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Introduction by the Organisers

The present workshop gave an overview of recent results and current trends in
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having provided an inspiring environment for the meeting and the scientific work.
The pleasant atmosphere contributed to the overall success of the workshop.
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Abstracts

Some Remarks on the Geomathematics Workshop
WILLI FREEDEN

During the last decades technological progress has changed completely the ob-
servational methods in all fields of geosciences and -engineering with a trend to
achieve immediate results, thus reducing time and costs. Modern high speed com-
puters and satellite based techniques are entering more and more disciplines like
geomagnetics, geodesy, geology, meteorology, navigation and many others. The
increasing observational accuracy demands adequate mathematical tools; mathe-
matics concerned with geoscientific problems, i.e., geomathematics, is becoming
more and more indispensable. Geomathematics offers appropriate means of as-
similating, assessing, and reducing the comprehensible form the readily increasing
flow of data from geomagnetic, geochemical, geodetic, geological, and satellite
sources and providing an objective basis for scientific interpretation, classification,
testing of concepts and solution of problems. Undoubtedly, the stage is set for
geomathematics to play a major role in all Earth’s sciences.

The purpose of the meeting was to encourage and enhance the dialogue and
the collaboration between actual research fields on geomathematics (i.e., gravita-
tion, geomagnetics, Earth’s deformation analysis, ocean circulation/wind field, and
satellite technology) and relevant mathematical methods and tools in geomathe-
matics (i.e., special functions of mathematical (geo)physics, differential equations,
boundary value problems, integral transforms, constructive approximation, inverse
problems, numerical methods, scientific computation, data analysis).

Inverse Problems

P> Constructive

L approximation i _Nujmerica]_ methods

¢ m_'tegral transforms Scientific computation

' Boundary value 2 i

\ problems 4 ~ Data analysis
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Satellite technology
Qcean circulation!
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The meeting was well attended with over 45 participants from all continents.
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F1GURE 1. Participants of the workshop: Geomathematics

In the actual research fields five lectures gave an overview of recent develop-
ments and current trends. The other talks concentrated on specific mathematical

techniques in geosciences.

All talks demonstrated the diversity as well as the

inter-relationships of the areas of research.

In detail,

the Geomathematics workshop was concerned with the following re-

search projects:

e Partial Differential Equations.

(i)

(i)

(iii)

(iv)

Potential Theory

geoid and geopotential determination from oblique-derivative bound-
ary value problems, gravimetry (determination of density and dis-
continuities in the Earth’s interior from gravity data), inverse prob-
lems from satellite applications (determination of the gravitational
field from measurements of the CHAMP (2000), GRACE (2001) and
GOCE (2005) satellite missions), time-dependent gravitational field
determination (from GOCE data), pseudo-differential equations in
"Satellite-to-Satellite Tracking’ and ’Satellite Gravity Gradiometry’
Theory of Elasticity

Cauchy-Navier-equations of the elastic field (boundary value prob-
lems of elasticity, loading problems at reservoirs, causality to seismic
phenomena)

Electromagnetism

geomagnetic field determination (determination of the magnetic in-
duction, modelling of electric current densities in the iono- and mag-
netosphere from satellite data, regularization), refraction (i.e. deter-
mination of atmospheric refraction via CCD-camera data, turbulence,
fractal structure)

Navier-Stokes equations on the sphere (wind field modelling)

e Constructive Approximation
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(scalar, vectorial and tensorial) radial basis functions, uncertainty prin-
ciples, space-frequency behaviour, multivariate approximation (splines,
wavelets and their application to partial differential equations), data anal-
ysis, vectorial spline deformation analysis of the Earth’s crust

e Numerical Methods

numerical integration on the sphere and geoscientifically relevant sur-
faces, domain decomposition methods, fast multipole methods (FMM),
fast wavelet transform (FWT), tree algorithms (pyramid schemes), spline
interpolation and smoothing, best approximation, wavelet denoising (mul-
tiscale signal-to-noise response),

e Scientific Computing/Data Analysis

multiscale modelling of the Earth’s gravitational field (from CHAMP,
GRACE and GOCE data), multiscale modelling of the geomagnetic field
and electric current distributions (from MAGSAT and CHAMP data),
multiscale modelling of density variations in the Earth’s interior from grav-
ity data (using OSA91a, EGM96a), multiscale modelling of the wind field
(from data of the Deutscher Wetterdienst)

In what follows the abstracts of the talks are included in the order of the presen-
tation by the speakers.

Interplay between Moment Problems, Inverse Problems
and Sampling Theory

M. ZUHAIR NASHED

We consider the class of operator equations
(1) Az =y
where A is a linear operator on a Hilbert space X into a function space of real-
valued continuous functions on a set 7" with the property that |(Az)(t)| < M| z||,

r € X, x €T, where M; is a constant that does not depend on z. Then there
exists a family {a; : t € T'} of elements in X such that

(2) (Az)(t) =< at,z >,
so the operator equation (1) becomes
(3) < ap,x >=y(t).

Within this framework we give examples of moment problems, inverse problems
and sampling expansions f(t) = > f(¢,)Sn(t) that can studied in a unified ap-

proach. Reproducing kernel Hilbert spaces play a key role. An extended version
of Backus—Gilbert method for moment problem is formulated and used to solve
the inverse problem (1) in form

(4) <ati,x>:y(ti)+6i, 1=1,2,...,n

and establish convergence. A sampling theory approach is also considered for the
solution of integral equations of the first kind when the range space and solution
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space are reproducing kernel Hilbert spaces that admit sampling expansions of the
form stated above.

On adaptive inverse estimation of linear functionals from random
noisy data — case study: GOCE data processing.

SERGEI V. PEREVERZYEV

The talk is prompted by the question of how to choose the parameter in reg-
ularization of geopotential determination from the data, which will be collected
during future satellite mission GOCE. It is common belief that the choice of the
regularization parameter will be a severe topic for this mission and variety of
choice strategies will definitely be necessary in GOCE data processing, because of
the lack of information about noise characteristic. In the talk we discussed two
scenarios. One of them is that no information about noise is available. In such
a situation one can use only the so-called heuristic methods for the choice of the
regularization parameter. We propose several heuristically motivated rules which
have not been applied so far to satellite gravity gradiometry problem (SGG).
Another scenario is that only the level of random noise is known, but no informa-
tion about the noise covariance structure is available. We discuss an estimation
procedure that adapts to unknown smoothing properties of covariance operator.
To the best of our knowledge the first result in this direction has been obtained in
2003 in cooperation with Alex Goldenshluger (see Bernoulli v. 9(5), 2003, pp. 783-
807). This research addressed the problem of estimating the value of a linear func-
tional from indirect random noisy observations with finite degree of ill-posedness,
and an estimation procedure was proposed which adapts to unknown smootheness
of the solution and of the noise covariance operator. It has been shown that ac-
curacy of this adaptive estimator is worse only by a logarithmic factor than one
could achieve in the case of known characteristics. On the other hand, it is known
that in general SGG-problem has infinite degree of ill-posedness. Nevertheless,
we argue that the parameters of forthcoming GOCE-mission allow to treat SGG-
problem as moderately ill-posed problem with degree of ill-posedness a = 5.5. It
means that above mentioned adaptation procedure could be successfully applied.

Multi-scale Approaches for the Determination of the Earth’s Interior
— from Gravitational and Seismic Data

VOLKER MICHEL

Gravity data and seismic data are the most important sources of information for
the recovery of the structures in the Earth’s interior. As it is already well-known,
the mass density function cannot be uniquely determined from pure gravitational
data. The non-reconstructible part, which is infinite-dimensional, is called the
anharmonic density.
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The unique calculation of the harmonic density from gravitational data is never-
theless ill-posed since the solution is instable, i.e., it does not depend continuously
on the given data. In this talk a multi-scale regularization technique for the so-
lution of this so-called gravimetry problem is presented. Particular systems of
wavelets are constructed that allow a multiresolution analysis of the harmonic
density based on gravity models.

Moreover, a new regularization technique for this problem is demonstrated. This
new approach uses certain harmonic spline spaces on the three-dimensional ball.
An outstanding advantage of this technique is that different types of gravitational
data can be merged. So, one can use the gravitational potential, its first radial
derivative (derived from SST') and its second radial derivative (derived from SGG).
Furthermore, those data can be located at many different heights above the surface
(airborne and spaceborne data) as well as on the surface of the Earth (terrestrial
data).

Typical seismological data for the investigation of the Earth’s composition are
travel-times of earthquake waves. From those data, that are related to the po-
sitions of source (hypocenter) and receiver (seismograph), models of the velocity
of the propagating waves are determined. Primarily, there exist two classes of
methods for solving this inverse problem. First, a spherical harmonics expansion
is used for the slowness S. Based on the integral equation

T = /L S(z) dz,

where L is the path of a ray associated to a seismic wave (on the surface of the
Earth or inside the planet) and T is the corresponding travel-time, the expansion
coefficients of S are determined. The use of this approach has become rare because
the global character of a polynomial does not fit the locally varying structure of
the Earth’s crust.

Second, blocks with, e.g., constant or linear slowness in each block are used as
a model. Based on the same integral equation the parameters of the blocks are
determined. Of course, the corresponding linear equation system can show numer-
ical instabilities if the block sizes are not chosen appropriately.

In this talk it is demonstrated that spherical wavelets, which are based on spher-
ical harmonics but are strongly space-localizing, can be an interesting alternative
for future research on this topic. For the case of surface waves an appropriate new
method is proposed.

