange polynomial, given by Lj(xk) = δjk , k = 1, . . . , dn. Substituting
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this Lagrange representation of Λnf in (12) yields

Qnf =

dn
∑

j=1

wj f(xj), where wj :=

∫

S2

Lj(x) dω(x).

Obviously, such a cubature rule has polynomial degree of exactness n and uses
O(n2) points. There is also strong numerical evidence that interpolatory cubature
rules based on extremal fundamental systems have positive weights. However, a
proof has yet not been found. Extremal fundamental systems have a very nice
geometric point distribution. This is theoretically verified by the fact that the
minimal angle between any two distinct points has a lower bound of the order
O(n−1) and that the mesh norm has an upper bound of the same order O(n−1).
The mesh norm result means intuitively that the point set has no large holes. As for
the positive weight product rules, an important question is the rate of convergence
of the worst-case cubature error depending on the degree of exactness n. Also
it would be desirable to know the optimal rate of convergence for sequences of
cubature rules on S2, as the degree of exactness n tends to infinity, and to identify
sequences of cubature rules with that rate of convergence.

The two main results are two theorems. The first establishes an upper bound for
the worst-case cubature error. The second shows that this estimate is optimal by
constructing a function which achieves this bound. In the following two theorems
the space Hs = Hs(S2), with norm ‖ · ‖Hs , is roughly the space of those functions
on S2 whose generalized derivatives up to order s are square-integrable. For s > 1,
the space Hs is a subset of the space of continuous functions on S2, and it is also
a reproducing kernel Hilbert space.

Theorem 1. For s > 1 there exists a constant c̃s > 0 such that for any sequence
(Qn)n∈N of positive weight cubature rules, which satisfies (i) Qnp = Ip for all
p ∈ Pn(S

2) and (ii) m(n) = O(n2), where m = m(n) is the point number of Qn,
the worst-case cubature error in Hs satisfies

(13) sup
f∈Hs, ‖f‖Hs≤1

|Qnf − If | ≤ c̃s n
−s = ĉs (m(n))−s/2 for all n ∈ N.

The assumptions in Theorem 1 are fulfilled by a sequence of positive weight
product rules. Assuming positivity of the weights, they are also satisfied by a
sequence of interpolatory cubature rules based on extremal fundamental systems.

Theorem 2. For s > 1 there exists a constant cs > 0 such that for every m-point
cubature rule Qm :=

∑m
j=1 wj f(xj) on S2 the worst-case cubature error in Hs

satisfies

(14) sup
f∈Hs, ‖f‖Hs≤1

|Qmf − If | ≥ csm
−s/2.

Theorem 2 shows the limitations of m-point cubature in Hs: asymptotically
we can never achieve a better rate of convergence than O(m−s/2). As the order
of the upper bound (13) in Theorem 1 and the lower bound (14) in Theorem 2
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coincide, both estimates are optimal. Any sequence of cubature rules satisfying
the assumptions in Theorem 1 has an optimal rate of convergence.

In the talk I give a brief sketch of the proof of Theorem 2. The proof is construc-
tive. The idea is to construct a ‘bad’ function fm (which is chosen individually
for each m-point cubature rule Qm) such that the cubature error for fm/‖fm‖Hs ,
satisfies ‖fm‖−1

Hs |Qmfm− Ifm| ≥ csm
−s/2, where cs does not depend on the par-

ticular cubature rule Qm and on the point number m. The construction of fm
involves a packing of the sphere with 2m spherical caps of an appropriate size.
As these caps touch at most at the boundary there will be at least m caps that
do not contain any cubature points in their respective interiors. The function fm
is constructed such that its support is the union of m such caps that contain no
cubature points in the interior. A crucial part of the proof is the estimation of the
norm ‖fm‖Hs

in terms of orders of m.
That interpolatory cubature rules based on extremal fundamental systems have

a much nicer point distribution than product rules and that they, assuming posi-
tivity of the weights, have an optimal rate of convergence makes them good can-
didates for numerical integration. An example to illustrate this is given at the end
of the talk.

Theorem 1 has firstly been verified for s = 3/2, and this result is reported in [1].
The extension of part of the proof in the case s = 3/2 to the case of general s > 1
is not straightforward and needs a new argument. A report of Theorem 1 for
general s > 1 and also a paper presenting Theorem 2 are in preparation and will
soon be submitted. A nice survey of interpolatory cubature based on extremal
fundamental systems can be found in [2].
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On Radon’s convergence proof of Neumann’s method
for double layer potentials

Wolfgang L. Wendland

In 1837, C.F. Gauss proposed for the construction of the solution u to the
Dirichlet problem of the Laplacian with given boundary values ϕ the use of a
double layer potential

u(x) = − 1

4π

∫

Γ

µ(y)dΩx(y) for x ∈ Ω .

With the jump relation, this leads to C. Neumann’s boundary integral equation

(∗) µ = Lµ+ ϕ
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where

(Lµ)(x) = − 1

4π

∫

Γ

(µ(y) − µ(x))dΩx(y) for x ∈ Γ

is defined by J. Radon in 1919 [18, 19] as a Stieltjes integral with the signed
Radon measure Ωx(E) for measurable sets E ⊆ Γ (the solid angel). For piecewise
smooth Γ including corners and edges, a review is given on Radon’s treatment
of the boundary integral equation and the extensions by V. Maz’ya, J. Kral, D.
Medkova and O. Jansen if the equation is considered on the Banach space of
continuous functions µ on Γ. For the corresponding two-dimensional problem, J.
Radon in his famous papers 1919 defined closed boundary curves of bounded ro-
tation and showed that for such curves without sharp cusps, the essential norm
of L generated by the supremum norm is less than 1, he also showed the rela-
tion between eigenvalues of L and exterior and interior Dirichlet integrals of the
eigensolution potentials, and that the spectral radius of L is less than 1. Hence,
Neumann’s classical successive approximation can be applied to the boundary in-
tegral equation(∗). In three dimensions, however, the corresponding results are by
no means complete yet. Here J. Kral and D. Medkova have introduced the family
of weighted supremum norms

‖µ‖C0
w(Γ) := sup

x∈Γ
|w(x)µ(x)|

with a weight function w(x) satisfying 0 < c− ≤ w(x) ≤ 1 in order to generalize
the results by V. Maz’ya [11], J. Kral [9] and the author [23]for Γ ∈ R3. As it
turns out, the essential spectral radius ress(L) < 1 for piecewise smooth Γ can be
shown in the following cases:

Γ is convex [15, 16] with w ≡ 1;
Γ is C1+α-smooth [17] with w ≡ 1;
Γ has edges but no corners [4] with w ≡ 1;
Γ has corners and edges such that ress(L) < 1 holds [2, 3, 8, 9, 23] with w ≡ 1;
Γ has isolated conical points [6] and w ≡ 1;
Γ is a rectangular surface[1, 10] and w sectorially constant can be constructed;
Γ is polyhedral [20, 21], existence of w but no construction;
Γ is polyhedral, O. Hansen [7] constructs sectorially constant w under additional
conditions;
D. Medkova showed in [12, 13] the invariance of ress(L) under locally conformal
R3 diffeomorphisms.

In all these cases the Fredholm alternative is valid for the boundary integral
equation (∗) and for piecewise constant trial functions on a triangulation of Γ which
is compatible with the weight function w. Moreover, stability and convergence of
the classical collocation (or panel) method can be proved [10].

If boundary element Galerkin methods are used for (∗) in the L2(Γ) setting, then
only for convex polyhedrons and for polyhedrons satisfying specific edge conditions,
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the spectral radius generated by the L2 norm is known to be less than 1 [5, 14],
whereas for general polyhendrons the corresponding result is yet not known.

If, however, the boundary integral equation is treated with an appropriate
Galerkin-Petrov method and the equation is considered on the trace space H

1
2 (Γ),

then an appropriate norm of L on H
1
2 (Γ) is less than 1 and Neumann’s clas-

sical successive approximation converges for the corresponding Petrov-Galerkin
equations of (∗) and, moreover, the method is stable and convergent [22]. These
properties are of great value for practical computations and some corresponding
results from industrial applications are presented in the lecture.
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[16] C. Neumann, Über die Methode des Arithmetischen Mittels, Hirzel, Leipzig 1887 (erste
Abh.), 1888 (zweite Abh.).

[17] J. Plemelj, Potentialtheoretische Untersuchungen, Teubner-Verlag, Leipzig 1911.



1394 Oberwolfach Report 27/2004
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Numerical aspects of diffraction coefficient computations

Ivan G. Graham

(joint work with B.D. Bonner and V.P. Smyshlyaev)

The computation of diffraction coefficients for the scattering of high-frequency
waves by conical scatterers can be reduced to the solution of a family of homo-
geneous boundary value problems for the Laplace-Beltrami-Helmholtz equation
on a portion of the unit sphere bounded by a simple closed contour (in fact the
intersection of the sphere with the conical scatterer). Distance on the contour is
geodesic distance on the sphere. The diffraction coefficient may be determined by
then integrating the resulting solutions with respect to the wave number (cf. [1]).

In this talk we discuss the numerical computation of the diffraction coefficients
using the boundary integral method, with the classical double layer potential ap-
proach. The evaluation of the kernel of the integral equation involves computing
the (derivative of the) Legendre function with complex index and for this we em-
ploy a method which combines solving Legendre’s differential equation (when this
equation is not singular), together with suitable asymptotic expansions near sin-
gular points.

We give an analysis of the scalar integral equation arising in acoustic scatter-
ing, which shows its relation to the corresponding integral equation for the planar
Helmholtz equation. This allows us to prove, using the results of [2], optimal
convergence for piecewise polynomial collocation methods of arbitrary order even
when the scatterer has non-smooth cross-section. We also derive efficient quad-
rature techniques for assembling the boundary element matrices. In practice we
employ an h− p approximation scheme, which converges with exponential order.

The scattering of electromagnetic waves is also discussed; the resulting system
of integral equations can be analysed by similar techniques to those used for the
acoustic case.

We illustrate the talk with computations on both smooth and non-smooth scat-
terers for both the acoustic and electromagnetic cases.
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At the end of the talk we also indicated briefly how asymptotic information
could be incorporated into the ansatz functions of standard numerical schemes
in order to produce methods which work well for both low and high frequency
applications.
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Spectral approximations of boundary integral equations
on slender spheroids

Mahadevan Ganesh

We consider some important computational issues associated with solving bound-
ary value problems on three dimensional slender domains, using boundary integral
equations. Our model potential theory problem is to compute harmonic functions
defined in the interior (or exterior) of a prolate spheroidal domain Ω satisfying
Dirichlet or Neumann boundary conditions on the surface Γ, given by

Γ :=

{

(x, y, z) ∈ R
3 :

x2

a2
+
y2

a2
+
z2

b2
= 1

}

.

The domain Ω is slender in the following sense: the aspect ratio r := a/b << 1.
This paper is motivated by the work of Rodin and Steinbach (SIAM J. Sci.

Comp, 2003) on the development of boundary element preconditioners defined on
slender two dimensional domains. The condition number of boundary element ma-
trices depend linearly on the aspect ratio a/b, where in a general slender domain,
a is the radius of the smallest circumscribed ball and b is the radius of the largest
inscribed ball. Preconditioners were developed by Rodin and Steinbach, based on
the idea that geometric proximity of two slender domains translates into spectral
proximity. Accordingly, inverse boundary element matrices corresponding to el-
liptical domains (with similar aspect ratio) were proposed in their work as suitable
preconditioners. Our approach (in a future work) to develop preconditioners de-
fined on three dimensional slender bodies (such as submarines and fibers), leading
to the model problem on the spheroid Γ.

The major part of work in the two dimensional paper is to develop spectral prop-
erties of boundary integral operators on a slender ellipse. In this work, we study
spectral approximations of boundary integral equations on the slender spheroid Γ.
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It is well known that solutions to potential problems can be obtained by solving
boundary integral equations Using the fundamental solution Φ(x,y) := 1

4π |x − y|
of the Laplace operator, the standard boundary integral operators on the spheroid
are the single-, double-, adjoint double-layer and hypersingular potential operators,
defined respectively as

(Sψ−)(x) :=

∫

Γ

Φ(x,y)ψ−(y)ds(y),

(Kψ+)(x) := 2

∫

Γ

∂Φ(x,y)

∂n(y)
ψ+(y)ds(y),

(K ′ψ−)(x) := 2

∫

Γ

∂Φ(x,y)

∂n(x)
ψ−(y)ds(y),

(Dψ+)(x) := −2
∂

∂n(x)

∫

Γ

∂Φ(x,y)

∂n(y)
ψ+(y)ds(y),

where n(y) denotes the unit outward normal to Γ at the point y ∈ Γ, ds(y) is the
surface measure on Γ, x ∈ Γ and the density function ψ± ∈ H±1/2(Γ).

The interior (exterior) potential problem with Dirichlet or Neumann boundary
condition on Γ can be reformulated as a second– or first–kind boundary integral
equation. The second kind equation is defined using the operator I −K or I −K ′,
and the first kind formulation is based on S or D. We refer to I −K and I −K ′

as second kind operators, and S and D as first kind operators.
It is well known that on the unit sphere U , we have

SU = −KU , SUY mn (x̂) =
1

2n+ 1
Y mn (x̂), x̂ ∈ U,

where KU and SU respectively denote the single– and double–layer operator on
the unit sphere and Y mn are the orthonormal spherical harmonics. Hence from the
above equations, the eigenvalues of KU lie in [−1, 0). This classical result for the
double layer operator on the unit sphere was extended to the electrostatic operator
K ′ on Γ by Ahner and Arenstrof in 1986.

If we replace SU and KU by S and K, the identities in the above equations
do not hold on Γ. In fact, the spherical harmonics are not eigenfunctions of the
single layer and hypersingular operators on Γ. However, they are solutions of asso-
ciated generalised eigenvalue problems. We discuss this topic, after demonstrating
some major computational difficulties of spherical coordinates based superalge-
braically convergent spectral integral methods to solve potential problems on slen-
der spheroids. We further develop approximation theory results using spheroidally
appropriate eigenfunctions, generalising some fundamental approximation results
for the sphere case.

It is an open problem to propose and prove stability and convergence of a fully
discrete spectral method for the first kind equations on geometries other than the
sphere. We solve this problem for spheroids. by developing and analysing fully dis-
crete boundary integral methods. Our numerical results demonstrate advantages
of using spheroidal coordinates in boundary integral methods. Such advantages
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have already been used recently in infinite element methods to solve exterior prob-
lems.

