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Introduction by the Organisers

It was the aim of the meeting to bring together international experts from the
theory of buildings, differential geometry and geometric group theory.

Buildings are combinatorial structures (simplicial complexes) which can be seen
as simultaneously generalizing projective spaces and trees. Already from these
examples it is clear that there will be interesting groups acting on buildings. Con-
versely, groups can be studied using their actions on given buildings. Groups com-
ing up in this context are in particular groups having a BN-pair. Examples of such
groups include the classical groups, simple Lie groups and algebraic groups (also
over local fields), Kac-Moody groups and loop groups. This already indicates that
these groups play an important role in many different areas of mathematics such
as algebra, geometry, number theory, physics and analysis. Kac-Moody groups
correspond to so-called twin buildings, a particularly active area in the theory of
buildings.

Geometric group theory is concerned with the investigation of group actions on
metric spaces using the interplay of group theoretic properties and metric proper-
ties like curvature in the sense of Alexandrov, or CAT(0)-spaces. The geometric
realization of a building is a metric space with interesting curvature properties on
which the above mentioned groups as well as their subgroups like uniform lattices
or arithmetic groups act in a natural way by isometries. In this respect there are
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a number of canonical connections between the theory of buildings and geomet-
ric group theory. One of the current problems concerns the characterization of
buildings as metric spaces.

In differential geometry these aspects also play an important role, e.g. in con-
nection with Hadamard manifolds, (simply connected Riemannian manifolds of
nonpositive curvature). A special role is played by the Riemannian symmetric
spaces and their quotients of finite volume which one wants to characterize ge-
ometrically. By considering the fundamental groups, one obtains discrete group
actions also studied in geometric group theory. Buildings come up in differen-
tial geometry as the compactifications of Riemannian symmetric spaces yielding
examples of topological buildings. Asymptotic cones (and ultrapowers) of sym-
metric spaces present non-discrete affine buildings and create new and interesting
relations to model theory. These constructions are important in new proofs of
differential geometric rigidity theorems, like Mostow Rigidity and the Margulis
Conjecture.

This shows that there are close connections between the areas, and this meeting
was the first in a number of years in Oberwolfach having these connections as its
topic. Geometric group theory has recently introduced interesting aspects into
the theory of buildings, in particular the hyperbolic buildings. Conversely, new
developments in the theory of buildings, e.g. the twin buildings have interesting
group theoretic applications, for example in the theory of S-arithmetic groups or
in the theory of Kac-Moody groups. All these aspects played an important part
in this meeting and the interaction between the participants from different areas
was very lively.
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Abstracts

Introduction to buildings
KENNETH S. BROWN

In this talk I reviewed three ways of thinking about Coxeter complexes and build-
ings. The emphasis was on giving an intuitive understanding, with the aid of
pictures (which are not reproduced here).

1. GEOMETRIC REALIZATIONS OF COXETER GROUPS

1.1. The classical (simplicial) Coxeter complex. Let (W,S) be a Coxeter
system with S finite. The classical geometric realization of (W, S) is Tits’s Cox-
eter complex ¥ = X(W,S). See [1] for a detailed exposition. ¥ is a chamber
complex on which W acts with a strict fundamental domain consisting of a single
closed chamber. The stabilizers along the fundamental domain are the standard
parabolic subgroups W’ = (S’ >, where S’ C S. [Convention: We include the
empty simplex, whose stabilizer is W.] The simplices of ¥ correspond to standard
cosets wW’, and the face relation on simplices corresponds to the opposite of the
inclusion relation on cosets.

Topologically, ¥ is either contractible or a sphere. The latter occurs if and only
if W is finite, in which case there is a canonical way to realize X as the boundary
of a convex polytope. [This is a general fact about the cell complex associated
with an arbitrary central hyperplane arrangement.|

The Coxeter complexes (W' S’) associated to standard parabolic subgroups
occur naturally as subcomplexes of (W, S); they are the links of the simplices in
the fundamental domain.