Gravitation
ErRwIN GROTEN

With new dedicated LEO (= Low Earth Orbiting)-type satellite projects as
well as numerous altimetric satellite missions the precise determination of gravity
variations and the detailed gravity field of the Earth gained increasing interest.
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Whenever supplemented by new air borne gravity field observations and local sur-
veys we are now able to use substantially improved gravity data to obtain deeper
knowledge on mass distribution and mass transport within the Earth, as far as
solid, liquid and fluid density distribution is concerned. Moreover, much better in-
formation recently became available on Newtonian Gravitational Constant as well
as its product with the mass of the Earth, i.e. the terrestrial gravitational constant
which act as scale constants. Care is necessary in dealing with related reference
frames, so gravity has to be clearly separated from gravitation. Whereas geodesy
is based on Newtonian gravitation, space geodesy and astrometric as well as as-
trophysical considerations are usually based on Einsteinian relativistic concepts.
Deviations from classical theories and recent developments in terms of Yukawa’s
corrections, E. Majorana’s shielding concept etc. as well as gravitational waves
and related detectors and experimental concepts are discussed. A clear distinction
is necessary in dealing with temporal changes of gravity (such as Earth’s rota-
tion changes) and changes of gravitation generated by mass transport (sea level
and hydrological effects) where the latter can now be detected with high precision
from GRACE and similar observations. However, also steric sea level variations
and non-steric ocean circulation effects need to be clearly distinguished and sepa-
rated. CHAMP substantially contributes to separate the model space of harmonic
functions and potential theory from observation space (i.e. reality) by deliver-
ing reliable information on atmospheric density distribution and related temporal
variations, based on atmospheric limb studies. GOCE will basically improve the
knowledge on the higher harmonics of the Earth’s gravitational field.

Numerical aspects and related phenomena and accuracies are discussed, and fu-
ture prospects are outlined; see also [1], [2], [3].

Mathematical forms of representations are described in terms of wavelet, spherical
and spheroidal analysis. Problems associated with the introduction of approxima-
tions, such as Somigliana’s field of a level ellipsoid are outlined. It is demonstrated
that with satellite altimetry, airborne gravity measurements and satellites of LEO-
type the importance of ill-posed problem and related regularizations in geodesy
has tremendously increased. Moreover, integral equations have widely replaced
relatively simple integral transformations.

Thus, besides the need to solve very large linear (and, to some extent, non-linear)
equation systems the necessity to apply sophisticated mathematical techniques has
strongly increased in geosciences.

Besides the terrestrial aspects, also the precise determination of orbits in space,
mainly in relativistic celestial frames, became of prime relevance. Also gravity
field determination within the solar system (Moon, Planets, Comets) is a topic
within gravitation theory which gains increasing interest. Thus gravitation as the
prime force in space geodesy deserves a revival.

REFERENCES

[1] E. Groten, Ist die Modellbildung in der Geoddsie hinreichend zukunftstauglich?, ZfV Heft
3/2003, Wiler-Verlag, Augsburg (2003), 192-195.



Geomathematics 1383

[2] E. Groten, Fundamental Constants and their Implications, Allgemeine Vermessungs-
Nachrichten AVN 4/2004 published by Wichmann/Hiithig Verlag, Heidelberg (2004), 122-
127.

[3] E. Groten, Fundamental Parameters and Current (2004) Best Estimates of the Parameters
of Common Relevance to Astronomy, Geodesy, and Geodynamics, Journal of Geodesy 77,
10-11, The Geodesist’s Handbook (2004), 724- 731.

Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces
STEPHAN DAHLKE
(joint work with Gabriele Steidl and Gerd Teschke)

General Setting. One of the classical tasks in applied analysis is the efficient
representation/analysis of a given signal. Usually, the first step is the decomposi-
tion of the signal into suitable building blocks. Current interest especially centers
around Riesz bases of wavelet type. However, in recent studies, it has turned
out that the use of Riesz bases may have some serious drawbacks, e.g., their lack
of flexibility. Therefore, one natural way out suggests itself: why not using a
slightly weaker concept and allowing some redundancies, i.e., why not working
with frames? In general, given a Hilbert space H, a collection of elements {e;};cz
is called a frame if there exist constants 0 < A; < Ay < oo such that

A FIZ < ST el < Ao £
i€
Our aim is to construct (Banach) frames for specific smoothness spaces on domains
and manifolds, the so—called coorbit spaces.
Group Theoretical Background. Let G be a locally compact, topological Haus-
dorff group which possesses a unitary, irreducible and strongly continuous repre-
sentation U in a Hilbert space H. Consider the homogeneous space X = G/P,

where P is a closed subgroup of G, and fix a Borel section ¢ : X — G. Assume
that U is strictly square integrable mod (P, o), i.e., there exists 1) € ‘H such that

J AU s Ul ) duth) = 1.
where p denotes some G—invariant measure on X. Then
() Vo H— La(X),  Vpf(h) = (f,U(o(h)™ )
is an isometry from H onto the reproducing kernel Hilbert space
My :={F: (F € Ly(X), R(h,)) = F(h)}  R(h,1):= Vy(U(a ()™ )¥)(D).

Weighted Coorbit Spaces. Fix a positive, continuous weight function w on G
satifying w(g o §) < w(g)w(g), 9,9 € G, and consider the weighted L, spaces

1/p
Lyw(X) := {f measurable on X : || f||z,. = (/X |f(h)|pw(a(h))pdu(h)> < 00}
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Let us impose the fundamental condition

w(o(h)
(© [ RIS i) < .

We define the space

Hiw:={feH: Vyuf € LX)} [[flla. = VoSl

which is densely embedded in H and therefore induces a Gelfand triple Hy ,, —
H < Hj ,. By using (6), the operator V;, in (5) can be extended to an operator
on Hi , by

Vo f(h) == (f, U(U(h)_l)Q/))Hi’wal,w :

Therefore, similar to [3, 4], we can define smoothness spaces, the so—called weighted
coorbit spaces by

Mpw={f€Hi: Vof € Lpw(X)},  IflMyn = VoS,

Banach Frames for Weighted Coorbit Spaces. Given some compact neigh-
borhood U of the identity in G, a family X = (x;);ez in G is called U—dense if
UiezUzi = G. Let us consider the subset

I, ={iel: oX)NUx; #0} .
We define the U-oscillation with respect to the analyzing wavelet 1) as
oscy(l,h) = sup |{u, Ulo(l)o(h)™)e = Ulu™ o(l)o(h) ™ )e)nl.
ue

In this setting, we can formulate our main theorems. The first one is a decomposi-
tion theorem which says that discretizing the representation U(o(-)~1) by means
of a U—dense set indeed produces an atomic decomposition of M, ,,.

Theorem 1. Let a compact neighborhood U of the identity in G be chosen such

that
w(o(h) w(o(h))
() /X oseull, ) 7 w(o()

where v < 1. Let X = (x;);cz be a U—dense family. Furthermore, suppose that for
some compact neighborhood Q C U of the identity

(8) uf{h € X :o(h) € Qo(h;)} >Cgo >0
holds for all i € I, and that

-1 —1 w(o(h))
© [ s ) U el o G

with a constant C'Q < oo independent of h € X. Then M, ., 1 < p < oo, has the
following atomic decomposition: if f € My, 1 < p < oo, then f can be represented
as

du(l) <~ and / oscy (1, h) du(h) <7,
b'e

dp(l) < Co

f=> cU(o(h) ™),

i€l
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where the sequence of coefficients (¢;)iez, = (¢i(f))iez, € lp.w depends linearly on
f and satisfies

||(C’i)i€IO- ||£p,w S A||f||Mp,w
If (¢i)iez, € bpw, then f =37 ¢;U(a(hi)~") is contained in M, ., and

Hf“Mp,w S B’|(Ci)ieIO'H€p,w'

Given such an atomic decomposition, the problem arises under which con-
ditions a function f is completely determined by the moments or coefficients
(f,U(o(hs) ")) m:  xm, ., and how f can be reconstructed from these coefficients.
This question is answered by the following theorem which shows that our gener-
alized coherent states indeed give rise to Banach frames.

Theorem 2. Impose the same assumptions as in Theorem 1 with

(10)

w(o(h)) gl w(o(h)) gl
/XOSCu(h,l)mdu(l) < C_w and Loscu(h,l)rdu(h) < —

where 4 < 1, instead of (7) and with
—1 ~1 w(g~to(l))
1) [ s W) U g s d

where C'Q < 00 is a constant independent of h € X, instead of (9). Let R fulfill
the additional property

u(l) < Co

w(o(h))
/X |R(hal)|mdﬂ(l) < Cly.
Then the set
{i:=Ulo(hi) ) :i€T,}

is a Banach frame for M, . This means that

1) f € Mp,w Zf and Only Zf (<f> ,QZ}i>H{’w><H17w)z‘€I(I € ep,w;'
ii) there exist two constants 0 < A" < B’ < oo such that

ANty S NCF i) my  xmy ) )ieza e, 0 < B llag, 3
iii) there exists a bounded, linear reconstruction operator S from €y, , to M, .

such that S ((<f7 ¢i>H{’wa1’w)i€Ig) =f.

A detailed description can be found in [1, 2].

REFERENCES

[1] S. Dahlke, G. Steidl, and G. Teschke, Coorbit spaces and Banach frames on homogeneous
spaces with applications to analyzing functions on spheres, Adv. Comput. Math. 21(1-2)
(2004), 147-180.

[2] S. Dahlke, G. Steidl, and G. Teschke, Weighted coorbit spaces and Banach frames on ho-
mogeneous spaces, to appear in: J. Fourier Anal. Appl.

[3] H.G. Feichtinger and K. Grochenig, Banach spaces related to integrable group repre-
sentations and their atomic decomposition I, J. Funct. Anal. 86 (1989), 307—340.
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[4] H.G. Feichtinger and K. Grochenig, Banach spaces related to integrable group representa-
tions and their atomic decomposition II, Monatsh. Math. 108 (1989), 129-148.

Polynomial Interpolation, Approximation, Cubature
and Point Designs on the Sphere

ROBERT S. WOMERSLEY

This talk looks at point distributions of the unit sphere S? which are good for
polynomial interpolation and cubature, and also have good geometric properties.