Fast Fourier transform at nonequispaced knots and applications

Daniel Potts

We use the recently developed fast Fourier transform at nonequispaced knots
(NFFT) in a variety of applications. The NFFT realized the the fast computation
of the sums

f(wj) =
∑

k∈Id
N

fk e−2πikwj (j = −M/2, . . . ,M/2− 1)

and

h(j) =

M/2−1
∑

k=−M/2

fk e−2πijwk (j ∈ IdN ),

where wj ∈ [−1/2, 1/2)d. (Software: http://www.math.uni-luebeck.de/potts/nfft)

• Fast summation (joint work with Gabriele Steidl)
The fast computation of special structured discrete sums

f(yj) :=
N
∑

k=1

αkK(‖yj − xk‖) (j = 1, . . . ,M)

or from the linear algebra point of view of products of vectors with special
structured dense matrices is a frequently appearing task. We develop a new
algorithm for the fast computation of discrete sums based on NFFTs. Our
algorithm, in particular our regularisation procedure, is simply structured
and can easily be adapted to different kernels K, e.g.

1

x
,

1

x2
, x2 logx, logx, e−σx

2

, (x2 + c2)±1/2.

Our method utilises the widely known FFT and can consequently incorpo-
rate advanced FFT implementations. In summary it requires O(N logN+
(N +M)) or O(N +M) arithmetic operations. We prove error estimates
to obtain clues about the choice of the involved parameters.

• Fast spherical Fourier algorithms (joint work with Stefan Kunis)
Spherical Fourier series play an important role in many applications.

A numerically stable fast transform analogous to the Fast Fourier Trans-
form is of great interest. For a standard grid of O(N 2) points on the
sphere, a direct calculation has computational complexity of O(N 4), but
a simple separation of variables reduces the complexity to O(N 3). Here
we improve well-known fast algorithms for the discrete spherical Fourier
transform with a computational complexity of O(N 2 log2N). Furthermore
we present, for the first time, a fast algorithm for scattered data on the
sphere. For arbitrary O(N2) points on the sphere, a direct calculation
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has a computational complexity of O(N 4), but we present an approximate
algorithm based on bivariate NFFTs with a computational complexity of
O(N2 log2N).

• Spherical Filter (joint work with Martin Böhme)
We develop a new fast algorithm for uniform-resolution filtering of func-

tions defined on the sphere. We use a fast summation algorithm based
on NFFTs. The resulting algorithm performs a triangular truncation of
the spectral coefficients while avoiding the need for fast spherical Fourier
transforms. The method requires O(N 2 logN) operations for O(N2) grid
points.
Furthermore, we apply these techniques to obtain a fast wavelet decom-
position algorithm on the sphere. We present the results of numerical
experiments to illustrate the performance of the algorithms.

Swarm: a Constellation of Satellites to Investigate the
Earth Magnetic Field

Roger Haagmans

Swarm is the fifth Earth Explorer mission. The objective of the Swarm mis-
sion is to provide the best ever survey of the geomagnetic field and its temporal
evolution, in order to gain new insights into the Earth system by improving our
understanding of the Earth’s interior and climate. The mission is scheduled for
launch in 2009. After release from a single launcher, a side-by-side flying lower
pair of satellites at an initial altitude of 450 km and a single higher satellite at
530 km will form the Swarm constellation. High-precision and high-resolution
measurements of the strength, direction and variation of the magnetic field, com-
plemented by precise navigation, accelerometer and electric field measurements,
will provide the necessary observations that are required to separate and model
various sources of the geomagnetic field. This results in a unique “view” inside
the Earth from space to study the composition and processes in the interior. It
also allows analysing the Sun’s influence within the Earth system. In addition
practical applications in many different areas, such as space weather, radiation
hazards, navigation and resource exploration, benefit from the Swarm concept.
Magnetic fields play an important role in many of the physical processes through-
out the Universe. The Earth in particular has a large and complicated magnetic
field, the major part of which is produced by a self-sustaining dynamo, operating
in the fluid outer-core. However, measurements taken at or near the surface of the
Earth are the superposition of magnetic field originating from the outer core as
well as the fields caused by magnetised rocks in the Earth’s crust, electric currents
flowing in the ionosphere, magnetosphere and oceans, and by currents induced in
the Earth by time-varying external fields.
Magnetic field changes in internal as well as external origin occur on a variety
of time scales, and separating them relies on their different temporal variations.
For example, over the last 150 years it has been observed that the axial dipole
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component of the Earth’s magnetic field has decayed by nearly 10%. This fast
decay rate is characteristic of magnetic reversals which occur on average about
once ever half million years. Geographically, this recent dipole decay is largely
due to changes in the field beneath the South Atlantic Ocean, connected to the
growth of the South Atlantic anomaly. Within the Earths interior the core field
and, in particular, its temporal changes, known as “secular variation”, are among
the few means available for probing the properties of the outer core. This secular
variation directly reflects the fluid flow in the outmost core and provides a unique
experimental constraint on “geodynamo theory”. However, the only part of the
core field that varies on time scales longer than around one year is observable at
the Earth’s surface. Studies of the electromagnetic core-mantle coupling require a
better knowledge of the electrical conductivity of the lowermost mantle – this can
be obtained from the analysis of “jerks”, which are sudden changes in the secular
variation that last for 1 or 2 years. An improved determination of the core’s contri-
bution to the Earth’s angular momentum budget will allow for a better estimation
of changes in atmospheric and ocean circulation pattern.
It is clear that the nature of the Earths magnetic field is complicated. It is also
therefore clear that there is the need for a comprehensive separation and under-
standing of the external and internal processes that contribute to the Earth’s
magnetic fields – the Swarm mission aims to address such needs as well as allow-
ing for new and exciting studies of the lithospheric field.
The magnetic field is also of importance for the Earth’s external environment.
While it is known that the air density in the thermosphere is related to geomag-
netic activity, recent results from the German CHAMP mission have indicated
that air density is locally affected by geomagnetic activity in a specific way that
is still to be explored and understood. Furthermore, the magnetic field acts as
a shield against high-energy particles from the Sun and outer Space. Continuous
space-borne monitoring of the magnetic field at low Earth orbit, and the derivation
of field models play an important role in predicting radiation hazards within the
space environment.
The scientific and technical background of the mission the expected performance
can be found on the page of the Swarm mission [1]. The links on the right hand
side of the full page lead to pdf-files of the mission report, the technical annex and
the presentation material.
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Locally Supported Wavelets on the Sphere

Michael Schreiner

A new class of locally supported radial basis functions on the (unit) sphere
is introduced by forming an infinite number of convolutions of ”isotropic finite
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elements”. The resulting up functions show useful properties: They are locally
supported and are infinitely often differentiable. The main properties of these
kernels are studied in detail. In particular, the development of a multiresolution
analysis within the reference space of square–integrable functions over the sphere
is given.

Starting point of our considerations are the functions

Bλh(t) =

{

0 for −1 ≤ t ≤ h
(t−h)λ

(1−h)λ for h < t ≤ 1

which we consider for t ∈ [−1, 1], h ∈ (−1, 1) and λ > −1. Note that in contrast
to earlier investigations of these kernels (see e.g. [4]) we let the parameter λ be
real, and allow the functions to be unbounded (for −1 < λ < 0), but with finite
integral. Letting η ∈ Ω be fixed, we get a radial basis function

Ω 3 ξ 7→ Bλh(η · ξ)
which in accordance with our construction has the local support

suppBλh(η· ) = {ξ ∈ Ω|h ≤ ξ · η ≤ 1}.
Here, Ω = {x ∈ R3 | |x| = 1} denotes the unit sphere embedded in R3. The
Legendre series according to the Legendre Polynomials Pn is denoted by

Bλh ∼
∞
∑

n=0

2n+ 1

4π
(Bλh)∧(n)Pn,

where (Bλh)∧(n) = 2π
∫ 1

h B
λ
h(t)Pn(t)dt. We scale the kernel Bλh so that the Le-

gendre transform of order zero is 1. We define Lλh(t) = 1
(Bλ

h
)∧(0)

Bλh(t), t ∈ [−1, 1].

Iterated kernels have some appealing properties. To be more concrete, they are
still locally supported, their Legendre transform is non–negative, and they show
a certain degree of smoothness. They are defined as follows: Let h ∈ (0, 1) and
λ > −1. Then it is known (see e.g. [1]) that the iterated kernel

(Lλh)
(2) = Lλh ∗ Lλh =

∫

Ω

Lλh( ·ξ)Lλh(ξ· )dω(ξ)

has the support

(15) supp(Lλh)
(2)(η· ) =

{

ξ ∈ Ω|2h2 − 1 ≤ ξ · η ≤ 1
}

.

Since the support of the aforementioned radial basis functions will become an
important issue when we consider infinite convolutions, the statement (15) should
be explained in more detail: The support of Lλh(t) is [h, 1], so that the function
ϑ 7→ Lλh(cosϑ), ϑ ∈ [0, π], is supported in [0, arccosh]. The support of the iterated

kernel ϑ 7→ (Lλh)
(2)(cosϑ) is then twice as large, i.e. [0, 2 arccosh], which is obvious

when the kernel is considered as a radial basis function over the sphere Ω. Thus,
the support of t 7→ (Lλh)

(2)(t) is [cos(2 arccosh), 1] = [2h2 − 1, 1]. We can verify
that

(i) If λ > −1 then (Lλh)
(2)(η· ) ∈ L2(Ω).

(ii) If λ > −1/2 then (Lλh)
(2)(η· ) ∈ C(Ω).
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(iii) If λ > k/2− 1/2 then (Lλh)
(2)(η· ) ∈ C(k)(Ω), k ∈ N.

Now, we deal with a spherical counterpart of the so–called up function which
is, for one dimensional problems, described e.g. in [3]. The main idea is to build
an infinite convolution of locally supported functions, where the support of each
of the building blocks is chosen carefully to ensure that the resulting convolution
is additionally locally supported. Even more, the infinite convolution turns out to
be infinitely often differentiable. The reason is that the symbol of the up function
decays for increasing n faster than any rational function (in n).

Suppose that h ∈ (−1, 1), and λ > −1. We let ϕ0 = arccosh and introduce

(16) ϕi = 2−iϕ0, , hi = cos
ϕi
2
, i = 1, 2, . . . .

Then Upλh defined by

(17) Upλh = (L
(λ)
h1

)(2) ∗ (L
(λ)
h2

)(2) ∗ . . . =
∞

*i=1
(L

(λ)
hi

)(2)

is called up function (more precisely: (h, λ)–up function).
The basic properties of the up functions are:

(i) Upλh is locally supported with suppUpλh = [h, 1].

(ii) For every η ∈ Ω: Upλh(η· ) is of class C(∞)(Ω).

(iii) Upλh : [−1, 1] → R admits the uniformly convergent orthogonal expansion
in terms of Legendre polynomials

(18) Upλh =

∞
∑

n=0

2n+ 1

4π
(Up

(λ)
h )∧(n)Pn

where (Up
(λ)
h )∧(0) = 1 and

(19) 0 ≤ (Up
(λ)
h )∧(n) =

∞
∏

i=1

(

(L
(λ)
hi

)∧(n)
)2

≤ 1, n = 0, 1, 2, . . . .

(iv) For n = 1, 2, . . .

(20) lim
h→1

(Up
(λ)
h )∧(n) = 1.

(v) For all t ∈ [−1, 1]

(21) 0 ≤ Upλh(t) ≤ Upλh(1) =
∞
∑

n=0

2n+ 1

4π
(Up

(λ)
h )∧(n).

(vi) For any k ∈ N,

(22) (Up
(λ)
h )∧(n) = O(n−k), n→ ∞.

We assume from now on, that h ∈ (−1, 1) and λ > −1 are fixed. For this h,

the numbers hi, i = 1, 2, . . . are defined as in (16). The scaling function Φjh,λ :

[−1, 1] → R is introduced by

(23) Φjh,λ = (Upλh)
j,...,∞ =

∞∗
i=j

L
(2)
hj ,λ

, j = 1, 2, . . . .
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By construction, suppΦjh,λ = [hj−1, 1], and we have the refinement equation

(24) Φj+1
h,λ ∗ (L

(λ)
hj

)(2) = Φjh,λ, j ≥ 1.

Then it follows for h ∈ (−1, 1), λ > −1 that the scale spaces

Vj = {Φjh,λ ∗ F |F ∈ L2(Ω)}.
define a multiresolution of L2(Ω) in the following sense:

(i) Vj ⊂ L2(Ω) is a linear subspace with Vj ⊂ C(∞(Ω)
(ii) V1 ⊂ V2 ⊂ V3 ⊂ . . .

(iii)

∞
⋂

j=1

Vj = V1

(iv)

∞
⋃

j=1

Vj = L2(Ω)

Based on this multiresolution, locally supported wavelets and the corresponding
detail spaces can be found. Decomposition and reconstruction schemes involving
the up functions can be developed, see [2] or [5].
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On the representation of smooth functions on the sphere
using finitely many bits

Hrushikesh N. Mhaskar

In this paper, q ≥ 1 is a fixed integer, Sq denotes the unit sphere of the Eu-
clidean space Rq+1, µ∗

q is the volume element measure on Sq . We are interested
in a parsimoneous representation of smooth functions on Sq using finitely may
bits (binary digits). The minimal number of bits to represent a class of smooth
functions within an accuracy of ε is given by the metric entropy Hε defined in [1,
Chapter 15]. Our representation (Theorem 5) utilizes the characterization of local
Besov spaces using certain polynomial operators (Theorem 3). The metric entropy
of these classes is described in Theorem 4. The full manuscript is available in [2].

The class of restrictions to Sq of all homogeneous harmonic polynomials of q+1
variables of degree ` will be denoted by Hq

` , and for any x ≥ 0, the class of all
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spherical polynomials of degree ` ≤ x will be denoted by Πq
x. The dimension of

Hq
` is denoted by dq` , and {Y`,k} is an orthonormal basis for Hq

` . For a signed
measure ν, its variation measure is denoted by |ν|. The symbols c, c1, · · · denote
positive constants depending only on the fixed parameters of the problem; their
values may be different at different occurrences. A possibly signed measure ν on Sq

will be called an M–Z quadrature measure of order N if ‖P‖|ν|;Sq,p ≤ c‖P‖µ∗

q ;Sq ,p

and
∫

Sq P (x)dν(x) =
∫

Sq P (x)dµ∗
q (x) for each P ∈ Πq

N and 1 ≤ p ≤ ∞. The
existence of M–Z quadrature measures based on discrete sets of scattered points
is established in [3]. For a sequence of (signed) measures µn, we write µn �p µ∗

q if
every µ∗

q measurable function f is also µn measurable, and ‖f‖|ν|;Sq,p ≤ c‖f‖µ∗

q ;Sq ,p.