An important fact about X is that the vertices naturally fall into types, with one
type for each s € S. One can therefore refine the adjacency relation on chambers
by declaring two chambers to be s-adjacent if they have the same panel of cotype s.

1.2. The underlying chamber system. Let’s forget about all simplices except
the chambers, and remember only that they have a family of s-adjacency relations.
The structure now is a graph with colored edges. There is one vertex for each
chamber, and an edge between two adjacent chambers. The edge is colored to
reflect the type of adjacency. Thus there is one color for each s € S. This graph
is in fact nothing but the Cayley graph of (W,S), so it gives a quite natural
geometric representation of the Coxeter group. One can reconstruct the entire
Coxeter complex by taking “residues”. For the sake of intuition, it is useful to
draw the chamber graph superimposed on a picture of the Coxeter complex. There
is a vertex in each open chamber and a (colored) edge cutting across each panel.
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1.3. Davis’s dual Coxeter complex. When one looks at the picture of the
chamber graph superimposed on the Coxeter complex, one sees spherical config-
urations, one for each simplex with finite (hence spherical) link. Davis cones off
these spheres to get cells. See [3], for example. If W is infinite, the resulting cell
complex ¥, = 34(W,S) sits inside the geometric realization |X|. It is obtained,
roughly speaking, by deleting each vertex at which ¥ fails to be locally finite, and
it is still contractible. If W is finite, on the other hand, then X itself is one of
the spherical links that gets coned off. [It is the link of the empty simplex.] Thus
>4 is a topological ball in this case, hence again contractible. It can be realized
as the convex polytope polar to the one mentioned in Section 1.1. This sort of
polytope associated with a central hyperplane arrangement is called a zonotope.
The permutahedron is a famous example.

A more precise description of ¥4 is that it is a regular cell complex with one
nonempty cell for each finite standard coset, with the face relation now corre-
sponding to inclusion rather than the opposite of inclusion. The closed cells are
themselves isomorphic to complexes 34(W’, S”) associated to finite standard sub-
groups, so they can be viewed as convex polytopes. This gives >; a piecewise
Euclidean structure. Note that it is locally finite and that the W-action is proper.
Moussong [4] proved:

Theorem 1. ¥, with its piecewise Euclidean path metric, is a complete CAT(0)-
space.

For some purposes it is important that >; has a canonical cubical subdivi-
sion. [Warning: The cells in the subdivision are combinatorial cubes but not
metric cubes except in the special case of right-angled Coxeter groups.] Some
such subdivision is needed, for example, if one wants to describe combinatorially a
fundamental domain for the action of W on ¥;. It is also needed when one glues
Coxeter complexes together to form buildings (Section 2.3).

2. BUILDINGS

There are three ways of thinking about buildings, corresponding to the three
approaches to realizing Coxeter complexes. We review them briefly.

2.1. The simplicial approach. This is also sometimes called the old-fashioned
appproach. Here a building of type (W, .S) is a simplicial complex A that has a
system of subcomplexes called apartments, each of which is isomorphic to (W, S).
One assumes (a) any two simplices are contained in an apartment and (b) for any
two apartments, there is an isomorphism between them fixing their intersection.

2.2. The Chamber system approach. Buildings, like Coxeter complexes, ad-
mit type functions. Once again, there is one type of vertex for each s € S. So
we can form a graph with colored edges, as in Section 1.2. It is still true that
one can recover all the simplices from the chamber system. There are various
ways to axiomatize buildings from this point of view. See, for instance, Weiss [5].
An interesting variant of this approach views the set of chambers as a “metric
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space” in which the metric takes values in W. A statement of the axioms can be
found in [2], along with a sketch of a proof that this approach is equivalent to the
simplicial definition.

2.3. The Davis realization. To get the Davis realization A, of A, replace each
apartment Y by Davis’s ¥4. See Davis [3] for a more precise statement and a proof
of the following result, which Davis says was also known to Moussong:

Theorem 2. The Davis realization Ay admits a metric consistent with the piece-
wise Fuclidean metric on each apartment. With this metric it is a complete
CAT(0)-space.