Choices include approximation method (interpolation, hyperinterpolation, least
squares), basis functions (spherical harmonics, reproducing kernel functions, non-
polynomial locally supported functions), point sets (product rules, Lebedev, mini-
mum energy, extremal) and cubature weights (from polynomial exactness, equal).

A good approximation/integration scheme must be implementable (not in-
volve unknown integrals over the sphere), have good numerical properties (well-
conditioned linear systems), be efficient (fast to evaluate, low number of points,
basis functions with (close to) local support) and have good theoretical properties
(high degree of polynomial exactness, low operator norm, good worst case error,
positive cubature weights, geometrical regularity). Extremal systems of points [12]
and extremal spherical designs [2] satisfy many of these criteria.

Let P, (S?) denote the space of all spherical polynomials of degree at most n,
and let d,, = dim P,,(S?) = (n + 1)2. Let ¢;, i = 1,...,d, be a basis for P,,(5?).

A system of points z; € S%, 5 =1,...,d, is a fundamental system if and only
if the basis matrix ® = ¢;(z;),i,5 = 1,...,d, is nonsingular. Let ¢ : S? — R4~
have components ¢;(x),i = 1,...,d,. The norm of the interpolation operator as

a map from C(S?) to C(S?), is the Lebesgue constant
Anll = ! :
1An]| = max [[@7 ()]

One important criterion is how ||A,|| grows with n.

For projections on S?2, the minimal operator norm, O(n%), is achieved by or-
thogonal projection, which is not implementable. Hyperinterpolation replaces the
inner product in orthogonal projection by a discrete inner product using m points
with positive weights which is exact for all polynomials of degree up to 2n. Sloan
and Womersley [11] showed that hyperinterpolation achieves the optimal O(n%)
order. This was extended to higher dimensional spheres and a regularity condition
removed by Reimer[7]. Hyperinterpolation produces a polynomial approximation,
but is not interpolatory unless m = d,,, which is not possible for n > 3. Numerical
experiments [13] suggest a growth of O(n) for modest values of n, but achieving
this is still an open question.

Extremal fundamental systems are chosen to maximize the determinant of a
basis matrix ®, and are independent of the choice of basis. They have the nice
property that the Lebesgue constants are bounded by d,, = (n + 1)2. Numeri-
cally [12] the growth looks more like O(n + 1) for n up to 100. Extremal systems
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also have nice geometrical properties. For any system of m points z1,...,z,, on
5?2, the packing radius (half the minimum angle between points) is
1 . 1
¢m = Zmin cos™ " (z; - x;).
i#]

For extremal systems g4, > m/4n, although numerical evidence [13] suggests qq,,
grows more like 7/2n. The covering radius (mesh norm) is
Bum, = i - xj).
m =max min - cos (x - xj)
A measure of the geometric regularity of a point set is the mesh ratio p,, =
him/qm > 1. For calculated extremal points pg, < 1.9 for all n < 100 (10,201
points) and n = 127,128, 191.
For a fundamental system the cubature weights w are the unique solution of
the linear system

dw =0,

where b; = [, ¢;(x)dw(x), j =1,...,dy. Ideally we would like Gauss rules, with
d, points, but exact for all polynomials of degree up to 2n. This is not possible
for n > 3 due to the non-existence of tight spherical n-designs. Lebedev rules [6]
with octahedral symmetry have very high degrees of precision for low numbers of
points. However the octahedral symmetry concentrates points in certain areas, as
do product Gauss rules. Extremal systems of d,, points numerically have positive
weights, with w; /wavg > 0.5 for n < 100, where wayg = |S2|/d,,. However there
is currently no proof that the weights are positive for all n.

Another measure of the quality of cubature rules is the behaviour of the worst
case error. Recent work by Hesse and Sloan [4], reported at this conference, give

an error estimate of O(d%) for the worst case error in H*. Their results include
positive weight cubature rules based on extremal systems. Moreover they show
that this estimate is optimal, giving integrands which achieve this upper bound.

The condition number of the basis matrix is critically dependent on the choice
of the interpolation points. Systems of d,, points may theoretically be fundamental
systems, but have such large condition numbers that in practice they are useless.
The calculated extremal systems have spherical harmonic basis matrices with con-
dition number less than 25 for degree n < 100. Thus there are no numerical
difficulties in solving the linear systems for the interpolation or cubature weights.

A spherical n-design [3] is a set of m points on S? such that equal weight
cubature w; = |S?|/m = wavg for j = 1,...,m is exact for all polynomials
p € P,,(S?). Classically the interested has been in finding the minimum number of
points m to be exact for polynomials of degree < n, with lower bounds n?/4+0(n)
on m. A tight spherical n-design is one which achieves these lower bounds on the
number of points, but these do not exist for n > 3 [1]. The smallest number of
points for which existence of spherical n-designs is known is m = O(n?3) [5]. Instead
of trying to minimize the number of points, we look for spherical n-designs with
m = d,, = (n+ 1)? (the optimal order, but not the optimal constant).
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As the cubature weights for extremal systems are close to equal and have very
well-conditioned basis matrices, they provide excellent starting points for finding
spherical n-designs. This has been done [2] for n < 50. Moreover the equal
cubature weight condition is a system of d,, — 1 nonlinear equations, in 2d, —
3 variables (using a spherical parametrization with some rotational invariance
removed). This leaves some degrees of freedom, which can be used to maximize
the determinant of the basis matrix. Thus an extremal spherical n-design is a set
of d,, points on S? which maximizes the determinant of a basis matrix subject to
the constraint that the equal weight cubature rule at these points is exact for all
polynomials p € P, (S5?). Calculated extremal spherical designs are close to the
extremal systems, and also numerically have good geometrical properties.

Many other quantities, such as the Reisz s-energy [10] for s > 0,

m m 1
Eu(ansen) =303 o

1=1 j=1

J#i
for s > 0 are used to characterize well-distributed points on the sphere. For s =1
the asymptotic energy [10] is m? — em?3/? where ¢ ~ —1.106. Both the extremal

systems and extremal spherical designs numerically have ¢ ~ —1.1, giving another
indication of their good geometric distribution.
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Numerical Integration on the Sphere
KERSTIN HESSE
(joint work with Ian H. Sloan)

The most common and widely used cubature rules on the sphere S? are product
rules with positive weights. In this talk I am particularly concerned with positive
weight product rules @),, which integrate all spherical polynomials up to degree n
exactly, that is, Q,p = Ip for all p € P,,(5?), where I'f := [q, f(x)dw(x). Such
product rules can for example be generated as follows: (a) an equal weight rule
with n + 1 equally spaced points is used to discretize the integral with respect
to the azimuthal coordinate ¢ € [0,27); such a rule integrates all trigonometric
polynomials of degree < n exactly, (b) a positive weight cubature rule with O(n)
points and algebraic polynomial degree of exactness n is used to discretize the
integral with respect to the coordinate t = cosf, 6 € [0, 7]. Clearly such product
rules Q,, have positive weights, use O(n?) points, and integrate all spherical poly-
nomials of degree < n exactly. However they have one huge disadvantage: the
geometrical distribution of the points is rather ‘uneven’, as points cluster at the
poles. Also we would like to obtain information about the convergence behaviour
of such product rules (in comparison to other types of cubature rules). That is,
how does the worst-case cubature error of a sequence of product rules (Q,)nen
behave depending on the degree of exactness n?

In this talk I compare interpolatory cubature based on extremal fundamental
systems with such product rules, and present recent results from joint work with
Ian H. Sloan. These results establish an upper bound for the worst-case cubature
error for a class of cubature rules, and show that this estimate is optimal. This
class contains product rules and, assuming positivity of the weights, interpolatory
cubature based on extremal fundamental systems.

Let d,, := dim(P,(S?)) = (n + 1)? be the dimension of the space P, (S?) of all
spherical polynomials of degree < n. A fundamental system {x;};j—1 4, C S?
is a point set for which the interpolation problem to find A, f € P,(S?) such
that A, f(x;) = f(x;) for all j =1,...,d, is uniquely solvable for all continuous
functions f. In other words, it is a point set for which the determinant of the
interpolation matrix [q)k(xj)]f;lj: is non-zero, where ®1,..., P, is any basis
for P,,(S?). A fundamental system is called an extremal fundamental system if it
maximizes the determinant of the interpolation matrix (with respect to any basis
of P,(S?%)). An interpolatory cubature rule based on an (extremal) fundamental
system is defined by

(12) Qnf = /S2 A f(x) dw(x),

that is, the interpolating polynomial A, f of f with respect to the (extremal)
fundamental system is integrated exactly. The interpolating polynomial can be
written in Lagrange representation as A, f = Z;l;l f(x;) L;, where L; € P,(S?)
is the jth Lagrange polynomial, given by L;(xx) = 0, k = 1,...,d,. Substituting
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this Lagrange representation of A, f in (12) yields

dn
Qnf = ij f(x5), where w; ::/ L;(x) dw(x).
j=1 52

Obviously, such a cubature rule has polynomial degree of exactness n and uses
O(n?) points. There is also strong numerical evidence that interpolatory cubature
rules based on extremal fundamental systems have positive weights. However, a
proof has yet not been found. Extremal fundamental systems have a very nice
geometric point distribution. This is theoretically verified by the fact that the
minimal angle between any two distinct points has a lower bound of the order
O(n~') and that the mesh norm has an upper bound of the same order O(n™1).
The mesh norm result means intuitively that the point set has no large holes. As for
the positive weight product rules, an important question is the rate of convergence
of the worst-case cubature error depending on the degree of exactness n. Also
it would be desirable to know the optimal rate of convergence for sequences of
cubature rules on S?, as the degree of exactness n tends to infinity, and to identify
sequences of cubature rules with that rate of convergence.