For any x ≥ 0, 1 ≤ p ≤ ∞ and f ∈ Lp(µ∗
q ; S

q), we write ESq ,x,p(f) :=
minP∈Πq

x
‖f −P‖µ∗

q ;Sq ,p. We will define the Besov spaces in terms of the sequence

{ESq ,2n,p(f)}. For 0 < ρ ≤ ∞, γ > 0, we define

bρ,γ := {{an}∞n=0 : ‖{an}‖ρ,γ := ‖{2nγan}‖`ρ <∞}.
If 1 ≤ p ≤ ∞, the Besov space BSq ,p,ρ,γ consists of all functions f ∈ Lp(Sq) for
which {ESq ,2n,p} ∈ bρ,γ . A spherical cap centered at a point x0 ∈ Sq , and radius
α ∈ [0, π] is defined by

(25) S
q
α(x0) := {x ∈ S

q : x · x0 ≥ cosα} = {x ∈ S
q : ‖x− x0‖ ≤ 2 sin(α/2)},

where ‖ · ‖ denotes the Euclidean norm on Rq+1. For a cap C, the space C∞
0 (C)

consists of infinitely differentiable functions φ on Sq such that φ(x) = 0 if x 6∈ C.
If x0 ∈ Sq , the local Besov space BSq ,p,ρ,γ(x0) consists of functions f ∈ Lp(Sq)
for which there exists a cap C centered at x0 such that for every φ ∈ C∞

0 (C),
fφ ∈ BSq ,p,ρ,γ .

Let h : [0,∞) → R, h(x) = 0 if x > c. We define the kernels

(26) Φn(h,x · ξ) :=

∞
∑

`=0

h(`/2n)

dq

∑̀

k=1

Y`,k(x)Y`,k(ξ), x, ξ ∈ S
q , n = 0, 1, · · · .

Let {µn}∞n=0 be a sequence of (possibly signed) finite, Borel measures on Sq ,
µ−1 := 0. The polynomial frame operator is defined for n = 0, 1, · · · , x ∈ Sq ,
f ∈ L1(|µn|; Sq) ∩ L1(|µn−1|; Sq) by

(27) τn(µn, h, f,x) :=

∫

Sq

Φn(h,x ·ξ)f(ξ)dµn(ξ)−
∫

Sq

Φn−1(h,x ·ξ)f(ξ)dµn−1(ξ).

Let Q ≥ 1 be an integer. We will write h ∈ A∗
Q if each of the following conditions

is satisfied: (i) h : [0,∞) → R, (ii) for some integer K ≥ Q + q, h is a K times
iterated integral of a function of bounded variation, (iii) h(x) = 1 for x ∈ [0, 1/2],
and (iv) h(x) = 0 if x > 1.

Theorem 3. Let 1 ≤ p ≤ ∞, f ∈ Lp(µ∗
q ; S

q) (C(Sq) if p = ∞), γ > 0, 0 < ρ ≤ ∞,
Q > max(1, γ), h ∈ A∗

Q, and x0 ∈ Sq. For n ≥ 0, let µn, νn be M–Z quadrature

measures of order 6(2n), and in addition, µn �p µ∗
q . Then the following are

equivalent.
(a) f ∈ BSq ,p,ρ,γ(x0).
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(b) There exists α > 0 such that for every φ ∈ C∞
0 (Sqα(x0)),

{‖τn(µn, h, fφ)‖µ∗

q ;Sq ,p} ∈ bρ,γ.

(c)There exists α > 0 such that for every φ ∈ C∞
0 (Sqα(x0)),

{‖τn(µn, h, fφ)‖|νn|;Sq ,p} ∈ bρ,γ .
(d) There exists α > 0 such that {‖τn(µn, h, f)‖µ∗

q ;Sq
α(x0),p} ∈ bρ,γ.

(e) There exists α > 0 such that {‖τn(µn, h, f)‖|νn|;Sq
α(x0),p} ∈ bρ,γ.

The set BSq ,p,ρ,γ consists of f such that ‖f‖µ∗

q ;Sq ,p + ‖{ESq ,2n,p}‖ρ,γ ≤ 1.

Theorem 4. Let 0 < ε ≤ 1, 1 ≤ p ≤ ∞, 0 < γ < ∞, 0 < ρ ≤ ∞. Then the
metric entropy Hε(BSq ,p,ρ,γ , L

p(µ∗
q ; S

q)) of BSq ,p,ρ,γ in Lp(µ∗
q ; S

q) satisfies

(28) c1(log(1/ε))−(3q)/(2γρ)(1/ε)q/γ ≤ Hε(BSq ,p,ρ,γ , L
p(µ∗

q ; S
q)) ≤ c2(1/ε)

q/γ .

Theorem 5. Let p, γ, ρ,Q, h, µn be as in Theorem 3. Suppose that for each integer
n ≥ 0, Cn is a finite set of points on Sq such that there exists an M–Z quadrature
measure νn of order 6(2n), supported on a subset of Cn as in [3]. Let C be a
spherical cap. If n ≥ 0, and f ∈ Lp(µn; S

q), we define

(29) In(µn, h, f, ξ) := b2nQσn(µn, h, f, ξ)c, ξ ∈ S
q ,

and

σ◦
n(C, h, f,x) := σ◦

n(µn, νn;C, h, f,x)

:= 2−nQ
∫

C

In(µn, h, f, ξ)Φn+1(h,x · ξ)dνn(ξ), x ∈ S
q .(30)

Let ‖f‖µ∗

q ;Sq ,p +
∥

∥

∥
{‖τn(µn, h, f)‖µ∗

q ;C,p}
∥

∥

∥

ρ,γ
≤ 1. Then for a cap C ′, concentric

with C and having radius strictly less than that of C,

(31) {‖f − σ◦
n(C, h, f)‖µ∗

q ;C′,p} ∈ bρ,γ ,

and in particular, ‖f − σ◦
n(C, h, f)‖µ∗

q ;C′,p ≤ c(C,C ′)2−nγ.

If n is chosen so that c(C,C ′)2−nγ ≤ ε, then the number of bits needed to
represent all the integers {In(µn, h, f, ξ), ξ ∈ C ∩ supp(νn)} does not exceed
c1(log(1/ε))c(1/ε)q/γµ∗

q(C).
If n ≥ 0 and g ∈ Lp(µn; S

q), then

(32) ‖f − σ◦
n(C, h, g)‖µ∗

q ;C′,p ≤ c(C,C ′){2−nγ + ‖f − g‖µn;Sq ,p}.
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A New Class of Localized Frames on Spheres

Francis J. Narcowich

(joint work with Pencho Pertushev & Joseph D. Ward)

In this talk we wish to present a new class of tight frames on the sphere. These
frames, like the wavelets for the sphere introduced by Freeden and others [2],
are based on expansions in ultraspherical harmonics. There are two novel features
here. The first is that they have excellent localization properties, and the second is
a surprising connection between them and the masks for the Daubechies wavelets.
We will discuss what these new frames are and how they can be implemented using
a quadrature formula for the sphere that has been recently developed [3]. The
present work has been done jointly with Professor Pencho Petrushev, University
of South Carolina (Columbia, SC, USA) and Professor Joseph D. Ward, Texas
A&M University (College Station, TX, USA). Details and more results may be
found in the preprint [5].

Frames were introduced in the 1950s to represent functions via over-complete
sets. More recently, they feature prominently in wavelet analysis, especially dis-
cretizations of continuous wavelet transforms [1]. Frames on spheres have also
been developed; see [4] for references and more discussion.

Let us review the basic facts about them when the target functions belong to
a Hilbert space H with norm ‖ · ‖ and inner product 〈·, ·〉. In that case, a set
{ψj}j∈J is a frame if there are constants c, C > 0 such that for all f ∈ H

c‖f‖2 ≤
∑

j∈J

|〈f, ψj〉|2 ≤ C‖f‖2.

The smallest C and largest c are called upper and lower frame bounds. If C = c,
we say the frame is tight. If C = c = 1 and ‖ψj‖ = 1 for all j, then the frame is
actually an orthonormal set.

Our Hilbert space will be L2(Sn), with the measure being the standard one.
Constructing a frame starts with a function a(t) in Ck(R) that is supported on
[ 12 , 2]. We use a(t) to define kernels on Sn. In the case of S2, these kernels have
the form,

Aj(ξ · η) =
1

4π

{

a(1)P0(ξ · η) + 3a(3/2)P1(ξ · η)
∑∞
`=0(2`+ 1)a

(

2`+1
2j+1

)

P`(ξ · η),

where the P`’s are the usual Legendre polynomials and ξ · η is the standard “dot”
product. We can replace it by ξ · η = cos(θ), where θ is the geodesic distance
between ξ and η. On Sn, they are somewhat more complicated, with ultraspherical
polynomials replacing the Legendre polynomials. In any case, these kernels are
themselves spherical polynomials of degree less than 2j+1.

The kernels have two useful features. The first is localization for j large.
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Theorem [5]. Let θ be in [0, π], n ≥ 2, and k > max{1, n− 2}. Then there is a
constant Cn,k,a such that

|Aj(cos θ)| ≤ 2njCn,k,a
1 + 2jk(θ/π)k

.

We remark that the large j behavior of |Aj | near θ ≈ 0 is O(2nj). For θ bounded

away from 0, it is O(2(n−k)j).
The second of the two features mentioned above requires a special choice for

a(t). Let m0(ξ) be a mask for a wavelet with at least k + 1 vanishing moments.
Recall that this means that m(ξ) is a 2π periodic function for which |m0(ξ)|2 +

|m0(ξ+π)|2 ≡ 1, m0(0) = 1, and m
(j)
0 (π) = 0 for j = 0, . . . , k. We then define the

Ck function

a(t) :=

{

m0(π log2(t))
1
2 ≤ t ≤ 2

0 t < 1
2 or t > 2.

With this choice of a, the operators Aj associated with the kernels Aj satisfy

∞
∑

j=0

AjA
∗
j = I

in the strong operator topology. We will call the Aj frame operators and the Aj
we will call frame kernels.

We define the frame transform via

f 7→ wj = A∗
jf

This is our decomposition formula. The operator identity in the previous equation
then gives us the reconstruction formula when applied to the wj ’s:

f =

∞
∑

j=0

Ajwj .

The frames themselves will be obtained by discretizing these formulas. Let
X := {x1, . . . , xN} be a discrete set of distinct points on Sn; we will call these
the centers. There are several important quantities associated with this set: the
mesh norm, hX = supy∈Sn infxj∈X d(xj , y), where d(·, ·) is the geodesic distance

between points on the the sphere; separation radius, qX = 1
2 minj 6=k d(xj , xk) ;

and the mesh ratio, ρX := hX/qX ≥ 1. The set of centers X is called ρ-uniform
if ρX ≤ ρ. For ρ ≥ n + 1, there exists a ρ–uniform X with hX arbitrarily small.
Let X to be the Voronoi partition of Sn for X . The region containing xj will be
called Rxj

.
The following quadrature formula is essential to our construction.

Theorem [3]. There exists a constant c� > 0 (depending only on n) such that
for any L ≥ 1 and a ρ-uniform set X in Sn with hX ≤ c�/L, there exist positive
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coefficients {cη}η∈X such that the quadrature formula
∫

Sn

f(ξ) dµ(ξ)
.
=
∑

η∈X

cηf(η)

is exact for all spherical polynomials of degree ≤ L. In addition, cη ≈ L−n with
constants of equivalence depending only on n.

Fix ρ ≥ n + 1. Pick a sequence of ρ-uniform sets Xj so that hXj
≤ c� 2−j−2.

Then the quadrature formula above is exact for all spherical harmonics of degree
` ≤ 2j+2. Also, cη ≈ 2−jn and #X ≈ 2nj .

The frame transform has the form wj(ξ) = A∗
jf(ξ) = 〈f(ζ), Aj(ζ ·ξ)〉. The point

is that wj(ξ) is a spherical polynomial of degree less than 2j+1, because Aj(ζ ·ξ) is
a spherical polynomial with degree less than 2j+1. In the reconstruction formula
this then contributes the term

Ajwj(ω) =

∫

Sn

Aj(ω · ξ)wj(ξ)dµ(ξ).

The product Aj(ω · ξ)wj(ξ) is a spherical polynomial of degree less than 2j+1 +
2j+1 = 2j+2. It can thus be integrated exactly with the quadrature formula, so
that

Ajwj(ω) =
∑

η∈Xj

cηAj(η · ω)wj(ω) =
∑

η∈Xj

〈f, ψj,η〉ψj,η ,

where ψj,η(ξ) :=
√
cηAj(ξ · η), η ∈ Xj , is the analysis frame function at level j.

Using this, our earlier reconstruction formula, and doing a little more work, we
have the following:

Theorem [5] Let f ∈ L2(Sn), then f =
∑∞
j=0

∑

η∈Xj
〈f, ψj,η〉ψj,η. Moreover, the

frame {ψj,η}j∈Z+,η∈Xj
is tight,

‖f‖2 =
∞
∑

j=0

∑

η∈Xj

|〈f, ψj,η〉|2.

Finally, the frame functions have vanishing moments that increase with j.
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Interpolation and Least Squares Approximation on the Sphere
via Locally Supported Functions

Joseph D. Ward

The goal of my talk at the Oberwolfach Geomathematics conference (May 24-28,
2004) was to discuss potential new tools applicable to the problem of reconstructing
functions from scattered data sites on the n-sphere. Common methods employed
for reconstruction include interpolation and least squares approximation. Such
methods are generally considered “good” if the methods are stable (i.e. condition
numbers of the matrices involved are well-behaved), the matrices are sparse (or
banded) and if the method approximates smooth functions well (i.e. good error
estimates for functions belonging to “smooth” spaces).

Many of these properties hold true when reconstructing functions from scattered
data on a compact subset in Rn by means of translates of a given radial basis
function. For the current status of these results, one should consult the recent
book of M. Buhmann or the upcoming book of H. Wendland. More recently,
people have realized that one can “transport” many of the approximation results
on Rn onto the n-sphere by simply restricting the RBF defined on Rn+1 to Sn ,
i.e., define the zonal function φ by means of φ(x · y) := Φ(||x− y||2)|x,y∈Sn .

This approach works for many of the well-known RBFs including Thin-Plate
splines, Hardy multi-quadrics and the compactly supported Wendland functions.
The fact that this approach works so well is for the following reason. Much of
the theory which supports the numerics behind RBFs depends on the fact that
RBfs are positive definite functions (or at least conditionally positive definite).
The restriction to the n-sphere of such functions are then also positive definite (or
CPD).

We next illustrate how one would interpolate scattered data on the sphere, the
data derived from some underlying function. Given a collection X of scattered sites
on the sphere, one constructs the interpolant IXf(x) =

∑

xk∈X
ckφ(x · xk). The

interpolation matrices will be invertible with the norm of the inverse depending
primarily on the minimal separation of the data sites. Error estimates concerning
how well the interpolant fits the underlying data are given by the following:
Theorem 1. Let X be any point set on Sn with mesh norm hX , and let φ be an

SBF. If for some τ > n/2 we have φ̂(`) ≤ c(1 + λ`)
−τ as ` → ∞, then for all

f ∈ Nφ there is a constant C that is independent of X and f for which

‖f − IXf‖∞ ≤ Ch
τ−n/2
X ‖f‖φ.