The proof is similar to the proof in [1] for Euclidean buildings. The significance
is that results such as the Bruhat—Tits fixed-point theorem can be applied to
arbitrary buildings.

REFERENCES
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Weighted L2?-cohomology of Coxeter groups
J. DYMARA AND T. JANUSZKIEWICZ
(joint work with M.W. Davis and B. Okun)

Suppose (W, S) is a Coxeter system. Let i : S — I be a function to some index set
I'so that i(s) = i(s’) whenever s and s’ are conjugate. Given an I-tuple q = (¢;)ier
of positive real numbers, there is a certain deformation of the group algebra of W
called the “Hecke algebra” of W. We denote it by R.

Also associated to q, there is an inner product { , )q on RM) defined by
(€w, €w' )q = GuOww’, Where 0y, is the Kronecker delta. The completion of RMW)
with respect to this inner product is denoted LZ(W) or simply Lfl when W is
understood. Lfl is an R-bimodule. There is an anti-involution on R, denoted by
x — x* and defined by (e,)* := €,-1. As is explained in [9], this makes R into
a “Hilbert algebra” in the sense of Dixmier. It follows that there is an associated
von Neumann algebra Ny acting on La from the right.

As in the case of a von Neumann algebra associated to a group algebra, Ny is
equipped with a trace and one can use this trace to define the “dimension” of any
R-stable closed subspace V' of a finite direct sum of copies of Lé.
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Suppose W acts as a reflection group on a some CW complex U with a strict
fundamental domain Z. Assume further that for each s € S there is a subcomplex
Zs C Z, called a “mirror” of Z, so that s acts on U/ as a reflection across Z5. Then
U is formed by gluing together copies of Z, one for each element of W. In other
words, U = (W x Z)/ ~, where the equivalence relation ~ is defined in an obvious
fashion.

The second author [9] has defined “weighted L2-cohomology spaces, ” denoted
LZH'(U). The weighted L?-cochain complex, LZC*(U), is a subcomplex of the
complex C*(U;R) of ordinary cellular cochains. The subcomplex chlC* (U) con-
sists of those cochains which are square summable with respect to an inner product
defined via a weight function depending on the multiparameter q.

To each of the Hilbert spaces Llei(Z/l) one can attach a “von Neumann di-
mension.” It is a nonnegative real number, denoted by b, (i) and called the ith
Lg—Betti number of U.

Our principal interest in the weighted L?-cohomology comes from the fact that
it computes the L2-cohomology of buildings of type (W,S). Here q is a certain
I-tuple of positive integers called the “thickness vector” of the building. In other
words, for buildings only q with integral components can occur.

Non-integral weighted cohomology groups seems to be interesting on their own
right as a rich source of numerical invariants of Coxeter groups which generalize
growth functions. Indeed the theory of the weighted L2?-cohomology of ¥ is closely
tied to several other topics: growth series of Coxeter groups, decompositions of
“Hecke - von Neumann algebras” and the Singer Conjecture. Moreover, as |q]
goes from 0 to oo, LZH*(Z) interpolates between ordinary cohomology and coho-
mology with compact supports. For these reasons, we believe that the study of
weighted L2-cohomology of Coxeter groups has intrinsic interest, independent of
its connection to buildings. On the technical side, our strategy of computations is
to deal first with the case of small, nonintegral |q|, then derive consequences for
large |q].

Here is the statement of our calculation of Lg—cohomology.

The Main Theorem. [(a)]
(1) If q € R, then

LH WUy =@ H(2,2") @ Dr.
TeS

(2) If q € R~1, then
LUy =P H (2,25 ")® Ds_r.
TeS

(We note that for q € R, (ewhras—71),cwr spans a dense subspace of Dp; while
for g € R, (ewhs_rar),cwr spans a dense subspace of Dg_7.)
The proof of the Main Theorem depends on the following result.