The two main results are two theorems. The first establishes an upper bound for
the worst-case cubature error. The second shows that this estimate is optimal by
constructing a function which achieves this bound. In the following two theorems
the space H® = H*(S?), with norm || - || g+, is roughly the space of those functions
on S? whose generalized derivatives up to order s are square-integrable. For s > 1,
the space H® is a subset of the space of continuous functions on S?, and it is also
a reproducing kernel Hilbert space.

Theorem 1. For s > 1 there exists a constant ¢ > 0 such that for any sequence
(Qn)nen of positive weight cubature rules, which satisfies (i) Qnp = Ip for all
p € P, (S?) and (ii) m(n) = O(n?), where m = m(n) is the point number of Qn,
the worst-case cubature error in H® satisfies

(13) sup Qnf — If| < ésn™° =é, (m(n)) %2 for all n € N.
feH= || fllms <1

The assumptions in Theorem 1 are fulfilled by a sequence of positive weight
product rules. Assuming positivity of the weights, they are also satisfied by a
sequence of interpolatory cubature rules based on extremal fundamental systems.

Theorem 2. For s > 1 there exists a constant cs > 0 such that for every m-point

cubature rule Qu, := >_5" wj f(x;) on S? the worst-case cubature error in H*
satisfies
(14) sup Quf — If| > com™%/2

feH?, ||fllas <1

Theorem 2 shows the limitations of m-point cubature in H?®: asymptotically
we can never achieve a better rate of convergence than O(m~%/2). As the order
of the upper bound (13) in Theorem 1 and the lower bound (14) in Theorem 2
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coincide, both estimates are optimal. Any sequence of cubature rules satisfying
the assumptions in Theorem 1 has an optimal rate of convergence.

In the talk I give a brief sketch of the proof of Theorem 2. The proof is construc-
tive. The idea is to construct a ‘bad’ function f,, (which is chosen individually
for each m-point cubature rule @,,) such that the cubature error for fo,,/|| fm |l -,
satisfies HmeI_ﬁ Qunfm — Lfm| > cs m™3/2, where ¢, does not depend on the par-
ticular cubature rule @),, and on the point number m. The construction of f,,
involves a packing of the sphere with 2m spherical caps of an appropriate size.
As these caps touch at most at the boundary there will be at least m caps that
do not contain any cubature points in their respective interiors. The function f,,
is constructed such that its support is the union of m such caps that contain no
cubature points in the interior. A crucial part of the proof is the estimation of the
norm || f, ||z, in terms of orders of m.

That interpolatory cubature rules based on extremal fundamental systems have
a much nicer point distribution than product rules and that they, assuming posi-
tivity of the weights, have an optimal rate of convergence makes them good can-
didates for numerical integration. An example to illustrate this is given at the end
of the talk.

Theorem 1 has firstly been verified for s = 3/2, and this result is reported in [1].
The extension of part of the proof in the case s = 3/2 to the case of general s > 1
is not straightforward and needs a new argument. A report of Theorem 1 for
general s > 1 and also a paper presenting Theorem 2 are in preparation and will
soon be submitted. A nice survey of interpolatory cubature based on extremal
fundamental systems can be found in [2].
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On Radon’s convergence proof of Neumann’s method
for double layer potentials

WOLFGANG L. WENDLAND
In 1837, C.F. Gauss proposed for the construction of the solution u to the

Dirichlet problem of the Laplacian with given boundary values ¢ the use of a
double layer potential

u(x) = —%!u(y)dﬂm(y) for ze€Q.

With the jump relation, this leads to C. Neumann’s boundary integral equation

(*) p=Lp+g
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where

(L)) =~ [(uts) = (@) y) for @ €T

is defined by J. Radon in 1919 [18, 19] as a Stieltjes integral with the signed
Radon measure Q. (F) for measurable sets F C I" (the solid angel). For piecewise
smooth I' including corners and edges, a review is given on Radon’s treatment
of the boundary integral equation and the extensions by V. Maz’ya, J. Kral, D.
Medkova and O. Jansen if the equation is considered on the Banach space of
continuous functions g on I'. For the corresponding two-dimensional problem, J.
Radon in his famous papers 1919 defined closed boundary curves of bounded ro-
tation and showed that for such curves without sharp cusps, the essential norm
of L generated by the supremum norm is less than 1, he also showed the rela-
tion between eigenvalues of L and exterior and interior Dirichlet integrals of the
eigensolution potentials, and that the spectral radius of L is less than 1. Hence,
Neumann’s classical successive approximation can be applied to the boundary in-
tegral equation(x). In three dimensions, however, the corresponding results are by
no means complete yet. Here J. Kral and D. Medkova have introduced the family
of weighted supremum norms

1l co (ry := sup [w(x)p(z)|
xell

with a weight function w(x) satisfying 0 < ¢c— < w(x) < 1 in order to generalize
the results by V. Maz’ya [11], J. Kral [9] and the author [23]for T' € R3. As it
turns out, the essential spectral radius ress(L) < 1 for piecewise smooth I' can be
shown in the following cases:

I' is convex [15, 16] with w = 1;

[ is C1T%-smooth [17] with w = 1;

I' has edges but no corners [4] with w = 1;

" has corners and edges such that 7es(L) < 1 holds [2, 3, 8, 9, 23] with w = 1;

I" has isolated conical points [6] and w = 1;

I' is a rectangular surface[l, 10] and w sectorially constant can be constructed;

I" is polyhedral [20, 21], existence of w but no construction;

" is polyhedral, O. Hansen [7] constructs sectorially constant w under additional
conditions;

D. Medkova showed in [12, 13] the invariance of ress(L) under locally conformal
R3 diffeomorphisms.

In all these cases the Fredholm alternative is valid for the boundary integral
equation (x) and for piecewise constant trial functions on a triangulation of I" which
is compatible with the weight function w. Moreover, stability and convergence of
the classical collocation (or panel) method can be proved [10].

If boundary element Galerkin methods are used for (x) in the L?(T") setting, then
only for convex polyhedrons and for polyhedrons satisfying specific edge conditions,
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the spectral radius generated by the L? norm is known to be less than 1 [5, 14],
whereas for general polyhendrons the corresponding result is yet not known.

If, however, the boundary integral equation is treated with an appropriate
Galerkin-Petrov method and the equation is considered on the trace space H 2 (),
then an appropriate norm of L on H %(I‘) is less than 1 and Neumann’s clas-
sical successive approximation converges for the corresponding Petrov-Galerkin
equations of (x) and, moreover, the method is stable and convergent [22]. These
properties are of great value for practical computations and some corresponding
results from industrial applications are presented in the lecture.
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Numerical aspects of diffraction coefficient computations
IvaAN G. GRAHAM
(joint work with B.D. Bonner and V.P. Smyshlyaev)

The computation of diffraction coefficients for the scattering of high-frequency
waves by conical scatterers can be reduced to the solution of a family of homo-
geneous boundary value problems for the Laplace-Beltrami-Helmholtz equation
on a portion of the unit sphere bounded by a simple closed contour (in fact the
intersection of the sphere with the conical scatterer). Distance on the contour is
geodesic distance on the sphere. The diffraction coefficient may be determined by
then integrating the resulting solutions with respect to the wave number (cf. [1]).

In this talk we discuss the numerical computation of the diffraction coefficients
using the boundary integral method, with the classical double layer potential ap-
proach. The evaluation of the kernel of the integral equation involves computing
the (derivative of the) Legendre function with complex index and for this we em-
ploy a method which combines solving Legendre’s differential equation (when this
equation is not singular), together with suitable asymptotic expansions near sin-
gular points.

We give an analysis of the scalar integral equation arising in acoustic scatter-
ing, which shows its relation to the corresponding integral equation for the planar
Helmholtz equation. This allows us to prove, using the results of [2], optimal
convergence for piecewise polynomial collocation methods of arbitrary order even
when the scatterer has non-smooth cross-section. We also derive efficient quad-
rature techniques for assembling the boundary element matrices. In practice we
employ an h — p approximation scheme, which converges with exponential order.

The scattering of electromagnetic waves is also discussed; the resulting system
of integral equations can be analysed by similar techniques to those used for the
acoustic case.

We illustrate the talk with computations on both smooth and non-smooth scat-
terers for both the acoustic and electromagnetic cases.
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At the end of the talk we also indicated briefly how asymptotic information
could be incorporated into the ansatz functions of standard numerical schemes
in order to produce methods which work well for both low and high frequency
applications.
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Spectral approximations of boundary integral equations
on slender spheroids

MAHADEVAN GANESH

We consider some important computational issues associated with solving bound-
ary value problems on three dimensional slender domains, using boundary integral
equations. Our model potential theory problem is to compute harmonic functions
defined in the interior (or exterior) of a prolate spheroidal domain € satisfying
Dirichlet or Neumann boundary conditions on the surface I', given by

a? b2

The domain €2 is slender in the following sense: the aspect ratio r := a/b << 1.

This paper is motivated by the work of Rodin and Steinbach (STAM J. Sci.
Comp, 2003) on the development of boundary element preconditioners defined on
slender two dimensional domains. The condition number of boundary element ma-
trices depend linearly on the aspect ratio a/b, where in a general slender domain,
a is the radius of the smallest circumscribed ball and b is the radius of the largest
inscribed ball. Preconditioners were developed by Rodin and Steinbach, based on
the idea that geometric proximity of two slender domains translates into spectral
proximity. Accordingly, inverse boundary element matrices corresponding to el-
liptical domains (with similar aspect ratio) were proposed in their work as suitable
preconditioners. Our approach (in a future work) to develop preconditioners de-
fined on three dimensional slender bodies (such as submarines and fibers), leading
to the model problem on the spheroid I'.

The major part of work in the two dimensional paper is to develop spectral prop-
erties of boundary integral operators on a slender ellipse. In this work, we study
spectral approximations of boundary integral equations on the slender spheroid I'.