The norm ‖ · ‖φ is associated with the RBF φ and gives rise to a reproducing
kernel Hilbert space. However, in the case φ is either a compactly supported
Wendland function or a Thin-Plate spline, the estimates in Theorem 1 still hold
if ‖ · ‖φ is replaced by the more traditional Sobolev norm ‖ · ‖W s

2
.

We next (briefly) discuss the least squares theory applicable to SBF approxima-
tion on Sn. Rather than giving the most general result we present a sample result.
Full details are available in the papers in the references. Notice that there are
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two discrete sets in the theorem below. The coarser set Y is where interpolation
occurs. The finer set B determines the discrete least squares norm. Also the error
is given in terms of interpolation. But this estimate, of course, also gives upper
bounds on discrete least squares approximation.
Theorem 2. Suppose τ = k + s, where k is a positive integer and 0 < s ≤ 1. Let
Y ⊂ Sn be a discrete set with given mesh norm h = hY,Sn. Let B = {b1, . . . , bM}
be a discrete set on the unit sphere with hB ≤ h. If g ∈ Hτ (Sn) and

IY g(x) =
∑

χε∈Y

cεφ(x · xε)

is constructed from a positive definite kernel Φ satisfying

c1(1 + λ`)
−τ ≤ φ̂(`) ≤ c2(1 + λ`)

−τ

then there is a constant C independent of g and h such that

‖g − IY g‖`2(B) ≤ ChτY,Sn‖g‖Hτ (Sn).
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Polynomial Interpolation on the Sphere

Noeḿı Láın Fernández

The problem of reconstructing a continuous signal on the sphere from discrete
data arises in many areas including geophysics and meteorology where the sphere
is taken as a model of the surface of the Earth.

A classical way of addressing data fitting problems on the sphere is by poly-
nomial interpolation: given a set of nodes {ξi}i=1,...,N on the two-dimensional
sphere S2 := {x ∈ R3 : |x| = 1} and certain real-valued data {yi}i=1,...,N , the goal
is to construct a polynomial in the space Vn of spherical polynomials of degree at
most n which interpolates the known data. The appropriate analog of polynomials
on the sphere are the so-called spherical harmonics {Y jk }j=−k,...,k, k∈N0 (see e.g.
Freeden, Gervens and Schreiner [1], Müller [3] or Reimer [5]). Specifically, making
use of this explicit basis of spherical harmonics and denoting with N := (n + 1)2

the dimension of the space Vn, the interpolation problem on the sphere reads:
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find a spherical polynomial P :=
∑n

k=0

∑k
j=−k α

j
k Y

j
k in Vn, such that for given

real-valued data {yi}i=1,...,N , the interpolation conditions

P (ξi) =

n
∑

k=0

k
∑

j=−k

αjk Y
j
k (ξi) = yi, i = 1, . . . , N,

are satisfied. Unfortunately, not for any given set of pairwise distinct points
{ξi}i=1,...,N , the polynomial interpolation problem has a unique solution and hence
it is of interest to identify those point sets for which the above system of equa-
tions is nonsingular. While it is clear that such point systems – which we will
call fundamental systems – exist, they have not yet been extensively treated in
the literature. However, von Golitschek and Light [2], Sündermann [6] and Xu
[7, 8] present and analyze two special distribution strategies for points on par-
allel circles on the sphere. While the first construction features little symmetry
with respect to the equator because any two different latitudes have to carry a
different number of points, the second distribution strategy only works when the
underlying polynomial degree n is even. To overcome this restriction, we focus
here on the interpolation problem in V2k+1, and present a fundamental system
construction, in which the (n+1)2 points are located on n + 1 parallel latitudes,
each of them containing n+1 equidistantly distributed points. In the following,
Ψ : [0, π] × [0, 2π) −→ S2 denotes the parameterization of S2 in spherical coordi-
nates.
Theorem.1 Let n ∈ N be odd and let 0 < ρ1 < ρ2 < · · · < ρ(n+1)/2 < π/2 and
ρn+2−j := π − ρj (j=1, . . . , (n + 1)/2) denote a system of symmetric latitudinal

angles. Then the set of points S(α) := {ξj,k := Ψ(ρj , θ
j
k) : j, k = 1, . . . , n + 1},

where

θjk =

{

2πk
n+1 , if j is odd,
(2(k−1)+α)π

n+1 , if j is even,

and α ∈ (0, 2), constitutes a fundamental system for Vn.

The symmetric distribution of the resulting points not only generates a clear
and regular geometry of the grid of nodes, but also simplifies theoretical and
technical matters, as the involved Gram matrices attain a circulant structure.
Making then use of the theory of circulant matrices in combination with classical
matrix factorization techniques by means of Fourier matrices, we obtain a more
manageable expression for the dense interpolation matrices corresponding to our
fundamental systems. On the other hand, from the numerical point of view, a point
distribution on a structured grid allows the construction of spherical multiscale
methods, leading us to the introduction of spherical polynomial wavelets.

For fixed s ∈ N, we define the wavelet space W s
n (n ∈ N) as the orthogonal

complement of Vn in Vn+s, i.e., W s
n is spanned by the spherical harmonics of

degree at most n + s that are orthogonal to Vn. In this talk, we present explicit
fundamental systems for W 2

n and Wn
n .
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Theorem 2. Let ρ ∈ (0, π) be such that

(33) Pmk (± cos ρ) 6= 0, m = 0, . . . , k, k = n+ 1, n+ 2.

Then

S :=
{

η1,k := Ψ(ρ, θ1k)
}

k=1,...,2n+3
∪
{

η2,k := Ψ(π − ρ, θ2k)
}

k=1,...,2n+5
,

with θ1k=2πk/(2n+3) (k=1, . . . , 2n+3) and θ2
k=2πk/(2n+5) (k = 1, . . . , 2n+5),

constitutes a fundamental system for W 2
n .

While this construction principle reminds us of the strategy followed in [2, 6],
the construction of fundamental systems for W n

n is along the same lines as the one
proposed in Theorem 1. Note that in this case we cannot choose the heights of the
latitudinal circles arbitrarily anymore. The following theorem is joint work with
Jürgen Prestin.
Theorem. 3 Let n be an even integer and let

−1 < cos ρn < cos ρn−1 < · · · < cos ρ1 < 1

denote the zeros of the Legendre polynomial Pn. Then the set of points

Mn(α) := {ηj,k := Ψ(ρj , θ
j
k) : j = 1, . . . , n, k = 1, . . . , 3n+ 2},

with

θjk =

{ 2πk
3n+2 , if j is odd,

(2(k−1)+α)π
3n+2 , if j is even,

and α ∈ (0, 2), constitutes a fundamental system for W n
n .

In the last part of this talk, we study the localization behavior of the polynomials

ϕnc (◦) :=

n
∑

k=0

2k + 1

4π
ck Pk(ξ · ◦), and ψn,sd (◦) :=

n+s
∑

k=n+1

2k + 1

4π
dk Pk(ξ · ◦),

where ξ ∈ S2 is a fixed point and {ck}k=0,...,n ⊂ Rn+1 and {dk}k=n+1,n+s ⊂ Rs

are sets of nonzero real-valued coefficients.
However, since there exist different ways of measuring the localization of a

function, we cannot generally speak of a unique optimally localized polynomial,
but have to consider the optimal functions with respect to the localization criteria
that we have in mind for our applications.

In the present talk, we basically concentrate on two localization criteria: on
the one hand, for ck = 1 (k = 0, . . . , n) and dk = 1 (k = n + 1, . . . , n + s) the
polynomials ϕn1 and ψn,s1 are the reproducing kernels of Vn and W s

n , respectively,
and have minimal L2(S2)-norm among all polynomials in Vn or in W s

n that attain
the same value when they are evaluated at the prescribed point ξ.

A second way of measuring the localization of a function is by means of the
uncertainty principle on the two-sphere which was introduced by Narcowich and
Ward in [4]. In particular, if we choose the coefficient ck as the evaluation of the
normalized Legendre polynomial of degree k at the greatest zero of the Legendre
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polynomial Pn+1, i.e., ck := pk(x
n+1
max) (k = 0, . . . , n), we come up with the opti-

mally space-localized polynomial in Vn, where the space-localization is measured
by the space-variance factor in the uncertainty product according to [4]. In a
similar way, choosing dk as the evaluation of the normalized associated Legendre
polynomial pk−(n+1)(◦;n+1) at the greatest zero of the associated Legendre poly-
nomial Ps(◦;n + 1), i.e. dk = pk−(n+1)(y

s
max;n + 1) (k = n + 1, . . . , n + s), we

obtain the polynomial in W s
n with minimal variance in space domain.
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A positive quadrature rule on the sphere

Jürgen Prestin

(joint work with Daniela Roşca)

In the talk we described an interpolatory quadrature rule for the sphere based on
a fundamental set of points introduced by N. Láın Fernández. Let

Ψ : [0, π] × [0, 2π) → S
2

(ρ, θ) 7→ (sin ρ cos θ, sin ρ sin θ, cos ρ)

be the parametrization of ξ ∈ S2 in coordinates (ρ, θ). Furthermore, let Pk, k =
0, 1, . . . , denote the Legendre polynomials of degree k, normalized by Pk(1) = 1
and let Vn be the space of spherical polynomials of degree less than or equal to n.
The dimension of Vn is dimVn = (n + 1)2 = N and the reproducing kernel of Vn
is

Kn(ξ, η) =

n
∑

k=0

2k + 1

4π
Pk(ξ · η) = kn(ξ · η), ξ, η ∈ S

2.
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For given n we consider a set of points {ξi}i=1,...,N ⊂ S
2 and the polynomial

functions ϕni : S2 → C, i = 1, . . . , N defined by

ϕni (◦) = Kn(ξi, ◦) =

n
∑

k=0

2k + 1

4π
Pk(ξi · ◦), i = 1, . . . , N.

A set of points {ξi}i=1,...,N for which these functions {ϕni }i=1,...,N constitute a
basis for Vn is called a fundamental system for Vn.

In 2002 N. Láın Fernández proved the following result.
Proposition. Let n ∈ N be an odd number and let 0 < ρ1 < ρ2 < . . . < ρn+1

2
<

π/2, ρn+2−j = π − ρj , j = 1, . . . , (n + 1)/2, denote a system of symmetric

latitudes. Then the set of points S(α) =
{

ξj,k = Ψ(ρj , θ
j
k) : j, k = 1, . . . , n+ 1

}

,

where

θjk =

{

2kπ
n+1 , if j is odd,
2(k−1)+α

n+1 π, if j is even,

with α ∈ (0, 2), constitutes a fundamental system for Vn.
In the following we will study the quadrature formula, for odd n, with the nodes

in S(α). The Gram matrix associated to the scaling functions {ϕni }i=1,...,N has
the entries

Φn(r, s) = 〈ϕnr , ϕns 〉 = Kn(ξr, ξs)

and it is positive definite when {ξi}i=1,...,N is a fundamental system for Vn.
Given the fundamental system {ϕni }i=1,...,N of Vn, we can construct unique spher-
ical polynomials Lnj : S2 → C in Vn satisfying the condition Lnj (ξi) = δij . The set
{Lnj }j=1,...,N constitutes a basis of Vn. Furthermore, any f ∈ Vn can be written
as

f =

N
∑

i=1

f(ξi)L
n
i

If Ln is the Gram matrix of the Lagrangians, defined by Ln = (〈Lni , Lnj 〉)i,j=1,...,N ∈
CN×N , then it holds

ΦnLn = IN .

Here IN denotes the N ×N dimensional identity matrix. This means that the La-
grangians {Lnj }j=1,...,N are the dual functions of the scaling functions {ϕni }i=1,...,N .

Let f ∈ Vn and let {Lni }i=1,...,N be the Lagrangians associated to a fundamental
system {ξi}i=1,...,N . By integration we get

∫

S2

f(ξ) dω(ξ) =
N
∑

i=1

f(ξi)

∫

S2

Lni (ξ) dω(ξ).

Therefore, the weights can be defined as

wni =

∫

S2

Lni (ξ)dω(ξ) = 〈Lni , 1〉, i = 1, . . . , N,
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yielding the following quadrature formula

∫

S2

f(ξ) dω(ξ) =

N
∑

i=1

wni f(ξi) +Rn(f).

On the other hand, taking f ≡ 1 ∈ Vn, we obtain
∑N

i=1 L
n
i ≡ 1 and therefore

wni = 〈Lni , 1〉 = 〈Lni ,
N
∑

k=1

Lnk 〉 =

N
∑

k=1

〈Lni , Lnk 〉.

This means that the weight wni can be calculated as the sum of the entries of
the i-th row of the matrix Ln, which is the inverse of the Gram matrix Φn.
Consequently, the following equality holds

Φn (wn1 , w
n
2 , . . . , w

n
N )

T
= (1, 1, . . . , 1)T .

Theorem 1. Let n ∈ N be an odd number and let Pn be the Legendre polynomial
of degree n. For γ < 1 we consider the polynomial

Qn+1(x) = Pn+1(x) − γPn(x)

and its positive roots q1 > q2 > . . . > qn+1
2

. If in the set S (α) the latitudes ρi are

taken such that

cos ρi = qi,

then the weights wni of the quadrature formula

∫

S2

f(ξ) dω(ξ) =

N
∑

i=1

wni f(ηi) +Rn(f), with {ηi}i=1,...,N = S(α),

are positive.

Let us mention that the weights wni are constant for points on the same latitude
but for different latitudes they behave as weights in the classical Gauss-Legendre
quadrature rule. So, they are far from being constant.

Finally, we are interested in the case of spherical designs. A spherical design is
a set of points of S2 which generates a quadrature formula with equal weights. It
is an open question whether there exist spherical designs with (n+ 1)2 points and
which are exact for polynomials of degree n.

Here we try to find conditions on the latitudes ρi, which assure that the set
S (α) is a spherical design. So we suppose

wn1 = wn2 = . . . = wnN = wn.

Therefore, cos ρi = ri, where the numbers ri should satisfy the following conditions

r21 + r22 + . . . + r2q = q/3,
r41 + r42 + . . . + r4q = q/5,

· · ·
r2q−2
1 + r2q−2

2 + . . . + r2q−2
q = q/n.
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This is a system with q − 1 equations and q unknowns and the solutions can be
described in the following result.

Theorem 2. Let n ∈ N be an odd number and consider the set S(α), defined in
the Proposition, with arbitrary α ∈ (0, 2) and with the latitudes {ρi, i = 1, . . . , q} ,
q = (n+ 1)/2, taken such that cos ρi =

√
γi.

Then S(α) is not a spherical design for n ≥ 11.