The Decomposition Theorem. [(a)]
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(1) If q € R, then

> oy

TeS

is a direct sum decomposition and a dense subspace of L<2:1'
(2) If q € R1, then

Z Ds_r

is a direct sum decomposition and a dense subspace of Lc21'

In the case when W is finite and q = 1 (i.e., when the Hecke algebra is the
group algebra) a similar result was proved by Solomon in 1968. The Decomposition
Theorem is also compatible with the theory of representations of Hecke algebras
developed by Kazhdan—Lusztig.

The results of this paper raise more questions than they answer.

e The Main Theorem gives a complete calculation of LZH* (X). On the other

hand, our knowledge about what happens for q ¢ RUR ! is fragmentary.
e Is there a version of this theory for weighted differential forms?
e Is there a version of this for groups other than Coxeter groups?

(the short answer to two last questions is “yes.” )
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Building groups are automatic
JACEK SWIATKOWSKI

Let G be a group acting on a building A. Suppose that

(1) A is of finite thickness;

(2) G has finitely many orbits on the set of chambers of A;

(3) stabilizers of chambers are finite.
Equivalently, G acts properly discontinuously and cocompactly on the Davis’ re-
alization of A.

Main result. Every group G as above is automatic.

This result was known previously with the stronger conclusion that G is biau-
tomatic, in the cases when the associated Coxeter system is

e Gromov hyperbolic (Cartwright-Shapiro, 1995)

e right-angled (Niblo-Reeves, 1998)

e affine, with additional assumption that the action of G is free and type-
preserving (Noskov, 2000).

The idea of my proof is to “lift” to buildings, in certain precise sense, the
following result due to Brink-Howlett 1993:
Every Cozxeter group admits a geodesic automatic structure.

The proof uses also a new tool, sort of a “finite state orbiautomaton”, that
I have invented for proving automaticity or biautomaticity of groups acting on
various spaces.

An extension of Bruhat-Tits buildings
HELMUT BEHR

For some applications, e.g. the proof of finiteness properties of S-arithmetic groups
over function fields, Bruhat—Tits buildings seem to be too small. This can be
demonstrated in comparing them with the use of symmetric spaces for arithmetic
groups over number fields.

1. Number fields: The Iwasawa decomposition GL,(R) = KAN is unique
and defines the symmetric space X = K \ GL,(R) whose elements may be inter-
preted as lattices, i.e. Z-modules of rank n with an inner product. These lattices
L admit a unique H N-filtration {0} C L1 C ... C Ly C L by sublattices which
corresponds to a flag Vi3 C ... C Vi of proper subspaces of V = L ®z Q; lattices
with trivial filtration {0} C L are called semi-stable. The flags can be viewed as
simplices in the spherical Tits building Xy, their stabilizers in GL,,(Q) are proper
parabolic subgroups P, thus each unstable x € X determines a canonical parabolic
group P = 7(x). The unstable region X’ C X has a cover by contractible sets
Xp = {x € X' | n(z) O P}, whose nerve is the simplicial complex Xy, which
implies that X’ is (n — 2)-spherical as is X itself.

X’ can be retracted along geodesic lines to X’ = X’ N (X \ X’), and the same
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process also shows that X,; = X \ X' is a strong deformation retract of X, so
Xgs is contractible. By normalizing the (co-)volumes of lattices or equivalently
passing from GL,, to SL,, one obtains that [Xgs] is compact modulo the arith-
metic subgroup I' = SL,(Z). All these ideas can be generalized to arbitrary
number fields and semi-simple groups and provide an alternate proof of Borel—-
Serre’s theorem, that all arithmetic groups over number fields are of type Fo
(a group I is of type F), if it admits a K(I", 1)-complex with finite n-skeleton, and
it is Fi if it is Fj, for all n). The results of this section are due to U. Stuhler and
D. Grayson (cf. [G2]).

2. Function fields:  Consider fields F' with [F': F,(¢)] < co and a valuation v,
valuation ring R, prime element 7 and the ring O of S-integers in F', defined by
S = {v}. Denote by X the Bruhat-Tits building of (SL,,(F'),v) whose simplices
can be described by chains of R-lattices of rank n, so dim X is only (n — 1). The
Iwasawa decomposition SL,(F) = KAN with K = SL,(R), A = {diag (%)},
N = U,(F) is not unique because there exist shifts between K and N, depending
on the middle term.