2 2 2
F::{(:L’,y,z)GRS:%—Fy——FZ—:l}.
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It is well known that solutions to potential problems can be obtained by solving
boundary integral equations Using the fundamental solution ®(x,y) := ﬁ|x —y]
of the Laplace operator, the standard boundary integral operators on the spheroid
are the single-, double-, adjoint double-layer and hypersingular potential operators,
defined respectively as

(SYT)(x) = / B(x, v (y)ds(y),

+ X 8(1)(X7Y) + s
(Ky™)(x) . on(y) VT (y)ds(y),
K)x) = 2 [ 22V oy,
r 8”(")
D)) = 20 [ 22V gy,

on(x) Jr On(y)

where n(y) denotes the unit outward normal to I" at the point y € I', ds(y) is the
surface measure on I', x € T' and the density function 1+ € H*/2(T).

The interior (exterior) potential problem with Dirichlet or Neumann boundary
condition on I' can be reformulated as a second— or first-kind boundary integral
equation. The second kind equation is defined using the operator I — K or I — K’,
and the first kind formulation is based on S or D. We refer to I — K and I — K’
as second kind operators, and S and D as first kind operators.

It is well known that on the unit sphere U, we have

1
SV =—kv SUY (%) = YR xeU
? n (X) 2n+1 n (X)7 X € )

where KUY and SY respectively denote the single- and double-layer operator on
the unit sphere and Y, are the orthonormal spherical harmonics. Hence from the
above equations, the eigenvalues of KV lie in [~1,0). This classical result for the
double layer operator on the unit sphere was extended to the electrostatic operator
K’ on T by Ahner and Arenstrof in 1986.

If we replace SU and KY by S and K, the identities in the above equations
do not hold on I'. In fact, the spherical harmonics are not eigenfunctions of the
single layer and hypersingular operators on I'. However, they are solutions of asso-
ciated generalised eigenvalue problems. We discuss this topic, after demonstrating
some major computational difficulties of spherical coordinates based superalge-
braically convergent spectral integral methods to solve potential problems on slen-
der spheroids. We further develop approximation theory results using spheroidally
appropriate eigenfunctions, generalising some fundamental approximation results
for the sphere case.

It is an open problem to propose and prove stability and convergence of a fully
discrete spectral method for the first kind equations on geometries other than the
sphere. We solve this problem for spheroids. by developing and analysing fully dis-
crete boundary integral methods. Our numerical results demonstrate advantages
of using spheroidal coordinates in boundary integral methods. Such advantages
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have already been used recently in infinite element methods to solve exterior prob-
lems.

Fast Fourier transform at nonequispaced knots and applications
DANIEL POTTS

We use the recently developed fast Fourier transform at nonequispaced knots
(NFFT) in a variety of applications. The NFFT realized the the fast computation
of the sums

f(wj): Z fke_ZWikwj (j:_M/Q""vM/2_1)

keld
and
M/2—1
hG) = > fee P (eI,
k=—M/2

where w; € [—1/2,1/2)4. (Software: http://www.math.uni-luebeck.de/potts/nfft)

e Fast summation (joint work with Gabriele Steidl)
The fast computation of special structured discrete sums

Flyg) =Y anK(ly; —al) (G =1,...,M)
k=1

or from the linear algebra point of view of products of vectors with special
structured dense matrices is a frequently appearing task. We develop a new
algorithm for the fast computation of discrete sums based on NFFTs. Our
algorithm, in particular our regularisation procedure, is simply structured
and can easily be adapted to different kernels K, e.g.

l, LQ, z?logz, logz, e_‘m2, (z2 + cz)il/Q.

x
Our method utilises the widely known FFT and can consequently incorpo-
rate advanced FFT implementations. In summary it requires O(N log N +
(N + M)) or O(N + M) arithmetic operations. We prove error estimates
to obtain clues about the choice of the involved parameters.

e Fast spherical Fourier algorithms (joint work with Stefan Kunis)

Spherical Fourier series play an important role in many applications.

A numerically stable fast transform analogous to the Fast Fourier Trans-
form is of great interest. For a standard grid of O(N?) points on the
sphere, a direct calculation has computational complexity of O(N%), but
a simple separation of variables reduces the complexity to O(N3). Here
we improve well-known fast algorithms for the discrete spherical Fourier
transform with a computational complexity of O(N?log® N). Furthermore
we present, for the first time, a fast algorithm for scattered data on the
sphere. For arbitrary O(N?) points on the sphere, a direct calculation
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has a computational complexity of O(N%), but we present an approximate
algorithm based on bivariate NFFTs with a computational complexity of
O(N?log® N).

e Spherical Filter (joint work with Martin B6hme)

We develop a new fast algorithm for uniform-resolution filtering of func-
tions defined on the sphere. We use a fast summation algorithm based
on NFFTs. The resulting algorithm performs a triangular truncation of
the spectral coefficients while avoiding the need for fast spherical Fourier
transforms. The method requires O(N? log N) operations for O(N?) grid
points.

Furthermore, we apply these techniques to obtain a fast wavelet decom-
position algorithm on the sphere. We present the results of numerical
experiments to illustrate the performance of the algorithms.

Swarm: a Constellation of Satellites to Investigate the
Earth Magnetic Field

ROGER HAAGMANS

Swarm is the fifth Earth Explorer mission. The objective of the Swarm mis-
sion is to provide the best ever survey of the geomagnetic field and its temporal
evolution, in order to gain new insights into the Earth system by improving our
understanding of the Earth’s interior and climate. The mission is scheduled for
launch in 2009. After release from a single launcher, a side-by-side flying lower
pair of satellites at an initial altitude of 450 km and a single higher satellite at
530 km will form the Swarm constellation. High-precision and high-resolution
measurements of the strength, direction and variation of the magnetic field, com-
plemented by precise navigation, accelerometer and electric field measurements,
will provide the necessary observations that are required to separate and model
various sources of the geomagnetic field. This results in a unique “view” inside
the Earth from space to study the composition and processes in the interior. It
also allows analysing the Sun’s influence within the Earth system. In addition
practical applications in many different areas, such as space weather, radiation
hazards, navigation and resource exploration, benefit from the Swarm concept.
Magnetic fields play an important role in many of the physical processes through-
out the Universe. The Earth in particular has a large and complicated magnetic
field, the major part of which is produced by a self-sustaining dynamo, operating
in the fluid outer-core. However, measurements taken at or near the surface of the
Earth are the superposition of magnetic field originating from the outer core as
well as the fields caused by magnetised rocks in the Earth’s crust, electric currents
flowing in the ionosphere, magnetosphere and oceans, and by currents induced in
the Earth by time-varying external fields.

Magnetic field changes in internal as well as external origin occur on a variety
of time scales, and separating them relies on their different temporal variations.
For example, over the last 150 years it has been observed that the axial dipole
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component of the Earth’s magnetic field has decayed by nearly 10%. This fast
decay rate is characteristic of magnetic reversals which occur on average about
once ever half million years. Geographically, this recent dipole decay is largely
due to changes in the field beneath the South Atlantic Ocean, connected to the
growth of the South Atlantic anomaly. Within the Earths interior the core field
and, in particular, its temporal changes, known as “secular variation”, are among
the few means available for probing the properties of the outer core. This secular
variation directly reflects the fluid flow in the outmost core and provides a unique
experimental constraint on “geodynamo theory”. However, the only part of the
core field that varies on time scales longer than around one year is observable at
the Earth’s surface. Studies of the electromagnetic core-mantle coupling require a
better knowledge of the electrical conductivity of the lowermost mantle — this can
be obtained from the analysis of “jerks”, which are sudden changes in the secular
variation that last for 1 or 2 years. An improved determination of the core’s contri-
bution to the Earth’s angular momentum budget will allow for a better estimation
of changes in atmospheric and ocean circulation pattern.

It is clear that the nature of the Earths magnetic field is complicated. It is also
therefore clear that there is the need for a comprehensive separation and under-
standing of the external and internal processes that contribute to the Earth’s
magnetic fields — the Swarm mission aims to address such needs as well as allow-
ing for new and exciting studies of the lithospheric field.

The magnetic field is also of importance for the Earth’s external environment.
While it is known that the air density in the thermosphere is related to geomag-
netic activity, recent results from the German CHAMP mission have indicated
that air density is locally affected by geomagnetic activity in a specific way that
is still to be explored and understood. Furthermore, the magnetic field acts as
a shield against high-energy particles from the Sun and outer Space. Continuous
space-borne monitoring of the magnetic field at low Earth orbit, and the derivation
of field models play an important role in predicting radiation hazards within the
space environment.

The scientific and technical background of the mission the expected performance
can be found on the page of the Swarm mission [1]. The links on the right hand
side of the full page lead to pdf-files of the mission report, the technical annex and
the presentation material.
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Locally Supported Wavelets on the Sphere
MICHAEL SCHREINER

A new class of locally supported radial basis functions on the (unit) sphere
is introduced by forming an infinite number of convolutions of ”isotropic finite
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elements”. The resulting up functions show useful properties: They are locally
supported and are infinitely often differentiable. The main properties of these
kernels are studied in detail. In particular, the development of a multiresolution
analysis within the reference space of square—integrable functions over the sphere
is given.