For n < 11 we have a spherical design iff we take the γi with 0 < γi < 1 as zeros
of the following polynomials:

1. For n = 3 :

T2(x) = x2 − 2x

3
+

1

2

(

4

9
− β

)

with β ∈
(

2

9
,
4

9

)

2. For n = 5 :

T3(x) = x3 − x2 +
x

5
+

1

3

(

2

5
− β

)

with β ∈ (0.4, 0.433996 . . .)

3. For n = 7 :

T4(x) = x4 − 4x3

3
+

22x2

45
− 148x

2835
+

1

4

(

18728

42525
− β

)

with β ∈ (0.4336145 . . . , 0.4403997 . . .)

4. For n = 9 :

T5(x) = x5 − 5x4

3
+

8x3

9
− 100x2

567
+

17x

1701
+

1

5

(

2300

5103
− β

)

with β ∈ (0.4507152 . . . , 0.4515677 . . .).

Denoising for Imaging

Otmar Scherzer

Denoising is an important preprocessing step in many applications such as pat-
tern recognition, feature extraction, and segmentation.

In this talk we give an overview on diffusion filtering techniques and variational
principles for denoising and deblurring image data. Especially we emphasize on
some recent trends in nonlinear, non differentiable, as well as nonconvex variational
data smoothing principles.

For more background on Diffusion filtering methods we refer to Weickert [16].
For the relation to variational principles see [14, 13].

Nonconvex data smoothing principles are derived from statistical considera-
tions, sampling, and multiplicative error noise models (cf. [6, 3]).

Recently Y. Meyer [8] introduced the G-norm as a similarity measure for oscil-
lating patterns. Vese & Osher [15] and Aujol et al [1] implemented this ideas for
noise removal applications. This novel regularization techniques will be reviewed
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as well and a relation to a statistical data smoothing method, the taut-string algo-
rithm (cf. Mammen & Geer [7] and Davies & Kovac [2]). This requires the concept
of tube methods, which has been developed by Hinterberger et al. [5]. Y. Meyer
also gave a characterization of minimizers of the Rudin-Osher-Fatemi functional
[10, 12] functional in terms of the G-norm. This result has been generalized to
various other statistical nonparametric regression models. This is joint work with
S. Osher (UCLA) and A. Obereder [11, 9].
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New Components in Geomagnetic Field Modelling –
Wavelet-Mie-Representation and Wavelet-Variances

Thorsten Maier

Dealing with satellite measurements of the geomagnetic field b encounters the
difficulty that the field is sampled within a magnetic source region, i.e. in an envi-
ronment with non-vanishing electric current densities j. Consequently, assuming
the quasi-static approximation of Maxwell’s equations, data of low-orbiting satel-
lites do usually not meet the prerequisites for the classical Gauss representation
of the magnetic field as the gradient of a scalar harmonic potential. The reso-
lution of the magnetic field and the electric currents by means of the so-called
Mie representation for solenoidal vector fields is an adequate replacement of the
Gauss approach [1, 2, 8, 11]. A vector field f on an open subset U ⊂ R3 is called
solenoidal if and only if the integral

∫

S
f(x) · ν(x)dω(x) vanishes for every closed

surface S lying entirely in U (ν denotes the outward normal of S). Every such
solenoidal vector field admits a representation in terms of two (uniquely defined)
scalar functions Pf , Qf , with vanishing zero order moment, such that:

(34) f = ∇ ∧ LPf + LQf .

with the operator L given by Lx = x ∧ ∇x. Equation (34) is known as the Mie
representation of f ; ∇ ∧ LPf and LQf are called the poloidal and toroidal part
of f , respectively. As far as geomagnetism is concerned, the magnetic field as well
as the electric currents are both solenoidal such that the Mie representation can
be used. This is advantageous since this representation can equally be applied in
regions of vanishing as well as non-vanishing electric current densities. It turns
out (e.g. [1]) that the poloidal fields are due to toroidal current densities below
and above the satellite’s track, whereas the toroidal fields are created by the radial
currents which are crossing the satellite’s orbit.

There remains the question of how to numerically obtain the Mie representa-
tion of a given set of data. A common approach (e.g. [1, 2, 5, 10] is based on
expansions of the poloidal and toroidal scalars in terms of spherical harmonics.
On the one hand, this approach is advantageous since it admits the possibility to
incorporate radial dependencies of magnetic fields and electric currents in a natu-
ral way. On the other hand, the global support of the spherical harmonics limits
the practicability of this technique since it cannot cope with electric currents (and
corresponding magnetic effects) that vary rapidly with latitude or longitude, or
that are confined to certain regions. In fact, Backus [1] states that it might be ad-
vantageous to find a field parametrization in terms of functions that take efficient
account of the specific concentration of the current densities in space. Instead of
using spherical harmonics we present so-called Wavelet-Mie-Representations (see

[9]) in terms of space localizing vectorial scaling functions ϕ
(i)
J and wavelets ψ

(i)
J
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of scale J , which are kernels of the form

k
(i)
J (ξ, η) =

∞
∑

n=0

2n+1
∑

k=1

(k
(i)
J )∧(n)Yn,k(ξ)y

(i)
n,k(η), ξ, η ∈ Ω.

Ω represents the unit sphere, {Yn,k} denotes a system of scalar spherical harmonics,

while {y(i)
n,k}, i = 1, 2, 3 denotes a system of vector spherical harmonics which are

– in accordance to the Helmholtz-theorem for spherical vector fields (cf. [6]) –
radial, surface curl free and surface divergence free, respectively. The properties

of the real sequence (k
(i)
J )∧(n) define whether the kernel is a scaling function or a

wavelet (e.g. [3, 4]). Using such ansatz functions, the toroidal field, for example,
admits a natural representation in terms of type 3 kernels, i.e. given the magnetic
field b at some (roughly constant) altitude, we can approximate the toroidal mode
btor via a series expansion in terms of certain convolutions ’?’ and ’∗’ with vectorial
wavelets:

(35) btor(rξ) '
(

Jmax
∑

J=0

ψ
(3)
J ?

(

ψ
(3)
J ∗ b

)

(r)

)

(ξ),

with suitably chosen maximum scale Jmax. Figure 2 (left) shows the toroidal
field as calculated via a wavelet-Mie-representation from a given set of vectorial
MAGSAT data (see [9] and the references therein). The typical ribbon-like struc-
tures in the polar as well as the equatorial regions are clearly visible. From a
physical point of view it is also interesting to know the spatial energy distribution
of the toroidal field, since this hints at the geometry of the respective field sources,
i.e. the electric radial current densities. It is reasonable to formulate energy mea-
sures that suit the field representation which, in our case, means that instead of
the well-known degree-variances we should use wavelet-based measures. In [7, 9]
we have introduced the scale and position variance of a vector field as

(36) V ar
(i)
J;η(f) =

∫

Ω

∫

Ω

(

ψ
(i)
J (ξ, η) ⊗ ψ

(i)
J (ζ, η)

)

· (f(ξ) ⊗ f(ζ)) dω(ξ)dω(ζ).

Since ||f ||2l2(Ω) =
∑

J

∑

i

∫

Ω V ar
(i)
J,η(f) dω(η) the scale and position variances can

be interpreted as spatially localized measures for the energy contained in the signal.

Figure 2 (right) shows V ar
(i)
J;η(btor) integrated along bands of constant latitude.

As one can see, the energy is mainly concentrated in the polar regions (scales
4 to 6), while at scales 4 and 5 there is some small concentration of energy in
the equatorial region. These results strongly indicate that there are large radial
electric currents confined to the vicinity of the poles, while there are some weaker
radial currents confined to the equatorial region.

Applying the wavelet-Mie-representation to the electric currents as well, we end
up with a expansion of these radial currents using the wavelet-coefficients of the
toroidal magnetic field:

jrad(rξ) '
1

r

(

Jmax
∑

J=0

ψ̃
(1)
J ∗

(

ψ
(3)
J ∗ b

)

(r)

)

(ξ),
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Figure 2. Left: East-west component of toroidal field from
MAGSAT data, calculated via Wavelet-Mie-Representation [nT].
Right: Integrated scale and position variances of the toroidal field
from MAGSAT data.

where ψ̃
(1)
J is a special wavelet related to the Beltrami differential equation. Figure

3 shows the radial current densities calculated from the toroidal field in Figure 2
(left). The largest radial current densities (|Jrad| . 150 nA/m2) are present in
the polar regions. In agreement with the results in [10] the main current flow in
the polar cap is directed into the ionosphere (Jrad > 0) during evening. At the
poleward boundary of the polar oval the currents flow out of the ionosphere while
the main current direction is into the ionosphere at the equatorward boundary.
At the magnetic dip equator one realizes comparatively weak upward currents
(|Jrad| . 25 nA/m2) accompanied by even weaker downward currents at low
latitudes. These current distributions are the radial components of the so-called
meridional current system of the equatorial electrojet.

Figure 3. Radial Current Distribution from MAGSAT data, cal-
culated via Wavelet-Mie-Representation [nA/m2]
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El Niño and La Niña

Erwin Groten

El Niño is one of those phenomena where the mathematical detailed treatment
still needs to overcome a variety of difficulties. With respect to the associated
pressure and temperature variations, we even do not know whether El Niño is
the source or simply the consequence of observed associated phenomena. Present
mathematical treatment in terms of simplified Navier-Stokes equations is far from
satisfying. It is by no means clear why a quasi-periodic phenomenon, such as El
Niño, appears with a period of about 7 years around Christmas (=El Niño) at
the Peruvian coast. Also unknown is its relationship to La Niña, which is now
known since about 30 years. Attempts were made to explain the initial energy
of the phenomenon by seismic events at the ocean bottom. The energy exchange
between atmosphere and ocean (in one or the opposite direction) cannot be han-
dled by traditional oceanic or meteorological equation systems in a satisfactory
way. The phenomenon is clearly ill-posed, as minor input variations obviously
generate substantial output changes. To explain El Niño as a subset of the global
warming problem, as is often done to identify the origin of recently increased El
Niño frequencies and strong variations in its intensity, is by no means justified.

Using precise geodetic satellite altimetry and ocean temperature and air pres-
sure variation observations together with in-situ measurements and surveys led to
a lot of clarification. But still the complicated non-linear problems of El Niño have
not yet been solved. Mainly a mathematical theory is lacking which would include
the sophisticated processes along the ocean-atmosphere boundary. It seems that,
moreover, the superposition of several ocean circulation processes, not only within
the Pacific Ocean, may have an influence on the variable El Niño phenomenon.
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Influences may incorporate processes down to the ocean bottom where pressure
variations may play a role. Coherence and cross-correlation studies, using pres-
sure, temperature and El Niño-associated mean sea level variation data indicate
such interrelations with deeper parts of the ocean. Also PCA- (=Prime Compo-
nent analysis) studies carried out by us indicate such possibilities; for details see
[1, 2].

Still the main problem is the “hen-egg” problem, where we wonder whether the
hen or the egg was first. By considering the significant pressure, temperature and
sea level variations it still remains open from where the energy transfer originates.
It is clear that El Niño is not simply a steric phenomenon where sea level is going
up in a static way as a consequence of temperature rise and expansion of the
water. Nevertheless, this phenomenon plays a role as is demonstrated from low
cross-covariances between polar motion (and related changes of moments of inertia
of the Earth) and El Niño.
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Inverse Eigenvalue Problems: The Quadratic and Singular Cases

William Rundell

We consider two generalisations of the classical inverse Sturm-Liouville-problem.
First, when a singular term of the form l(l + 1)/x2 is included and second, when
there is a quadratic dependence on the eigenvalue parameter. We show local
uniqueness, that certain spectral sets can uniquely determine the unknown po-
tential(s), provided they are in a sufficiently small ball around the origin. Our
motivation for these problems was provided by helioseismological applications –
determining the sound speed and density of the interior of the sun. There are
clearly equivalent geophysical issues, and indeed the singular term arises in any
situation where we consider radially-symmetric solutions of the 3-d wave equation.

Topological Spaces of Harmonic Functions and Geodetic
Boundary-value Problems

Fausto Sacerdote and Fernando Sanso

The theory of boundary-value elliptic problems in Hilbert spaces has been ex-
tensively illustrated some decades ago by J.L.Lions and E.Magenes for very gen-
eral differential operators, with coefficients, right-hand sides of the equations and
boundary conditions belonging to irregular function or distribution spaces; conse-
quently solutions too are defined in some generalized sense and belong in general
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to distribution spaces. In Laplace equation, on the contrary, with constant coeffi-
cients and zero right-hand side, maximal regularity properties are met inside the
domain of harmonicity. It is therefore interesting, along with the usual regular-
ization procedures of the general theory, to develop an autonomous scheme that,
making use of these regularity properties, allows to define a general topological
structure for the space of the solutions of the Laplace equation in an open set. It
is shown that they can be classified according to the regularity of their boundary
conditions, formulating suitable trace theorems. New Hilbert spaces of harmonic
functions are then defined, which are different and in a sense complementary to
the spaces described by Lions and Magenes. The results can be very simply proved
and illustrated in the case of a spherical boundary, for which it is possible to use
explicit spherical harmonic representations, but can be generalized to the case of
an arbitrary regular boundary. As a matter of fact one can see that the space H(Ω)
of all the harmonic functions in an open simply connected smooth set Ω (internal
or external to its boundary, that is assumed to be a bounded connected surface)
can be endowed with a topological structure of Fréchet space, and that its dual
space can be represented itself by a space of harmonic functions, with a coupling
that can be expressed as an integral over a surface internal to the harmonicity
domain arbitrarily close to the boundary. Making use of this result, it is possible
to formulate trace theorems for H(Ω), and consequently to give a meaning and
to obtain existence and uniqueness results for the Dirichlet problem in this space.
These results can be extended to Neumann and oblique derivative problems, in a
comprehensive theory of boundary-value problems for the Laplace operator.
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Mathematical Methods in Oceanography
– Approximation Methods in Ocean Modeling –

Dominik Michel

In recent years, climatic phenomena have occured with increasing number and
intensity, hitting humanity frequently and causing damage with serious conse-
quences. This gives reason to demand a better understanding of the system Earth.
The oceans, used for example as resource spots, for further industrial purpose or
just for recreation, cover two thirds of the Earth’s surface. They have a great
influence on the weather and the climate itself. Possible shifts of the Gulf stream
for example are often assumed to have a huge impact on the European climate.
Thus, understanding the climate depends essentially on a better unterstanding
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and accurate modeling of the complex system ocean.