Once more there exist filtrations by sublattices which are unique. This was proved
in the language of vector bundles over a projective curve by Serre for trees, and in
general by Harder—Narasimhan, and used by Quillen-Grayson (see [G1]) to define
an unstable region X’ with a cover by sets X, P parabolic, whose nerve is again
the Tits building Xy, thus proving that X’ is (n — 2)-spherical and also that the
semi-stable part X s = X \ X’ is modulo the arithmetic group I' (with coefficients
in O) a finite complex. The existence of a canonical parabolic group can be shown
for arbitrary reductive groups (cf. [B] and [St]).

But in the function field case, it is not possible to retract X’ to its boundary 90X,
and X is not contractible which can easily~be seen for trees. In this situation it
seems to be natural to define an extension X of X’ in such a way that

(i) X has the same homotopy type as X',
(ii) X has a strong deformation retract X which is finite modulo T,

and by the way restoring the uniqueness of the Iwasawa decomposition, finally X
has the same dimension as the corresponding (real) symmetric space.

3. Definition and properties of an extension X of X: To a given fil-
tration {0} C Ly C ... C Ly C L we associate complementary lattices L with
L = L; ® L, which constitute an “opposite flag”. Parabolic groups P and P’ are
called opposite (Pop P’) if PN P’ is a Levi subgroup of both. Their pairs define
a simplicial complex Opp Xo = {(P, P’) € Xo x Xo | Pop P’'}, sometimes called
a “split building” which has the same homotopy type as Xy itself (for a general
proof see [H]).

A pair (B, B’) of opposite Borel groups determines a (split) maximal torus
T = T(B,B’) and also an apartment Ap of X — we always think of X, as the
building X at infinity of X. Set App = J{Ar € X | T =T(B,B’), (B,B’) C
(P, P")}. For a fixed pair (P, P)) there is a bijection between {P’ | P’ op Py} and
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Up, (F') (the unipotent radical of Py), given by conjugation. Choose now an origin
xo € Ar and acting by g € KAN from the right, we have: x = z¢(kan) € Ap ps
iff n € Ny with Ny = {n € N | ana~! € K} — this motivates the following

Definition:

X ={(z,y) € X' x Xo | 7(x) = PopP', y e P' ,x € App} (w(z) denotes the
canonical parabolic subgroup to z € X’ and P = {@' parabolic | Q' O P'}, un-
derstood as the closure of the simplex P’ in X, = Xg). The elements of X may be
viewed as closed cones (or sectors) with vertex X’ and “basis” star P’ at infinity.
The topology on X is induced by the euclidean topology on X’ and the v-analytic
one on Xy, refining the simplicial topology. This definition is valid for a split reduc-
tive group G. Again there is a cover of X by contractible sets X p,p’ Whose nerve
is Opp Xo, and there exists now a retraction of X to 9X = X N (0X' x Xy) since
the cones provide X’ with directions — thus 8X is (r — 1)-spherical, r = rankpG.
Unfortunately dX is not a finite complex modulo I', so we have to restrict our
definitions: For Opp Xy we have to consider pairs of opposite O-modules instead
of subspaces (for G = SL,,), described locally by Up(O) instead of Up(F’), denote
this subcomplex by OpprXo and the corresponding subcomplex of X by Xr —
and now we can show that Xp mod I is finite. For G = SL,, also Oppr Xo is
(n — 2)-spherical, in general no direct proof is known, but Xr is a retract of X
(which is not true for the pair Oppr Xo and OppXy!).