Starting point of our considerations are the functions

B 1 0 for —1<t<h
= A
n(t) ((i:}li))k for h<t<l1

which we consider for t € [-1,1], h € (—1,1) and A > —1. Note that in contrast
to earlier investigations of these kernels (see e.g. [4]) we let the parameter A be
real, and allow the functions to be unbounded (for —1 < A < 0), but with finite
integral. Letting n € () be fixed, we get a radial basis function

Q3¢ B(n-§)
which in accordance with our construction has the local support

suppBj (- ) = {6 € Qh < €-n <1},
Here, Q = {z € R3 | |z| = 1} denotes the unit sphere embedded in R3. The
Legendre series according to the Legendre Polynomials P,, is denoted by

2n+1
A A\A
Bj, ~ E:o A (B7)" (n) Pa,
where (B))\(n) = 2w fhl B\(t)P,(t)dt. We scale the kernel B} so that the Le-
gendre transform of order zero is 1. We define L (¢) = mBg‘ (t), t € [-1,1].
h

Iterated kernels have some appealing properties. To be more concrete, they are
still locally supported, their Legendre transform is non—negative, and they show
a certain degree of smoothness. They are defined as follows: Let h € (0,1) and
A > —1. Then it is known (see e.g. [1]) that the iterated kernel

@ =Ly = [ LACOLME (o)

Q
has the support

(15) supp(Ly) P (n- ) ={¢€Q2n®* -1 <& n< 1},

Since the support of the aforementioned radial basis functions will become an
important issue when we consider infinite convolutions, the statement (15) should
be explained in more detail: The support of Ly (¢) is [h, 1], so that the function
¥ +— L (cosd), ¥ € [0, 7], is supported in [0, arccos h]. The support of the iterated
kernel ¥ +— (L7))(cos ) is then twice as large, i.e. [0, 2 arccosh], which is obvious
when the kernel is considered as a radial basis function over the sphere ). Thus,
the support of t — (L7)®)(t) is [cos(2arccosh), 1] = [2h? — 1,1]. We can verify
that

(i) If A > —1 then (L)@ (- ) € L3().

(ii) If A > —1/2 then (L)@ (- ) € C(Q).
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(iti) If A > k/2 — 1/2 then (L})P(n- ) € CP(Q), k € N,

Now, we deal with a spherical counterpart of the so—called up function which
is, for one dimensional problems, described e.g. in [3]. The main idea is to build
an infinite convolution of locally supported functions, where the support of each
of the building blocks is chosen carefully to ensure that the resulting convolution
is additionally locally supported. Even more, the infinite convolution turns out to
be infinitely often differentiable. The reason is that the symbol of the up function
decays for increasing n faster than any rational function (in n).

Suppose that h € (=1,1), and A > —1. We let ¢y = arccos h and introduce

(16) i =2""py, , hi:COS%, i=1,2,....
Then Upj defined by

A A O A
(17) Upﬁ _ (Lgl))@) % (ng))@) I i>:|<1 (L%i))@)

is called up function (more precisely: (h, A\)—up function).
The basic properties of the up functions are:
(i) Up is locally supported with suppUpy = [h, 1].
(ii) For every n € Q: Upp(n- ) is of class C(*) ().
(iii) Upﬁ : [-1,1] — R admits the uniformly convergent orthogonal expansion
in terms of Legendre polynomials

X m+1
(18) Upp = Y ———(Upy")\ ()P,

A7
n=0

where (Up( )) (0) =1 and

> 2
19) 0= U ) =TT (L)) <1 n=012....
i=1
(iv) Forn=1,2,...
(20) lim (Up;,”)" (n) = 1.
(v) Forall t € [-1,1]
o~ 2n+ 1
(21) 0< Upii(t) < Upp(1) = Y = (Up;”)"(n).
n=0 T
(vi) For any k € N,
(22) (UpiM)" (n) = O(n™*), n— .
We assume from now on, that h € (—1,1) and A > —1 are fixed. For thi_s h,
the numbers h;, ¢ = 1,2,... are defined as in (16). The scaling function q)iw\ :
[—1,1] — R is introduced by
9 B = (U = F 1P, =12,
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By construction, suppq)‘;% y = [hj—1,1], and we have the refinement equation
i+1 A - .

(24) (L)) = G20

Then it follows for h € (—1,1), A > —1 that the scale spaces
V, = {®] , * FIF € L*(Q)}.

define a multiresolution of L?(2) in the following sense:

(1) V; € L?(Q) is a linear subspace with V; C C(>()
i) icVacVzC...

(i) ()Vi=W
j=1

iv) U= L2@)

Based on this multiresolution, locally supported wavelets and the corresponding
detail spaces can be found. Decomposition and reconstruction schemes involving
the up functions can be developed, see [2] or [5].
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On the representation of smooth functions on the sphere
using finitely many bits
HRUSHIKESH N. MHASKAR

In this paper, ¢ > 1 is a fixed integer, S? denotes the unit sphere of the Eu-
clidean space R9*t!, pty is the volume element measure on S?. We are interested
in a parsimoneous representation of smooth functions on S? using finitely may
bits (binary digits). The minimal number of bits to represent a class of smooth
functions within an accuracy of € is given by the metric entropy H. defined in [1,
Chapter 15]. Our representation (Theorem 5) utilizes the characterization of local
Besov spaces using certain polynomial operators (Theorem 3). The metric entropy
of these classes is described in Theorem 4. The full manuscript is available in [2].

The class of restrictions to S? of all homogeneous harmonic polynomials of ¢+ 1
variables of degree ¢ will be denoted by H, and for any x > 0, the class of all
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spherical polynomials of degree ¢ < x will be denoted by IIZ. The dimension of
H] is denoted by d}, and {Yy} is an orthonormal basis for H}. For a signed
measure v, its variation measure is denoted by |v|. The symbols ¢, cq,- -+ denote
positive constants depending only on the fixed parameters of the problem; their
values may be different at different occurrences. A possibly signed measure v on S
will be called an M-Z quadmture measure of order N if [|[Pl||,):50,p < ¢||P||pzisa,p
and [, P(x)dv(x) =[5, P(x)dpu}(x) for each P € II; and 1 < p < oco. The
existence of M-7Z quadrature measures based on discrete sets of scattered points
is established in [3]. For a sequence of (signed) measures ji,,, we write p, <, py if
every g measurable function f is also y1,, measurable, and || f|||,,50 p < || f|[z;89,p-

For any x > 0, 1 < p < oo and f € Lp(,u;;Sq), we write Esa o p(f) =
minpers || f — Plluz;89,p. We will define the Besov spaces in terms of the sequence
{Esa2n p(f)}. For 0 < p < o0, v > 0, we define

by = HantnZo * [Hantllpy = [{2"an}ler < oo}

If 1 <p < oo, the Besov space Bsa p ,~ consists of all functions f € LP(S?) for
which {Esq on p} € b, ~. A spherical cap centered at a point xg € S?, and radius
a € [0, 7] is defined by

(25) S&(x0):={xe€S? : x-x9>cosa} ={xeS? : ||x—x| <2sin(a/2)},
where || - || denotes the Euclidean norm on R4T1. For a cap C, the space C5°(C)
consists of infinitely differentiable functions ¢ on S? such that ¢(x) =0 if x ¢ C.

If xo € S9, the local Besov space Bsa p,p(X0) consists of functions f € LP(S?)
for which there exists a cap C centered at x( such that for every ¢ € C§°(C),

fgb < ngyp’pq.
Let h:[0,00) = R, h(x) = 0 if x > ¢. We define the kernels

(26) @, (h,x-£): Zhﬁ/?”ZYM VYo () x,£€8?, n=0,1,---.

Let {un}o%, be a sequence of (poss1bly signed) finite, Borel measures on SY,
u—1 := 0. The polynomial frame operator is defined for n = 0,1,---, x € S9,

f € L(|unl; ST) OV L (|pn-1[5S7) b

(27) o (pn, b f, %) ;:/ ‘I’n(h,x'ﬁ)f(ﬁ)dﬂn(&)—/gq D1 (b, x-) f(§)dpn—1(8).

S
Let @ > 1 be an integer. We will write h € A7, if each of the following conditions
is satisfied: (i) h : [0,00) — R, (ii) for some integer K > @Q + ¢, h is a K times
iterated integral of a function of bounded variation, (iii) h(z) = 1 for x € [0,1/2],
and (iv) h(z) =0if z > 1.

Theorem 3. Let 1 <p < oo, f € LP(uy;;87) (C(S9) if p=00), 7> 0,0 < p < oo,
Q > max(1,7), h € A, and x9 € S9. For n > 0, let pin, vy be M-Z quadrature
measures of order 6(2"), and in addition, p, =p g Then the following are
equivalent.

(a) f € Bsap,p,~(Xo0)-
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(b) There exists a > 0 such that for every ¢ € C5°(SL(x0)),

{70 (pens by fO)|l e p} € Do,y
(c) There exists o > 0 such that for every ¢ € C§°(S%(xo)),

{HTn(Mnahv f¢)”|un|;§q,p} € bpﬁ.
(d) There exists a > 0 such that {||7n(tin, by f)ll =88 (x0),p ) € Ppiy-

(e) There exists a > 0 such that {||7n(tn, Py )l 11582 (x0),p ) € Ppiv-

The set qu7 .0, *Sa p T ||{qu72n

Theorem 4. Let()_<e§1,1§p§oo,_0<’y<oo,0<p§oo. Then the
metric entropy He(Bsa pp~, LP(153S7)) of Bsapp~ in LP(uy;S?) satisfies

(28)  c1(log(1/e)) VP (1/e)"7 < He(Bsa p,pys L7 (1135 5)) < e2(1/€) .

Theorem 5. Let p,v, p,Q, h, i, be as in Theorem 3. Suppose that for each integer
n >0, C, is a finite set of points on S such that there exists an M-Z quadrature
measure v, of order 6(2"), supported on a subset of C, as in [3]. Let C be a
spherical cap. If n >0, and f € LP(u,;S?), we define

(29) In(ﬂnah: f?g) = |_2nQ0-n(,un:h7f,§)J7 §es,

and
O';}L(Ca h, f, X) = O'TOL(,Uny vn; Cyh, f, X)
(30) = 2@ /C Lt by £, €)@ i1 (hy - €)din (€), x € 7.