Fortunately, the Earth is not yet a water planet, i.e. the oceans do not cover the
whole sphere. But unfortunately, this implies the handling of a bounded region on
a spherical domain. Common approximation methods for scalar functions on the
sphere Ω use Fourier expansions of spherical harmonics {Yn,k}n∈N0,k=1,...,2n+1,
being an orthonormal basis within the space of all square-integrable spherical
functions L2(Ω). I.e. for all F ∈ L2(Ω) we have

F = lim
N→∞

N
∑

n=0

(F, Yn,k)L2(Ω)Yn,k ,

where the convergence is understood in the L2(Ω)-sense. But since these basis
functions, being homogeneous harmonic polynomials restricted to the sphere, have
a global support, they are not well-suited for the problem under consideration.
Thus, new methods of constructive approximation have to be used, introducing
on the one hand radial basis functions with locally compact support, for example
the so-called Haar function

L
(k)
h (t) =

{

0 , if t ∈ [−1, h)
k+1
2π

(t−h)k

(1−h)k+1 , if t ∈ [h, 1]
,

and leaving on the other hand the spectral ansatz of such a Fourier approach
by spherical harmonics. In the last two decades, spherical spline- and wavelet-
techniques have been developed by the Geomathematics Group in Kaiserslautern
(see e.g. [2]). For this task, lately applied space localizing basis functions will
be combined with a spherical wavelet approach. Equipped with a numerical inte-
gration rule to discretize the L2-scalar product this results in an analogous series
expansion for F ∈ L2(Ω), i.e.

F = lim
h→1,
h<1

Nh
∑

i=1

chi (F ) L
(k)
h

(

·ηhi
)

,

converging also in the L2(Ω)-sense. Besides the spatial part of the position-based

function system {L(k)
h

(

·ηhi
)

}i=1,...,Nh
one may introduce a multiscale approxima-

tion by discretizing h into hJ = 1 − 2−J , J ∈ N0. These scales provide low-pass-
filtered versions of the function under consideration, separating between high- and
low-frequent phenomena. In addition to the non-spectral ansatz, this method
recognizes local structures with more detail than global methods and is able to
include position based error models into its spatial approach. Whereas the spheri-
cal harmonics contain a global averaging of the data, which is certainly helpful for
the representation of a global trend, the Haar scaling function is only averaging
the data within a small subset of the domain due to its local support, which is
advantageous with respect to efficiency of the computation and local evaluation
and adaptation of the model.
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As an application, the modeling
of the mean dynamic topography
and the geostrophic flow was cho-
sen. The system of differential
equations designed for fluid dynam-
ics is canonically the system of
Navier-Stokes equations. Under the
assumptions of having stationary
flow, frictionless motion (i.e. be-
ing away from coasts, ocean sur-
faces and bed), considering only an
homogeneous and incrompressible
fluid and neglecting turbulent flows
and vertical velocities, the large-
scale currents of oceanic circulations can be approximated by the so-called
geostrophic flow (see e.g. [1, 5]).
The equation of motion reduces to the balance between the Coriolis force and the
horizontal pressure gradient, such that this first approximation of oceanic cur-
rents depends directly on the mean dynamic topography. For an ocean at rest,
the geoid (equipotential surface of the gravitational potential) would be equal
to the sea surface height. Altimetric measurements, for example from current,
past and future satellite missions like CHAMP and GRACE but also ERS and
TOPEX/POSEIDON and the oncoming GOCE, provide the actual sea surface
height. The difference between this sea surface height and the geoid (the height
it should have at rest) is the so-called dynamic topography. Averaged over sev-
eral years we obtain the mean dynamic topography. As data sets the French
CLS01 data are used for the mean sea surface topography and are compared to
the EGM96 geoid. Here, this will be used to model major parts of the Gulf stream
by geostrophic assumptions. The approximation at scale eight is presented below.
Model errors around islands, here the Canary islands, occur in higher scales, be-
ing high-frequent phenomena. Although located close to the boundary, they are
smoothed out by this low-pass filter.
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A Fast Nonlinear Galerkin Scheme Involving Vector and Tensor
Spherical Harmonics for Solving the Incompressible Navier-Stokes

Equation on the Sphere

Martin J. Fengler

The full set of coupled partial differential equations for forecasting an tangential
incompressible atmospherical flow can be reduced in the weak sense to

∂u

∂t
= −(u · ∇∗)u− 2ω ∧ u+ ν∆∗u+ f(37)

∇∗ · u = 0(38)

u(0) = u0,

where u denotes the velocity field of the considered flow, and ω the rotational
axes coinciding with the z-axis of an Earth-fixed reference frame. Moreover, we
consider an inhomogeneous flow, by letting f be a time depending external flow
driving force. For more details on the considered function spaces, operators and
further conditions we refer to [4]. Existence and uniqueness of a generalized weak
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solution of 37 is provided by [7].
Freeden [6] introduces orthonormal type 3 vector spherical harmonics given by

y
(3)
n,k(η) = 1√

n(n+1)
(η∧∇∗

η)Yn,k(η), which satisfy Eq. (38). The span of all tangen-

tial and surface divergence free vector spherical harmonics up to degree N forms

the finite dimensional Hilbert space harm
(3)
1,...,N , equipped with the canonical inner

product on l2(Ω). The nonlinear Galerkin approximation

uN =
N
∑

n=1

n
∑

k=−n

un,ky
(3)
n,k

is obtained by solving

∂

∂t
〈uN , v〉l2(Ω) − ν〈∆∗uN , v〉l2(Ω) + 2〈ω ∧ uN , v〉l2(Ω) + 〈uN · ∇∗uN , v〉l2(Ω)

+ 〈zN · ∇∗uN , v〉l2(Ω) + 〈uN · ∇∗zN , v〉l2(Ω) = 〈f, v〉l2(Ω),

−ν〈∆∗zN , ṽ〉l2(Ω) + 2〈ω ∧ zN , ṽ〉l2(Ω) + 〈uN · ∇∗uN , ṽ〉l2(Ω) = 〈f, ṽ〉l2(Ω),

for all v ∈ harm
(3)
1,...,N and ṽ ∈ harm

(3)
N+1,...,2N , together with

uN(0) = u0|harm
(3)
1,...,N

,

where zN =
∑2N

n=N+1

∑n
k=−n zn,ky

(3)
n,k can be interpreted as a high-frequent per-

turbation of the flow. Above noted nonlinear Galerkin scheme yields an ordinary
differential equation in uN , which obeys a unique solution with domain of conver-
gence [0,+∞). Moreover, a proof of convergence for the limit N → +∞, such that
uN → u converges in a strong topology is given by [5, 8]. The arising coupling
terms of vector and tensor spherical harmonics can be stated explicitly in terms
of Wigner-3j coefficients.

Theorem: Calculation of the Coriolis Term:
Let be k, l, n, j, r, s ∈ N with k > 0, r > 0, and n > 0. Then,

∫

Ω

(ω ∧ y(3)
k,l (η)) · y

(3)∗
n,j (η)dS(η) = |ω|i −l

n(n+ 1)
δknδlj(39)

Theorem: Calculation of the Advection Term:
Let be k, l, n, j, r, s ∈ N with k > 0, r > 0, and n > 0. Then,

(40)

∫

Ω

[(y
(3)
k,l (η) · ∇∗

η)y
(3)
r,s (η)] · y(3)∗

n,j (η)dS(η) = T (n, j, r, s, k, l)

with

T (n, j, r, s, k, l) = (−1)j+1i
1√
4π

n(n+ 1) + r(r + 1) − k(k + 1)

4
√

r(r + 1)n(n+ 1)k(k + 1)

×
(

r n k
s −j l

)

√

(2r + 1)(2n+ 1)(2k + 1)

(

r − 1 n k
0 0 0

)

×
√

(n+ k + r + 1)(k + r − n)(n− k + r)(n + k − r + 1).
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Although one can exploit Wigner-3j selection rules, a full spectral code based
on the results of Eq. (39) and Eq. (40) scales with O(N 5), if N denotes the
maximal spherical harmonic degree to be resolved. The reason is obviously the
“quadratic” (nonlinear) advection term.
To improve algorithmic efficiency we write for the advection (u·∇∗)u = (∇∗⊗u)Tu,
and generalize the concept of pseudo spectral algorithms to vector spherical and
tensor spherical harmonics of type defined by [6]. The idea is to express the velocity
field u as well as the tensorial part (∇∗⊗u)T in terms of a local coordinate system.
In doing so, we can separate latitudinal scalar quantities from longitudinal terms.
This looks, for example, like

u(2,3) = εφ⊗εφ

u(2,3)εφ ⊗ εφ + εφ⊗εt

u(2,3)εφ ⊗ εt + εt⊗εφ

u(2,3)εt ⊗ εφ

+ εt⊗ ∂
∂t
εt

u(2,3)εt ⊗ ∂

∂t
εt + εφ⊗ ∂

∂φ
εφ

u(2,3)εφ ⊗ ∂

∂φ
εφ + εt⊗εt

u(2,3)εt ⊗ εt.

The latter representation allows us to apply modified Gauss-Legendre trans-
forms and subsequent FFTs [1, 9] to reconstruct the vector and tensor on a
Gauss-Legendre integration grid in the space domain. There we expand the scalar
quantities to vector, resp. tensors, compute in the space domain the integrand of
the advection term. By performing subsequently a scalar reduction of the con-
sidered vector field, we reconstruct the type 3 Fourier coefficients by FFTs and
modified inverse Gauss-Legendre transforms. It is interesting to note, that this
technique is also able to separate vector fields of mixed type since it is based on a
polynomial exact integration. Moreover our proposed algorithm profits from the
semi-linear scaling of the FFTs. The Gauss-Legendre transforms, which are real-
ized by multiple matrix-vector products yields finally an overall O(N 3) method.
An extensive numerical realization has been also presented, see Fig. 4 and [4]. It is
interesting to note that we observe a power-law decay given by N−4 in the inertial
range, and an exponential decay in the dissipative range of the energy spectrum
illustrated in Fig. 5. This has been also reported by Debussche et al. [2] in a
two-dimensional periodic domain. A detailed description of our proposed method,
and the results noted above can be found in [5] and [4], whereas the latter includes
also an extension to spherical vector wavelets.
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Figure 4. Flow at t=20.
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Figure 5. Energy Spectrum.
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Best conformal map projections

Jesús Otero

Most of the large-scale national topographic maps (what entails a division of
the country in a great number of small rectangular regions) are based on conformal
map projections, specifically on the transverse Mercator or Gauss-Krüger projec-
tion. The reason is cleverly pointed out by C.F.Gauss who on 11 December, 1825,
in a letter to Hansen, writes: “You are quite right that the essential condition in
every map-projection is the infinitesimal similarity, a condition which should
be neglected only in very special cases of need” (see [2]). In fact, if p : Ω → R2 is a
conformal map projection defined on an open subset Ω of the terrestrial ellipsoid
Σ (an oblate ellipsoid of revolution), then p has a well defined infinitesimal-scale
σ(x) at each point x of Ω,

σ(x) = lim
y→x

|p(y) − p(x)|
dΣ(x, y)

where dΣ(x, y) denote the geodesic distance between the two points x and y
(see [6]). It is therefore both of practical and theoretical interest to find a “best
possible” conformal map projection.



Geomathematics 1429

Let (u,v) ∈ Ωb = pb(Ω) denote the rectangular coordinates of the projected
points according to some map projection pb on Ω. Using (u,v) as coordinates on
Σ, then ds2 = Edu2 +2Fdudv+Gdv2 and the logarithm of the infinitesimal-scale
function associated with a conformal map projection p on Ω satisfies the partial
differential equation

(41) L(logσ) := Div(A∇ log σ) = HK > 0 in Ωb.

Here K is the Gaussian curvature of Σ and

A =
1

H

[

G −F
−F E

]

, H =
√

EG− F 2.

We shall refer to pb as the base projection and to Ωb as a first map of Ω (com-
pare [4]). The problem of finding a “best” conformal map projection on Ω has two
parts and this report is partly devoted to the first of them: (i) Find an element
g0 ∈ M := {g ∈ C2(Ωb) : Lg = HK in Ωb} that “deviates least from zero”, or
in general from a constant function. (ii) Find, if possible, a conformal map pro-
jection p0 on Ω such that σ0 = exp(g0). If the base projection is conformal, then
E = G = σ−2

b and F = 0. Hence A = I2 and the partial differential equation (41)

becomes ∆ logσ = σ−2
b K = ∆ logσb. The function U = log

(

σ/σb
)

is harmonic
in Ωb, and the first question can be reformulated as a problem of best harmonic
approximation: Find a harmonic function U0 in Ωb that “deviates least from the
superharmonic function h := log σ−1

b ”.
Chebyshev ([1]) studied conformal map projections, using the oscillation of the

function g := log σ

δ(g) := sup
Ωb

g − inf
Ωb

g.

as a measure of distortion.

Theorem 3 (Chebyshev-Milnor). Let g0 ∈ M be such that g0 = 0 on ∂Ωb. Then,
δ(g0) ≤ δ(g) for all g ∈M , where equality holds if and only if g = g0 + constant.

In words of Hill (see [5]) this theorem says (Chebyshev’s principle): “that con-
formal map is best in which the scale is constant along its boundary”. The proof of
Theorem 3 is based on the strong maximum principle (see [6]). The arbitrary con-
stant can be fixed using the uniform norm: the function g0+c0, where c0 = δ(g0)/2
is the best uniform approximant to the zero function from M , that is

sup
Ωb

|g0 + c0| ≤ sup
Ωb

|g| ,

for all g ∈ M . We note that δ0(Ω) := δ(g0) = − infΩb
g0 (minimum conformal dis-

tortion associated with Ω). If the base projection is conformal, we have alternately
that the solution of the Dirichlet boundary problem

(42) ∆U0 = 0 in Ωb , U0 = h on ∂Ωb,

is a best harmonic Chebyshev approximant to h, that is δ(U0 − h) ≤ δ(U − h) for
all U harmonic in Ωb, and the equality holds if and only if U = U0 + constant
(see [7]). This is the original approach followed by Chebyshev with the Mercator



1430 Oberwolfach Report 27/2004

projection as base projection, and therefore h(v) = log(sech v) if the surface is a
sphere where v is the isometric latitude.

Some examples to illustrate these ideas.
(i) Region bounded by two parallels. We have the following.

Theorem 4 ([8]). The best Chebyshev conformal map projections for a region
bounded by two parallels are conformal conic projections.

To prove this theorem it is convenient to choose as base projection any azimuthal
conformal projection. Then Ωb is a plane annulus and h = logσ−1

b depends only on

r = (u2+v2)1/2. The solution of the Dirichlet problem (42) is U0(r) = a0 log r+a1

which corresponds to a conformal conic projection. This is a beautiful example of
a case where the best Chebyshev map projection “although locally well behaved,
may not be one-to-one in the large” (see [6, p.1112]).

(ii) Rectangular regions (see [5]). Let Ω be the region of the ellipsoid contained
between portions of two parallels and two meridians. If the base projection is the
Mercator projection, and we count the longitudes from the middle meridian, the
first map of Ω is the rectangular region Ωb = [−u0, u0] × [vs, vn], where ±u0 are
the limiting values of the longitude, and vs, vn are the lower and upper limits of
the isometric latitude v. The following particular case is considered: u0 = 5o,
ϕs = 40o and ϕn = 50o, where ϕ denotes geodetic latitude. For a sphere, we have
solved using Matlab (Finite Element Method) the boundary value problem

∆g0 = ∆ log(cosh v) = sech2 v in Ωb , g0 = 0 on ∂Ωb.