4. Application: The techniques described in section 3 allow us to prove that
for an almost simple Chevalley group G over F' the arithmetic subgroups I', de-
fined by one valuation of F', are of type F,._1, r = rankpG — it remains open if
they are not of type F,.. We hope to treat also S-arithmetic groups for |S| > 1
and non-split groups: for the state of this problem cf. [B].
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Compactifications of Bruhat-Tits buildings
ANNETTE WERNER

Let K be an non-archimedean local field, and let G be a reductive group over K.
By X(G) we denote the Bruhat-Tits building associated to G. It is a complete
metric space with an isometric G(K)-action and a poly-simplicial structure. There
are several ways of compactifiying X (G), e.g. the Borel-Serre compactification (see
[1]) or the polyhedral compactification due to Landvogt (see [2]).

In [4] T have constructed and investigated another compactification of X (G)
for the group G = PGL(V'), where V is a finite dimensional K-vector space. As
boundary components all Bruhat-Tits buildings corresponding to groups PGL(W)
appear, where W runs over the non-trivial linear subspaces of V. In order to
prove that this space is compact and carries a continuous action by the group
PGL(V) one has to show a mixed Bruhat decomposition theorem involving the
subgroups of PGL(V') appearing as stabilizers of the boundary points. A related
compactification of the vertex set of X (PGL(V)) was previously sketched in [3].

By work of Goldman and Iwahori, the building X (PGL(V')) can be identified
with the space of norms on V up to scaling. In [5] I have investigated a dual version
X(PGL(V)) of the compactification previously described, where the boundary
components are the Bruhat-Tits buildings corresponding to the groups PGL(W)
for the quotient spaces W of V. It turns out that X(PGL(V)) has a natural
topological and PGL(V)-equivariant identification with the space of seminorms
on V up to scaling.

Besides, it is shown in [5] that in the world of p-adic analytic Berkovich spaces,
the reduction map from Drinfeld’s p-adic upper half-plane to X (PGL(V)) has a
natural extension to a map from the whole projective space to the compactifica-
tion X (PGL(V)). Moreover, this map identifies X (PGL(V')) topologically with a
closed subset of the projective Berkovich space.

In my talk I described a generalization of these results to Bruhat-Tits buildings
associated with arbitrary split semisimple groups G. (The non-split case will
be worked in later on.) Namely, for every irreducible algebraic representation
p: G — GL(V) one can define a compactification X(G)p of X(G) using the
combinatorics of the weights of p. Roughly, this is constructed as follows. Let
A be the appartment corresponding to a maximal torus in G. Using the action
of the weights of p on A, I define a cone decomposition of A, which gives rise to
a compactification A of A carrying a natural action by the normalizer N of the
torus. Then I define for all z € A a certain subgroup P, of G(K) which later on
turns out to be the stabilizer of x in the compactified building X (G)p. With these
data one can imitate the definition of the Bruhat-Tits building in the following
way: The compactification X (G)” is defined as the quotient of G(K) x A by the
following equivalence relation

(g,x) ~ (h,y) iff there exists an element n € N
such that nz =y and g~ 'hn € P,.
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In fact, the space (G)p depends only on the Weyl chamber face containig the
highest weight of p. Hence we get a finite zoo of compactifications for each X (G).
In special cases, we rediscover the compactification for G = PGL(V') discussed
previously and also Landvogt’s polyhedral compactification from [2].

Besides, I explained that this construction can be regarded as an analogon of
Satake’s compactifications of symmetric spaces. It is to be expected that X (G)p
can also be identified with a closed subset of some homogeneous Berkovich analytic

space.
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Geometry of linear groups, invariant metrics on reductive groups
HERBERT ABELS

There are several natural pseudometrics on GL(n,R). They have a geometric
property in common, which we call coarsely geodesic. The main result is that
every such pseudometric is normlike which means that it is determind by a norm
on the vector space of diagonal matrices. This is the main result of the joint work
[AM] with G.A. Margulis. It holds for reductive groups over local fields and more
generally for cocompact proper isometric actions of such groups on pseudometric
spaces.

We start out by giving the examples of pseudometrics we are interested in. We
then define the notion of a normlike pseudometric. After stating the main result
the notion of a coarsely geodesic pseudometric space will be explained.

A pseudometric d : X x X — R, is a map which has all the properties of
a metric except that d(z,y) = 0 does not imply x = y. A pseudometric d on
a group is called left invariant, if d(g1g,91h) = d(g,h) for g1,g9,h in G. Then
d(g,h) = d(e,g~"h).