< 1. Then for a cap C', concentric

v + || 17 ins 2 f)
with C' and having radius strictly less than that of C,

(31) {f - O-?(’)L(C7 h, f) *'CCp} € by,

and in particular, ||f — op (C,h, f)llpzsorp < ¢(C,CT)27™
If n is chosen so that ¢(C,C")2=™ < ¢, then the number of bits needed to
represent all the integers {I,(pn,h, f,&), & € C N supp(vy)} does not exceed

c1(log(1/€))*(1/€)97 3 (C).
If n >0 and g € LP(pn;S?), then

(32) 1f = o0 (C gl gicrp < e(CLC2T™ + 1 = gllpnisen}-
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A New Class of Localized Frames on Spheres
FrANcCIS J. NARCOWICH
(joint work with Pencho Pertushev & Joseph D. Ward)

In this talk we wish to present a new class of tight frames on the sphere. These
frames, like the wavelets for the sphere introduced by Freeden and others [2],
are based on expansions in ultraspherical harmonics. There are two novel features
here. The first is that they have excellent localization properties, and the second is
a surprising connection between them and the masks for the Daubechies wavelets.
We will discuss what these new frames are and how they can be implemented using
a quadrature formula for the sphere that has been recently developed [3]. The
present work has been done jointly with Professor Pencho Petrushev, University
of South Carolina (Columbia, SC, USA) and Professor Joseph D. Ward, Texas
A&M University (College Station, TX, USA). Details and more results may be
found in the preprint [5].

Frames were introduced in the 1950s to represent functions via over-complete
sets. More recently, they feature prominently in wavelet analysis, especially dis-
cretizations of continuous wavelet transforms [1]. Frames on spheres have also
been developed; see [4] for references and more discussion.

Let us review the basic facts about them when the target functions belong to
a Hilbert space H with norm || - | and inner product (-,-). In that case, a set
{¢;}jes is a frame if there are constants ¢, C' > 0 such that for all f € H

cdlfFI? <D Kf P < ClfIP

JjeET

The smallest C and largest ¢ are called upper and lower frame bounds. If C' = c,
we say the frame is tight. If C = c =1 and ||1;]| = 1 for all j, then the frame is
actually an orthonormal set.

Our Hilbert space will be L?(S™), with the measure being the standard one.
Constructing a frame starts with a function a(t) in C*(R) that is supported on
[1,2]. We use a(t) to define kernels on S"™. In the case of S?, these kernels have
the form,

As(En) = - a(1)Po(€ - n) + 3a(3/2)Py(€ - 1)
IS = S o(204+ Da (3L) Po(¢ - m),

where the P,’s are the usual Legendre polynomials and & - 7 is the standard “dot”
product. We can replace it by £ - n = cos(f), where 6 is the geodesic distance
between £ and 1. On S™, they are somewhat more complicated, with ultraspherical
polynomials replacing the Legendre polynomials. In any case, these kernels are
themselves spherical polynomials of degree less than 27!,

The kernels have two useful features. The first is localization for j large.
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Theorem [5]. Let 0 be in [0,7], n > 2, and k > max{1,n — 2}. Then there is a
constant Cy, o such that
271an k,a
| S ‘ s vy .
14 27k(0/m)k

|Aj(cos0)

We remark that the large j behavior of |A,| near 8 ~ 0 is O(2™7). For 6 bounded
away from 0, it is O(2("=F)7).

The second of the two features mentioned above requires a special choice for
a(t). Let mo(§) be a mask for a wavelet with at least k 4+ 1 vanishing moments.
Recall that this means that m(¢) is a 27 periodic function for which |mg(€)|* +
|mo(£+7)|? =1, mp(0) =1, and méj)(w) =0 for j =0,...,k. We then define the
C* function
<9

oy olom®) 3 <
t<sort>2.

Nl

With this choice of a, the operators A; associated with the kernels A; satisfy

iAjA; =1
§=0

in the strong operator topology. We will call the A; frame operators and the A;
we will call frame kernels.
We define the frame transform via

This is our decomposition formula. The operator identity in the previous equation
then gives us the reconstruction formula when applied to the w;’s:

f = Z Ajwj.
j=0
The frames themselves will be obtained by discretizing these formulas. Let
X :={x1,..., zn} be a discrete set of distinct points on S™; we will call these

the centers. There are several important quantities associated with this set: the
mesh norm, hx = sup,cgn infs e x d(x;,y), where d(-,-) is the geodesic distance
between points on the the sphere; separation radius, qx = %min#k d(xj, xg);
and the mesh ratio, px := hx/qx > 1. The set of centers X is called p-uniform
if px < p. For p > n 4+ 1, there exists a p—uniform X with hx arbitrarily small.
Let X to be the Voronoi partition of S" for X. The region containing x; will be
called Ry, .
The following quadrature formula is essential to our construction.

Theorem [3]. There exists a constant ¢® > 0 (depending only on n) such that
for any L > 1 and a p-uniform set X in S™ with hx < c¢®/L, there exist positive



Geomathematics 1407

coefficients {c, }nex such that the quadrature formula

O du(©) = 3 eaf ()

nex

is exact for all spherical polynomials of degree < L. In addition, ¢, ~ L™" with
constants of equivalence depending only on n.

Fix p > n+ 1. Pick a sequence of p-uniform sets X; so that hy, < ¢®27772
Then the quadrature formula above is exact for all spherical harmonics of degree
0 <2772 Also, ¢, ~ 279" and #X ~ 2™,

The frame transform has the form w; (§) = A% f(€) = (f(¢), A;(¢-§)). The point
is that w;(€) is a spherical polynomial of degree less than 29+, because A;(¢-€) is
a spherical polynomial with degree less than 271!, In the reconstruction formula
this then contributes the term

Ajus() = [ A5 uy(du(e).

The product Aj(w - &)w;(€) is a spherical polynomial of degree less than 2771 +
27+l = 2742 Tt can thus be integrated ezactly with the quadrature formula, so
that
Ajwi(w) = D eqAj(n-whwi(w) = Y (f,050)05m,
neX; neX;

where ; ,(§) = /¢, A;(§ - n), n € Xj, is the analysis frame function at level j.
Using this, our earlier reconstruction formula, and doing a little more work, we
have the following;:

Theorem [5] Let f € L?(S™), then f = > o > onex, frim)bjm. Moreover, the

frame {4 n}jez, nex; is tight,

AP =0 i)l

j=0neX;

Finally, the frame functions have vanishing moments that increase with j.
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Interpolation and Least Squares Approximation on the Sphere
via Locally Supported Functions

JOSEPH D. WARD

The goal of my talk at the Oberwolfach Geomathematics conference (May 24-28,
2004) was to discuss potential new tools applicable to the problem of reconstructing
functions from scattered data sites on the n-sphere. Common methods employed
for reconstruction include interpolation and least squares approximation. Such
methods are generally considered “good” if the methods are stable (i.e. condition
numbers of the matrices involved are well-behaved), the matrices are sparse (or
banded) and if the method approximates smooth functions well (i.e. good error
estimates for functions belonging to “smooth” spaces).

Many of these properties hold true when reconstructing functions from scattered
data on a compact subset in R™ by means of translates of a given radial basis
function. For the current status of these results, one should consult the recent
book of M. Buhmann or the upcoming book of H. Wendland. More recently,
people have realized that one can “transport” many of the approximation results
on R"™ onto the n-sphere by simply restricting the RBF defined on R™*! to S™ ,
i.e., define the zonal function ¢ by means of ¢(z - y) = ®(||z — y||2)|z,yecsn-

This approach works for many of the well-known RBFs including Thin-Plate
splines, Hardy multi-quadrics and the compactly supported Wendland functions.
The fact that this approach works so well is for the following reason. Much of
the theory which supports the numerics behind RBFs depends on the fact that
RBfs are positive definite functions (or at least conditionally positive definite).
The restriction to the n-sphere of such functions are then also positive definite (or
CPD).

We next illustrate how one would interpolate scattered data on the sphere, the
data derived from some underlying function. Given a collection X of scattered sites
on the sphere, one constructs the interpolant Ix f(z) = >, cx ck¢(x - zx). The
interpolation matrices will be invertible with the norm of the inverse depending
primarily on the minimal separation of the data sites. Error estimates concerning
how well the interpolant fits the underlying data are given by the following:
Theorem 1. Let X be any point set on S™ with mesh norm hx, and let ¢ be an
SBF. If for some T > n/2 we have ¢(£) < c¢(1 + \g)™™ as £ — oo, then for all
f € Ny there is a constant C' that is independent of X and f for which

If = Ix flloo < CR |1 f|lo-

The norm || - ||4 is associated with the RBF ¢ and gives rise to a reproducing
kernel Hilbert space. However, in the case ¢ is either a compactly supported
Wendland function or a Thin-Plate spline, the estimates in Theorem 1 still hold
if || - || is replaced by the more traditional Sobolev norm || - |[y;.

We next (briefly) discuss the least squares theory applicable to SBF approxima-
tion on S™. Rather than giving the most general result we present a sample result.
Full details are available in the papers in the references. Notice that there are
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two discrete sets in the theorem below. The coarser set Y is where interpolation
occurs. The finer set B determines the discrete least squares norm. Also the error
is given in terms of interpolation. But this estimate, of course, also gives upper
bounds on discrete least squares approximation.

Theorem 2. Suppose 7 = k + s, where k is a positive integer and 0 < s < 1. Let
Y C S™ be a discrete set with given mesh norm h = hy gn. Let B = {b1,...,bym}
be a discrete set on the unit sphere with hg < h. If g € H™(S™) and

Iyg(z) = Y cco(x - xe)

Xe €Y

18 constructed from a positive definite kernel ® satisfying
a1+ A)77 < 6(0) Sea(l+A0) 77
then there is a constant C' independent of g and h such that

g — Iy glle,(B) < Chy g llgll 7 (57
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Polynomial Interpolation on the Sphere
NoeMi LAIN FERNANDEZ

The problem of reconstructing a continuous signal on the sphere from discrete
data arises in many areas including geophysics and meteorology where the sphere
is taken as a model of the surface of the Earth.