We get δ0(Ω) = 1.4822 × 10−3. For the transverse Mercator projection and the
best Chebyshev conformal conic projection for this region we have respectively:
δtm(Ω) = 2.2338× 10−3, δl = 3.8158× 10−3.

(ii) Regions bounded by two meridians. F.Eisenlohr (see [3] and [9]) regards as a
measure of the accuracy of a conformal map the distortion of the geodesic lines of
the surface. If the base projection is conformal, this leads to the following problem:
Find a harmonic function U0 in Ωb such that

(43) ‖∇(U0 − h)‖L2(Ωb) ≤ ‖∇(U − h)‖L2(Ωb)

for all U harmonic in Ωb. Eisenlohr proves that if U0 satisfies (43) then U0 =
h+ constant on ∂Ωb (and then logσ0 is constant on the boundary!). Later Whit-
temore ([9]) specifies that if Ωb is simply connected this statement is right. In ad-
dition, Eisenlohr considers the case of a region bounded by two meridians. Under
Mercator projection, this region is transformed into the strip S(b) = [−b/2, b/2]×R

where b ∈ (0,2π]. For a sphere (h = log(sech v)), Eisenlohr states that the function
U0 = Re(w(z)), where z = u+ iv and

w(z) = −1

b

∫ ∞

−∞

sech
[

(iz + t)
π

b

]

h(t) dt,

solves the Dirichlet problem ∆U0 = 0 in S(b) and U0 = h on ∂S(b).
Conjecture: U0 is a best Chebyshev harmonic approximant to h in the unbounded
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domain S(b). We note that if b = π, then (see [3, p.148])

w(z) = −2 log
(

cosh
iz

2

)

⇒ U0 = log
( 2

cosu+ cosh v

)

.

This function U0 is the harmonic function associated with the transverse stereo-
graphic projection. This projection is a best Chebyshev conformal map projection
for S(π).
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Dirichlet Forms and (Stochastic) Partial Differential Equations

Martin Grothaus

In the last decades the theory of Dirichlet forms was approved as a useful tool
of modern mathematics. Applications can be found in research areas like Partial
Differential Equations, Mathematical Physics (Quantum (Field) Theory, Statisti-
cal Physics), Stochastic (Partial) Differential Equations and Stochastic Analysis.
In the first part of my talk I illustrated along elementary examples the concepts
of this theory. E.g., Dirichlet forms corresponding to the heat equation or SDEs
solved by Ornstein–Uhlenbeck processes I presented. Then I explained the gen-
eral strategy for solving a given PDE or SPDE. Existence of the solutions and
an analysis of their properties then follows along the monographs [2], [6]. In the
second part I spoke about applications to, e.g., the Langevin equations of Sta-
tistical Mechanics or birth and death processes. Finally, I gave a review of my
current research which is about limit theorems like scaling limits, hydrodynamic
Al limits and finite dimensional approximations, see [3], [5], [1], [4]. For deriving
and analyzing such limits Dirichlet forms turned out to be a very useful tool.
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Analysis on the Unit Sphere and on the Unit Ball

Yuan Xu

There is a close relation between the analytic structures on the unit sphere
and on the unit ball. Indeed, the simple mapping of x 7→ (x,

√

1 − ‖x‖2) and
the symmetry between upper and lower hemisphere turns out to preserves the
orthogonality; more specifically, the orthogonality on the sphere with respect to a
weight function H(x) is equivalent to orthogonality on the unit ball with respect

to a pair of weight functions, H(x)/
√

1 − ‖x‖2 and H(x)
√

1 − ‖x‖2, on the unit
ball. This relation has lead to a compact formula for the reproducing kernel on the
unit ball. It turns out that many results in approximation theory on the ball takes
the same form as those on the sphere; this includes the definition of modulus of
smoothness and K-functional, direct and inverse type theorems. Similar relations
hold between cubature formulas and interpolation between these two domains.
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Oblique Boundary Value Problems and Domain Decomposition
Methods

Martin Gutting

The exterior oblique boundary value problem on surfaces like the Earth’s real
surface demands approximation methods like interpolating harmonic splines to
obtain a solution in the realistic case of discrete data. That solution fulfills the
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Laplace equation in the exterior domain and fits the boundary values by construc-
tion. However, in order to obtain the essential spline coefficients large full systems
of linear equations need to be solved. This is performed by splitting the domain
corresponding to the data set into several subdomains where the splines can be
calculated easily. These ‘subsplines’ have to be fit together nicely which is done
iteratively by a Schwarz alternating algorithm.
For the mathematical formulation of the discrete boundary value problem we re-
quire Σ to be a regular surface, i.e Σ separates R3 into a bounded interior and an
unbounded exterior region (where the interior part contains the origin), the sur-
face is closed, it has no double points and possesses a local C (2,λ)-parametrization.
We are given N points x1, . . . , xN ∈ Σ and N directions v1, . . . , vN ∈ R with
‖vi‖ = 1 and vi · n(xi) > 0 for i = 1, . . . , N where n denotes the normal vector
field of Σ. As boundary values the discrete data ∂U

∂vi
(xi) of the desired potential

U ∈ Pot(1,λ)(Σext), i.e. U is harmonic in the exterior space of Σ, C(1,λ) at the
boundary and decays to zero at infinity. (More details can be found in [4], [3].)

The solution is approximated in a Sobolev space H = H
(

{An}; ΩextR

)

where ΩR

denotes an inner Runge sphere (also called Bjerhammer sphere) and the sequence
of symbols An fulfills the following summability condition:

∞
∑

n=0

2n+1
∑

k=1

2n+ 1

4π

1

A2
n

<∞.

The weighted outer harmonics 1
An
Hn,k(R; ·), n = 0, 1, . . . , k = 1, . . . , 2n+ 1 form

a basis system of this Sobolev space where a convolution is defined by

F ∗H G = (F,G)H =

∞
∑

n=0

2n+1
∑

k=1

A2
nF

∧
R (n, k)G∧

R(n, k)

with the Fourier coefficients F∧
R (n, k) and G∧

R(n, k). Due to summability the space

possesses a reproducing kernel KH that takes the form (with x, y ∈ ΩextR ):

KH(x, y) =

∞
∑

n=0

2n+1
∑

k=1

1

An
Hn,k(R;x)

1

An
Hn,k(R; y)

=

∞
∑

n=0

2n+1
∑

k=1

1

A2
n

2n+ 1

4πR2

(

R2

|x||y|

)n+1

Pn

(

x

|x| ·
y

|y|

)

,

where we applied the addition theorem and Pn stands for the Legendre polynomial
of degree n. For the special choice An = h−n/2 with h ∈ (0, 1) the repro-kernel
becomes the Abel-Poisson kernel and can be expressed by an elementary function:

KH(x, y) =
1

4π

|x|2|y|2 − h2R4

(|x|2|y|2 + h2R4 − 2hR2(x · y))3/2

Therefore, it can be computed exactly (no truncation of the infinite series) and
very quickly.
Due to Runge’s theorem (cf. [6]) we can use such basis functions that possess a
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larger domain of harmonicity in order to approximate the desired potential which
is harmonic only outside Σ.

Splines relative to a set of bounded linear functionals Li (like in this case the

directional derivatives) are denoted by S =
∑N
i=1 αiLiKH(·, ·). They can be forced

to fulfill the interpolation conditions LiF = LiSF by calculating the spline coeffi-
cients from the corresponding system of linear equations:

N
∑

i=1

αiLiLjKH(·, ·) = LjF for j = 1, . . . , N.

More about the so-called H-splines (further properties, convergence theorems) can
be found e.g. in [2], [4] or [5]. The high space localization of the reproducing ker-
nels allows to use these splines for local, i.e. only a part of the whole surface is
considered, as well as for global problems.
Since these systems lead to large matrices an algorithm has to be found to split
the spline into smaller pieces that can be computed easier. Those smaller ‘sub-
splines’ are then put together iteratively by a Multiplicative Schwarz Alternating
Algorithm (MSAA): Splines that are already calculated are subtracted from the
original right hand side and only the difference is interpolated. All splines are
added to get the final approximation. The algorithm works as follows:
Algorithm (MSAA): Let n count the number of iterations and let k be the num-
ber of subdomains. r = 1, . . . , k denotes the current subdomain. The starting
values for the residual are the data: F0 = F and for the spline we take SF0 = 0.
The iteration is performed the following way:

Fnk+r = Fnk+(r−1) − PrFnk+(r−1)

SFnk+r = SFnk+(r−1) + PrFnk+(r−1),

with projectors Pr : H −→ H, G 7→ PrG = SGr which denote the spline interpola-
tion within the subdomains.
For a more detailled description of the algorithm see [4] or [5]; in [1] the algorithm
is formulated with regard to radial basis function interpolation. The iteration
converges (cf. [4] or [5] for a proof):

(

SFnk
)

n
−→ PF = SF for n −→ ∞.

In practice, the iteration is stopped when a prescibed accuracy is achieved. Since
the set of interpolated functionals which is split for the MSAA is related to a set
of points on Σ the splitting can be performed in such a way that it corresponds
to the decomposition of the computational domain. In our implementation we
go back to the sphere which we divide into polar caps and rectangles in the ϕ-θ-
parameter plane. (For details see [4], [5].) As a numerical example we present a
local calculation for Asia. The Terrainbase model is used to generate the Earth’s
surface and the directions are given by the direction of the gradients of the gravita-
tional potential in the points. To reduce the boundary effects the evaluation area
is chosen smaller than the area where data was given. The aim of this example
was the reconstruction of a spherical harmonics model of degrees 16-200 (EGM96)
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where 21643 points in this local area have been given. The mean absolute error
amounts to 0.308m2/s2. (Further local and global results as well as more details
can be found in [4].) Furthermore, it should be noted that this technique can be

Figure 6. The interpolating spline (left) and the absolute error (right).

easily combined with H-scaling functions and H-wavelets (see [1] or [3]) to obtain
a multiscale representation of the approximation (cf. [4] for an implementation).
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Determination of the Geopotential Field out of Oblique Derivatives,
an Alternate Approach

Frank Bauer

In the field of gravity determination a special kind of boundary value problem
respectively ill-posed satellite problem occurs; the data and hence side condition
of our PDE are oblique derivatives of the gravitational potential.

In mathematical terms this means that our gravitational potential V fulfills
∆V = (∂1∂1 + ∂2∂2 + ∂3∂3)V = 0 in the exterior space of the Earth Σext and
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DV = F on the discrete data location ΣD which is on the Earth’s surface Σ
for terrestrial measurements and on a satellite track in Σext for spaceborne mea-
surement campaigns. D is a first order derivative for methods like geometric
astronomic levelling and satellite-to-satellite tracking (e.g. CHAMP); it is a sec-
ond order derivative for other methods like terrestrial gradiometry and satellite
gravity gradiometry (e.g. GOCE).

Classically one can handle first order side conditions which are not tangential
to the Σ and second derivatives pointing in the radial direction employing integral
and pseudo differential equation methods. We will present a different approach:
We classify all first and purely second order operators D which allow us to solve
the problem with oblique side conditions as if we had ordinary i.e. non-derived
side conditions. The only additional work which has to be done is an inversion of
D , i.e. integration.

Split Operators

We consider the following more general problem which is our oblique derivative
problem in the geoscientifical case if we set ΣExt to the exterior of the Earth, ΣD
to the data location, U = ∆ and D = D to an oblique derivative at ΣD.

Problem Let S, T1 and T2 be separable normed linear function spaces defined
on a domain Σext and assume ΣD ⊂ Σext ⊂

� n. Let U : S → T1 and D : S → T2

be linear operators. Assume furthermore T2 ∈ T2.
We search all V ∈ S fulfilling

UV = 0

(DV )|ΣD
= T2|ΣD

The operator D is globally defined, so the following definition makes sense:

Definition (Split Operator) UD : T2 → T1 is called split operator for U with
respect to D if it fulfills the following property:

UV = 0 ⇒ UDDV = 0 for all V ∈ S
Please observe that neither existence nor uniqueness of the split operator is as-

sured. In particular is the 0 operator a split operator, however not a sensible
one.

Using a split operator we can “split” our problem in two parts, one standard
Dirichlet type problem, i.e. with standard boundary conditions and a comparably
simple integration problem.

Lemma(Split Lemma) Let UD be a split operator for U with respect to D. If V
is a solution of the problem described beforehand then it is also a solution of the
problem

UDVD = 0

VD|ΣD
= T2|ΣD

DV = VD
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The split operator has two further particularly nice properties, namely:

• Composition: Assume D = D2D1 and let UD2 and (UD2)D1
be the corre-

sponding split operators. Then it holds

(UD2)D1
= U(D2D1) = UD

• Linearity: Assume UD1 = UD2 are split operators with respect to D1 and
D2 respectively. Assuming

D = α1D1 + α2D2 where α1, α2 ∈ �

we have UD := UD1 is a split operator with respect to the operator U.

Split Operators for ∆

Now we want to classify possible first order derivatives D =
∑3

i=1Di∂i + D
(where Di and D are smooth functions) and corresponding split operators ∆D for
∆ systematically. Most results presented also hold for more general second order
(elliptic) differential operators than ∆.

Lemma There does not exist a nontrivial split operator in the form ∆D =
∑3

i=1Bi∂i +B where the Bi and B denote smooth functions.

So we try as a candidate for our split operator (Bij , Bi and B are smooth
functions):

∆D =
∑

1≤i≤j≤3

Bij∂i∂j +

3
∑

i=1

Bi∂i +B

We are getting a number of different compatibility conditions which need to hold,
namely:

∆D = ∆ +

3
∑

i=1

Bi∂i +B

and

0 =∆DDi + 2∂iD +BiD for all i

0 =2∂iDj +BiDj + 2∂jDi +BjDi for all i 6= j

0 =2∂iDi +BiDi − 2∂jDj −BjDj for all i 6= j

0 =∆DD

Solutions
We need to solve this system of PDE’s symbolically. We therefore transferred it

to the language of (non-)commutative algebra. There we were just able to succeed
when we assumed that the Bi and B commute with the ∂j , i.e. Bi, B are constant.