An important left invariant metric on a group is the word metric. If I' is a
discrete group with a finite set A of generators then the word length of an element
~v € I with respect to A is defined by

la(y) =min{g;y =ai'---ag’ , ai € A, g € {+1,—1}}.

Then dyword(V1,72) = £a(yy 172) is a left invariant metric on I". The same defi-
nition works for a locally compact topological group GG having a compact set A
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of generators. To describe the dependence of these metrics on A the following
definitions are useful.

Let (X,d) and (X’,d’) be pseudometric spaces. A map f: X — X' is called a
quasiisometry if there are constants C; > 0 and Cs > 0 such that

~C1+ Gy ld(z,y) < d'(f(2), f(y)) < Cad(z,y) + Cy

for every x,y in X and the image f(X) is Ci—dense in X' i.e., for every 2’ € X’
there is an € X such that d(f(z),2’) < C;. The map f is a coarse isometry if
one can choose Cy = 1, it is an isometry if Co = 1 and C = 0.

Two pseudometrics on the same set X are called quasiisometric (coarsely iso-
metric) if the identity map is a quasiisometry (coarse isometry).

Note that any two vector space norms on R™ are quasiisometric (even Lipschitz
equivalent, i.e., we can choose C; = 0) but coarsely isometric only if they are
equal.

Coming back to the word metric, it is easy to see that the word metrics on a
finitely generated discrete group I' for any two finite generating sets are quasiiso-
metric, even Lipschitz—equivalent, and similarly on a compactly generated locally
compact group, by a Baire category argument.

A second type of metrics comes from actions on metric spaces. Let the group G
act by isometries on the pseudometric space (X, d). Pick a point xg € X. Define
the G—invariant pseudometric

dgeom(97 h) = d(nga th) = d(g_lth; 330)

on G. Examples to think of are the action of a semisimple real Lie group G on its
symmetric space X = G/K endowed with a G-invariant Riemannian metric or the
action of a semisimple group G over a non—archimedian local field on its Bruhat—
Tits building endowed with an affine metric. In both cases the pseudometric dgeom
is not a metric, because every element of the isotropy group of xy has distance
zero from the identity.

A third type of pseudometrics can be defined for a subgroup G of the general
linear group GL (V') where V is a finite dimensional vector space over a local field.
Choose a vector space norm || - || on V. Then define the G—invariant pseudometric

duorm (g, 1) = sup{| log [lg =" hll|, [log |~ g]l|}

on (G. Since any two norms on V are Lipschitz equivalent, any two dpom are
coarsely isometric. This construction can be varied by taking for a given group G
a representation p : G — GL(V).

For the general linear group G = GL(n, k) over a local field k let T'(n, k) be the
subgroup of invertible diagonal matrices. T'(n, k) contains a cocompact discrete
subgroup D isomorphic to Z™. We call a G—invariant pseudometric d on G normlike
if there is a vector space norm || -|| on Dr := D @), R, such that d | D x D and the
metric on D given by the norm are coarsely isometric, equivalently if the function

|d(e, d) — ||d]||
is bounded on D.
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Note that if such a norm || - || on Dy exists, it is unique by the remark above. If
follows that then ||-|| is invariant against permutation of the coordinates, since any
inner automorphism of G is a coarse isometry (for any left invariant pseudometric
on G). Note also that d is uniquely determined by || - || up to coarse isometry, by
the Cartan decomposition G = K - D - K, where K is a compact subset of G.

It is easy to see that dgeom for the symmetric space and the Bruhat Tits building
are normlike — here || - || is the Euclidean norm — and also dyorm with || - || the
¢°°—norm. This is also true for the word metric.

Theorem 3. (Abels—Margulis) Let k be a local field, e.g. k =R, Q, or F(t).
The word metric on G = GL(n, k) with respect to a compact set of generators of
G s normlike.