A classical way of addressing data fitting problems on the sphere is by poly-
nomial interpolation: given a set of nodes {&;}i=1,.. n on the two-dimensional
sphere S? := {x € R3 : |z| = 1} and certain real-valued data {y;}i—1_._n, the goal
is to construct a polynomial in the space V,, of spherical polynomials of degree at
most n which interpolates the known data. The appropriate analog of polynomials
on the sphere are the so-called spherical harmonics {Y} }j=—k,. .k ken, (see e.g.
Freeden, Gervens and Schreiner [1], Miiller [3] or Reimer [5]). Specifically, making
use of this explicit basis of spherical harmonics and denoting with N := (n + 1)?
the dimension of the space V,,, the interpolation problem on the sphere reads:



1410 Oberwolfach Report 27/2004

find a spherical polynomial P := > 7_, Z?:fk a{c Yl%j in V,,, such that for given
real-valued data {y;}i=1,.. n, the interpolation conditions

n k
P&)=>_ > ol Y)(&) =y, i=1,...,N,

k=0 j=—k

are satisfied. Unfortunately, not for any given set of pairwise distinct points
{&}i=1,... N, the polynomial interpolation problem has a unique solution and hence
it is of interest to identify those point sets for which the above system of equa-
tions is nonsingular. While it is clear that such point systems — which we will
call fundamental systems — exist, they have not yet been extensively treated in
the literature. However, von Golitschek and Light [2], Stindermann [6] and Xu
[7, 8] present and analyze two special distribution strategies for points on par-
allel circles on the sphere. While the first construction features little symmetry
with respect to the equator because any two different latitudes have to carry a
different number of points, the second distribution strategy only works when the
underlying polynomial degree n is even. To overcome this restriction, we focus
here on the interpolation problem in V5i11, and present a fundamental system
construction, in which the (n+1)? points are located on n + 1 parallel latitudes,
each of them containing n+1 equidistantly distributed points. In the following,
U : [0,7] x [0,27) — S? denotes the parameterization of S? in spherical coordi-
nates.

Theorem.1 Let n € N be odd and let 0 < p1 < p2 < -+ < p(p41)72 < 7/2 and
pnt2—j =7 —p;j (j=1,...,(n+1)/2) denote a system of symmetric latitudinal
angles. Then the set of points S(a) = {&;r := \If(pj,HJ,;) s k=1,....,n+ 1},
where

" 2z, if j is odd,
P BT s even,

and a € (0,2), constitutes a fundamental system for V/,.

The symmetric distribution of the resulting points not only generates a clear
and regular geometry of the grid of nodes, but also simplifies theoretical and
technical matters, as the involved Gram matrices attain a circulant structure.
Making then use of the theory of circulant matrices in combination with classical
matrix factorization techniques by means of Fourier matrices, we obtain a more
manageable expression for the dense interpolation matrices corresponding to our
fundamental systems. On the other hand, from the numerical point of view, a point
distribution on a structured grid allows the construction of spherical multiscale
methods, leading us to the introduction of spherical polynomial wavelets.

For fixed s € N, we define the wavelet space W (n € N) as the orthogonal
complement of V,, in V, 44, ie., W, is spanned by the spherical harmonics of
degree at most n + s that are orthogonal to V,,. In this talk, we present explicit
fundamental systems for W2 and W,.
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Theorem 2. Let p € (0,7) be such that
(33) P (+cosp) # 0, m=0,....k, k=n+1,n+2.
Then
S = {mu = V(p, ei)}kzl,...,Qn—i—B U {n2x = T(m - p, Hi)}kzl,...,Qn—i—S’

with 0} =27k/(2n+3) (k=1,...,2n+3) and 02 =27k/(2n+5) (k= 1,...,2n+5),
constitutes a fundamental system for W?2.

While this construction principle reminds us of the strategy followed in [2, 6],
the construction of fundamental systems for W is along the same lines as the one
proposed in Theorem 1. Note that in this case we cannot choose the heights of the
latitudinal circles arbitrarily anymore. The following theorem is joint work with
Jirgen Prestin.

Theorem. 3 Let n be an even integer and let

—1 < cosp, <cospp—1 <:---<cosp; <1
denote the zeros of the Legendre polynomial P,. Then the set of points
M, (a) :={n;x = \Il(pj,Hi) cj=1,...,n, k=1,...,3n+ 2},
with

; 327::“2, if j is odd,
0y = (2(k—1)+a)r
3n+2 )

and a € (0,2), constitutes a fundamental system for W,.

if 7 is even,

In the last part of this talk, we study the localization behavior of the polynomials
n—+s

k
Ao = Y IR G (g o), and 0 (0) = Y0 T d By(g o)

k=0 k=n+1

where ¢ € S? is a fixed point and {cg}r—0.. . C R"™! and {dg}r—nt1n+s C R
are sets of nonzero real-valued coefficients.

However, since there exist different ways of measuring the localization of a
function, we cannot generally speak of a unique optimally localized polynomial,
but have to consider the optimal functions with respect to the localization criteria
that we have in mind for our applications.

In the present talk, we basically concentrate on two localization criteria: on
the one hand, for ¢, =1 (k=0,...,n)and dy, =1 (k =n+1,...,n+s) the
polynomials 7 and 1]"® are the reproducing kernels of V,, and W, respectively,
and have minimal L?(S?)-norm among all polynomials in V;, or in W, that attain
the same value when they are evaluated at the prescribed point &.

A second way of measuring the localization of a function is by means of the
uncertainty principle on the two-sphere which was introduced by Narcowich and
Ward in [4]. In particular, if we choose the coefficient ¢ as the evaluation of the
normalized Legendre polynomial of degree k at the greatest zero of the Legendre
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polynomial P, 1, i.e., cx := pp(x7tl) (k = 0,...,n), we come up with the opti-

mally space-localized polynomial in V,,, where the space-localization is measured
by the space-variance factor in the uncertainty product according to [4]. In a
similar way, choosing dj, as the evaluation of the normalized associated Legendre
polynomial p_(,,+1)(o;n+1) at the greatest zero of the associated Legendre poly-
nomial Ps(o;n + 1), ie. dp = pp—(ni1)(Upmasn +1) (B =n+1,...,n+s), we
obtain the polynomial in W7 with minimal variance in space domain.
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A positive quadrature rule on the sphere
JURGEN PRESTIN
(joint work with Daniela Rogca)

In the talk we described an interpolatory quadrature rule for the sphere based on
a fundamental set of points introduced by N. Lain Fernandez. Let

:[0,7] x[0,27) — S?
(p,0) +— (sinpcosh,sin psinf,cosp)

be the parametrization of £ € S? in coordinates (p, ). Furthermore, let Py, k =
0,1,..., denote the Legendre polynomials of degree k, normalized by Pj(1) = 1
and let V,, be the space of spherical polynomials of degree less than or equal to n.
The dimension of V,, is dimV,, = (n + 1)?> = N and the reproducing kernel of V,,
is

" 2k
Kn(ﬁ,n)2224:1Pk(£~?7)=kn(£~?7), &nes?

k=0
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For given n we consider a set of points {&;}i=1,.. .~ C S? and the polynomial
functions o7 : S* — C, i = 1,..., N defined by

n

n 2k +1 ,
Plle) = Knl60) = ) Zp—Felli-o) i=1. N
k=0

A set of points {; }i=1,... n for which these functions {¢'};—1... n~ constitute a
basis for V,, is called a fundamental system for V,,.

In 2002 N. Lain Fernandez proved the following result.
Proposition. Let n € N be an odd number and let 0 < p1 < p2 < ... < pugr <

/2, pnyo—j = T —pj, J = 1,...,(n+ 1)/2, denote a system of symmetric
latitudes. Then the set of points S(a) = {ﬁj’k = \Ii(pj,ei)  Jk=1,...,n+ 1},

where

2k . . .
T = if 7 is odd,
0r =9 2(k—Dta P

== T, if ] is even,

with « € (0,2), constitutes a fundamental system for Vi,.

In the following we will study the quadrature formula, for odd n, with the nodes
in S(«). The Gram matrix associated to the scaling functions {¢}'};=1, .~ has
the entries

(I)n(’l“, 8) = <902790?> = Kn(grafs)

and it is positive definite when {£;};=1,... ~ is a fundamental system for V,.
Given the fundamental system {¢? };=1 .. n of V,,, we can construct unique spher-
ical polynomials L : S? — C in V,, satisfying the condition L%(&) = dij. The set
{L?}jzl,m’N constitutes a basis of V,,. Furthermore, any f € V,, can be written
as

N
f=Y fl&Ly
i=1
If L,, is the Gram matrix of the Lagrangians, defined by L,, = ((L, L;‘>)i7j:1,,_,,N €
CN*N then it holds
$ L, =1y.

Here I denotes the N x N dimensional identity matrix. This means that the La-
grangians {L;L} j=1,...,n are the dual functions of the scaling functions {¢ }i=1, . n.

Let f € V,, and let {L}'};—1 .~ be the Lagrangians associated to a fundamental
system {; }i=1,... n. By integration we get

N
RICIECED Y REAGLNG]
Therefore, the weights can be defined as

wh = / LI(E)dw(€) = (LP1), i=1,...,N,
SQ
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yielding the following quadrature formula

L J©d Zw"f &) + Ru(f).

On the other hand, taking f =1 € V,,, we obtain Zz 1 = 1 and therefore

N
w = (L ZL” = (L}, L}).
k=1

This means that the weight w] can be calculated as the sum of the entries of
the 7-th row of the matrix L,, which is the inverse of the Gram matrix ®,,.
Consequently, the following equality holds

®, (wl,wy, ..., W) =,1,..., )7

Theorem 1. Letn € N be an odd number and let P,, be the Legendre polynomial
of degree 