Now we will just show the different prototype solutions, the rest can be obtained
by summing up multiples these:
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D =e
− 1

2 (B1x1+B2x2+B3x3)( 1 )

D =e
− 1

2 (B1x1+B2x2+B3x3)( ∂i ) for all i

D =e
− 1

2 (B1x1+B2x2+B3x3)( xj∂i − xi∂j ) for all i 6= j

D =e
− 1

2 (B1x1+B2x2+B3x3)( x1∂1 + x2∂2 + x3∂3 )

D =e
− 1

2 (B1x1+B2x2+B3x3)( x2
i ∂i + xi +

∑

j∈{1,2,3}\{i}

−x2
j∂i + xixj∂j ) for all i

with split operator

∆D = ∆ +

3
∑

i=1

Bi∂i +
1

4

3
∑

i=1

B2
i where Bi ∈ � for all i

As we are mainly interested in the direction of the derivatives and not of the
(common) scaling factor e

− 1
2 (B1x1+B2x2+B3x3) we can set B1 = B2 = B3 = 0 and

so can drop it. The split operator gets ∆D = ∆.
Please note that these operators D are not depending on the particular shape

of the surface ΣD where the boundary data are.

Further Remarks

A similar strategy can be applied to purely second order operators D , surpris-
ingly we just get composed solutions from the first order case.

Another important fact is that these operator map spherical harmonics of equal
degree again to spherical harmonics of equal degree. The occurring transformation
matrices have band structure and hence are numerically rather easy to treat.

When we consider the satellite problem this approach enables us to separate
solving the boundary value type problem (BVTP) for the outer space outside the
satellite track, the downward continuation (i.e. analytic continuation to the Earth)
and the inversion of D . The solution of the BVTP has to be done in the first place,
but for the two others we are free to choose the order.

References

[1] W. Freeden, T. Gervens, and M. Schreiner, Constructive Approximation on the Sphere
(With Applications to Geomathematics), Numerical Mathematics and Scientific Computa-
tion, Oxford University Press, Oxford, New York, 1998.

[2] W. Seiler, Analysis and Application of the Formal Theory of Partial Differential Equations,
Ph.D. thesis, Lancaster University and University of Karlsruhe, 1994.



Geomathematics 1439

Experiences in mathematical geodesy education

Martin Vermeer

Having been a researcher at the Finnish Geodetic Institute for two decades, I
moved on to HUT to a chair with major educational duties. I describe here some
of my experiences in trying to teach geodesy as an exact discipline to the next
generation.

Firstly I report on the use of MatlabTM exercises in the context of several
geodesy courses.

In the Geometrical Geodesy course, we developed

(1) an exercise requiring the solution of the geodetic forward problem on the
ellipsoid by numerically integrating the differential equations for the geo-
desic: instead of the traditional series expansions in powers of e2, a Matlab
ODE routine was used.

(2) an excercise about solving for the coefficients of a complex polynomial
describing the GaussKrüger projection used on Finnish territory, using as
boundary conditions an array of points on the principal meridian. The
objective was to achieve mm accuracy over the whole Finnish territory
with minimal coefficients.

The projection was modelled as a two-stage operation, the first of which
was a tradional Mercator. Then, the mapping from Mercator plane to
GaussKrüger plane was modelled as described above. Mercator has the
virtue of being closed formulae also on the ellipsoid, except for the evalu-
ation of an integral called “isometric latitude”, which also appears in the
stereographic and Lambert conformal projection formulae. This integral
was evaluated, instead of by the traditional series expansion, by a standard
Matlab integration routine.

Also in the Fundamental Geodesy course we experimented with simple Matlab
exercises: one was about computing DOP (Dilution of Precision, a measure of
strength of the satellite geometry) quantities and optimizing it by manually shift-
ing the positions of five satellites on the celestial sphere (and realizing that only
above-horizon positions are physically realistic). This experiment was didactically
somewhat risky, as both matrix algebra skills and Matlab familiarity were still
very thin and fresh at that stage.

All these exercises were carefully designed to not require any ’deep’ coding.
In the geodesic problem, the students were required to fill in the formula code
representing the differential equations, though.

From the scant feedback received from these exercises, it appears the students
appreciate especially the problem solving component, figuring out something (more
or less) for yourself, rather than dumb computation. This is of course as it should
be: even while most of these students will not continue into a scientific career, it
is clear that their future employers want to especially see robust problem-solving
skills.
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In the Geometical Geodesy course, which I lectured for one semester replacing
a colleague on sick leave, I also experimented with teaching simple modern tensor
calculus and differential geometry (metric tensor, Christoffel symbols, curvature,
geodesic, etc.) as a way to describe the Earth’s curved surface as well as to
elucidate map projection theory – Tissot’s indicatrix being a metric tensor. I also
led the classroom exercises on this, and was left with the impression that it was
found more difficult, but also more rewarding, than the traditional way of teaching
geometrical geodesy.

More details on this and other things, unfortunately mostly in Finnish, can be
found on my Web site: http://www.hut.fi/~mvermeer.

Determination of the Earths Gravity Field by means of the new
GPS-tracked Satellite Missions CHAMP, GRACE and GOCE -

a new algorithm for orbit analysis based on accelerations

Tilo Reubelt

(joint work with Erik Grafarend)

The most important aim of the three new satellite missions CHAMP, GRACE
and GOCE is the accuracy improvement of the global gravity field model. Dif-
ferent measurement principles are applied in these missions to determine a certain
resolution of the gravity field. In the already launched mission CHAMP, the orbit
analysis of a single satellite is used that is sensitive to long wavelengths (¿ 500 km)
of the gravity field. The main principle of the twin satellite mission GRACE is
the measurement and analysis of the intersatellite distance between both satellites
which allow for determination of medium wavelengths (500 km 250 km) of the
gravity field. The gravity field recovery will be completed by the planned GOCE
mission where gradiometry should guarantee resolution of short wavelengths (250
km - 130 km) of the gravity field.

The common measurement principle in these three satellite missions is the or-
bit analysis by means of GPS-tracking and acceleration (measurements of non-
gravitational disturbing accelerations) data. There are different algorithms for the
orbit analysis that are mainly based on integration of the equations of motions of
the satellites (variational approach) or the energy balance principle. The former
method suffers from a large computational effort resulting from numerical integra-
tion and iteration due to a nonlinear system of equations and from the influence
of low frequency noise due to integration. The main disadvantage of the second
method is that noisy observables (velocities determined by numerical differentia-
tion of positions) must be squared which leads again to the noise magnification.
To circumvent these problems, we have developed and investigated a third method
based on satellite accelerations. This new method is fast and suppresses the low-
frequency noise. However, the high-frequency noise still can be amplified due to
numerical differentiation.



Geomathematics 1441

The method works as follows: First, by means of numerical differentiation, satel-
lite accelerations are determined from the GPS-tracked positions of the satellite in
the quasi-inertial system. Subsequently, these accelerations are reduced for satel-
lite surface forces measured by an on-board accelerometer and tidal accelerations
computed from models. After rotation of the reduced accelerations into the local
system, they are balanced by the gravity vector expressed in spherical harmonic.
Finally, spherical harmonic geopotential coefficients (up to 10,000 unknowns) are
determined from the resulting system of linear equations. In order to deal with
the restricted computer memory, the iterative method of preconditioned conjugate
gradients is applied with a convergence achieved within 10 iterations.

The crucial point for the accuracy of results is the noise amplification during
numerical differentiation. Thus, different numerical differentiation schemes (New-
ton interpolation, Splines) as well as smoothing methods (regression polynomials,
smoothing Splines) are tested. Simulations show that the Newton and Spline
interpolations are superior to smoothing methods.

From various simulations as well as the analysis of short real CHAMP data sets
we conclude that the new method can determine the Earths gravity field with good
accuracy. Nevertheless, it can only be found out by comparison which algorithm
is the best. For the future, the focus will be on the analysis of longer (1 year) real
CHAMP data sets. The algorithm can be classified as fast, since the system of
linear equations is linear and no integration is necessary to obtain the elements of
the normal matrix.

Wavelets on Regular Surfaces Generated by Layer Potentials

Carsten Mayer

By means of the classical limit and jump relations of potential theory the frame-
work of a scalar as well as a vectorial wavelet approach on a regular surface is
established. The setup of a multiresolution analysis is defined by interpreting the
kernel functions of the limit and jump integral operators as scaling functions on
regular surfaces. The distance of the parallel surface to the surface under consid-
eration thereby represents the scale level in the scaling function. This procedure
results in scalar kernel functions which lead to vectorial ones by applying the sur-
face operators with respect to the Helmholtz decomposition.
Scaling functions and wavelets show space localizing properties. Thus, they can
be used to represent scalar and vector fields locally on a regular surface. This
fact will be demonstrated by an approximation of the (scalar) gravity potential on
the Earth’s reference ellipsoid and of a (vectorial) deformation field on the regular
Earth’s surface given by the TerrainBase model.

1. Construction of Wavelets

The starting point of our construction principle of wavelets on regular surfaces
is an elliptic boundary value problem and its fundamental solution.
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BVP Let Σ ⊂ R
3 be a regular surface, i.e. a closed and compact surface containing

the origin, free of double points and possessing a continuous normal field pointing
into the outer space Σext. Let F on Σ be given and 3 be an elliptic partial
differential operator with constant coefficients. Find U sufficiently smooth such
that

3U = 0 in Σint (resp. Σext)

U |Σ = F or

(

∂

∂ν

)
∣

∣

∣

∣

Σ

= F onΣ(44)

U is regular at infinity.

The bivariate function G is called fundamental solution of the boundary value
problem if

3xG(x, y) = δ(x− y), x, y ∈ R
3 \ {Σ}.

For the case 3 = ∆ the fundamental solution is given byG(x, y) = 1
|x−y| , which has

been discussed in [3]. For the case of the Helmholtz equation we have 3 = ∆+k2Id

and G(x, y) = exp(ik|x−y|)
|x−y| . This case has been studied in [4]. In [1] the Cauchy-

Navier equation has been investigated, where 3 = µ∆ + (λ + µ)∇∇, µ, λ Lame
constants. The fundamental solution is, in this case, a tensorial function which is
explicitly known and which can be found in [5].
Based on the fundamental solution we now define, for τ, σ > 0, the potential
operator P (τ, σ) : L2(Σ) → L2(Σ) by

P (τ, σ)F (x) =

∫

Σ

F (y)G(x + τν(x), y + σν(y)) dω(y), F ∈ L2(Σ).

The operator P (τ, 0) is called the operator of the single layer potential and the
operator P (τ, 0)|σF (x) =

(

∂
∂σP (τ, σ)F (x)

)

σ=0
, is called operator of the double

layer. Using these operators we can formulate the well-known jump relations of
potential theory (see [6],[7]). Here, we just present the jump relation for the double
layer potential, i.e.

(45) (P|σ(τ, 0) − P|σ(−τ, 0))F
τ→0−→ 4πF

holds in the sense of the || · ||∞−norm and of the || · ||2−norm. Writing out (45)
explicitly we get

lim
τ→0
τ>0

(F ∗ Φτ )(x) = lim
τ→0
τ>0

∫

Σ

F (y)Φτ (x, y) dω(y) = F (x), x ∈ Σ, F ∈ C(Σ),

with the kernel functions Φτ (x, y), τ ∈ (0,∞), given by

Φτ (x, y) =
1

4π

∂

∂ν(y)

(

G
(

x+ τν(x), y + σν(y)
)

−G
(

x− τν(x), y + σν(y)
)

)

|σ=0

.
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The family of functions Φτ , τ ∈ (0,∞), are called Σ−scaling functions. Thus, for
τ ∈ (0,∞) fixed, the family of Σ−wavelet functions, Ψτ , is defined by

Ψτ (x, y) = −τ d

dτ
Φτ (x, y), x, y ∈ Σ.

Using these scaling functions and wavelets we can define filter operators Pτ =
F ∗ Φτ , called low-pass filter and Rτ = F ∗ Ψτ , called band-pass filter. The
corresponding image spaces of L2(Σ) under these operators are denoted by Vτ (Σ),
called scale space, and Wτ (Σ), called detail space. The scale spaces fulfill the
fundamental properties of a multiresolution analysis, i.e. limτ→0,τ>0 Vτ (Σ) is dense
in L2(Σ) and {0} ⊂ Vτ (Σ) ⊂ Vτ ′(Σ) ⊂ L2(Σ) if 0 < τ ′ < τ <∞. The first property
is clear and the second one has been shown for the case of sphere in [3].
In order to construct vectorial kernel functions out of the scalar ones we use the
Helmholtz surface theorem (see e.g. [2]).
Helmholtz Theorem. Let f ∈ c(Σ) be a vector field on Σ, then there exist
sufficiently smooth scalar fields F1, F2, F3, such that

(46) f = o
(1)
Σ F1 + o

(2)
Σ F2 + o

(3)
Σ F3 = νF1 + ∇ΣF2 + (ν ∧ ∇Σ)F3.

By use of the operators o
(i)
Σ in (46) we can define vector kernels φ

(i)
τ , for τ ∈ (0,∞),

x, y ∈ Σ, by

φ(1)
τ (x, y) = o

(1)
Σ Φτ (x, y), φ(2)

τ (x, y) = o
(2)
Σ Φτ (x, y), φ(3)

τ (x, y) = o
(3)
Σ Φτ (x, y).

Let now {yj}j=1,...,M ⊂ Σ be a set of equidistributed points on the regular surface
Σ, e.g. integration knots of a suitable integration rule on Σ. In order to approx-

imate f on Σ the task is to find coefficients a
(i)
j , j = 1, . . . ,M , i = 1, 2, 3, such

that

(47) f(x) =

M
∑

j=1

(a
(1)
j φ(1)

τ (x, yj) + a
(2)
j φ(2)

τ (x, yj) + a
(3)
j φ(3)

τ (x, yj)), x ∈ Σ.

These coefficients can be obtained by appropriate methods such as collocation,
Galerkin procedure or least square approximation.

2. Applications

First, we show in Figure 7 a local wavelet reconstruction of the Earth’s grav-
itational potential over Italy. The reconstruction is performed using a discrete
Σ−wavelet at scale τ = 2−8 on the Earth’s surface given by the TerrainBase
model (see [9]). The necessary convolution is discretized by a polynomial exact
integration rule as for example the Gauss-Legendre rule.
As a second application we present in Figure 7 a scale approximation of a vectorial
deformation field over Turkey. The underlying data, which is plotted in white, is
due to [8] and shows yearly means of the displacement of several GPS stations in
the Greece-Turkey area. The reconstruction is obtained by collocation according
to Equation 47. The scale of the corresponding vector kernel in (47) thereby is
chosen such that the error of the approximation is minimized.
Future applications are the solution of boundary integral equations over regular
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surfaces which occur from layer potential approaches for the boundary value prob-
lems discussed in (44). Open problems in this field are, for example,

• suitable integration rules for regular surfaces,
• equidistributed point-sets on regular surfaces,
• computation of the normal field for discretely given surfaces.

Figure 7. Left: Wavelet reconstruction at scale τ = 2−8 of the
Earth’s gravitational potential over Italy. Right: Scaling function
reconstruction of a deformation field over Turkey. Black arrows
indicate the direction while color indicates the strength of the
approximated displacement.
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