This is a special case of the main result of [2]:

Theorem 4. (Abels—Margulis) Let G be a group with a left invariant pseudo-
metric d. Suppose G has a weak Cartan decomposition. If d is coarsely geodesic
and satisfies the properness condition (P) then it is normlike.

The concept of weak Cartan decomposition is quite technical and cannot be
explained here. It involves a certain subgroup D playing a similar role as the
group D in GL(V') above. Every reductive group over a local field has a Cartan
decomposition and hence a weak one. But also G = Z" is admitted. The concept
of a normlike pseudometric is then defined exactly as above.

A parametrized curve ¢ : [0,a] — X in a pseudometric space (X, d) is called a
C—coarse geodesic if d(c(s),c(t)) =c¢ |s — t| for any two s,t € [0, a]. The notation
a =c b means |a — b| < C. The space (X,d) is called C—coarsely geodesic if any
two points in X can be joined by a C—coarse geodesic, i.e., for any x,y in X there
is a curve ¢ : [0,a] — X with ¢(0) = z, c(a) = y and d(c(s), c(t)) =¢ |s —t| for any
s,t € [0,a]. In particular a =¢ d(z,y). The space is called coarsely geodesic if it is
C—coarsely geodesic for some C' > 0. Examples of coarsely geodesic pseudometric
spaces are Riemannian and Finsler manifolds and a group G with a word metric.
If two pseudometric spaces are coarsely isometric and one of them is coarsely
geodesic then so is the other one. It follows that if a group G acts isometrically
on a coarsely geodesic pseudometric space with a C—dense orbit, then G with the
metric dgeom above is also coarsely geodesic. We thus obtain as a special case
of our theorem Burago’s result [1], namely that every Z"—invariant Riemannian
metric on R" is of bounded distance from a norm on R".
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Lie groups from afar
KATRIN TENT

(joint work with Linus Kramer)

We use a generalization of the definition of asymptotic cones due to van den
Dries and Wilkie to prove the following results.

Theorem 5. ([4]) If R is a real closed field, G is a semisimple R-isotropic algebraic
group defined over R and G(R) is equipped with a left-invariant norm-like metric,
then the layers of G(R) are affine A-buildings of the form G(R®)/G(O) where R“
is a real closed field, O C R® is a convex valuation ring and A = R**/O* is an
archimedean ordered abelian group.

In particular, the asymptotic cone of a semisimple real Lie group G(R) is of the
form G(*R,)/G(O) where PR,, is Robinson’s real closed valued field constructed
from R using the ultrafilter p used to define the asymptotic cone.

We apply this to prove

Theorem 6. ([4]) If R is a real closed field, G and H are semisimple R-isotropic
algebraic groups defined over R and G(R) and H(R) are equipped with left-invariant
norm-like metrics such that f : G(R) — H(R) is a quasi-isometry (with respect
to R), then G and H are isomorphic as algebraic groups. Furthermore, if R is the

total competion of R, then there is an R-rational isomorphism g : G(R) — H(R)
which has R-bounded distance from f on G(R).

This generalizes results of Kleiner and Leeb [1] on quasi-isometries between
Riemannian symmetric spaces and the Margulis Conjecture.

As the asymptotic cones are defined with respect to an ultrafilter pu, Gromov
asked whether there are finitely presented groups whose asymptotic cone depends
on p. If I' is a uniform lattice in G(R), then I' is finitely presented and Cone(I') =
Cone(G(R)). It follows from our description of Cone(G(R)) that Cone,(G(R)) =
Cone,/(G(R)) if and only if R, = PR,,. In joint work with S. Thomas and S.
Shelah we show

Theorem 7. ([2]) The existence of ultrafilters p, ' with PR, 2 PR, is equivalent
to the negation of the Continuum Hypothesis (i.e., is equivalent to the statement
2% > Wy ). Furthermore, if the Continuum Hypothesis holds (i.e., if 2% = Ry ),
then any finitely generated group has at most 2%°-many cones up to homeomor-
phism.
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Rigidity theorems for symmetric spaces
J.-H. ESCHENBURG

A symmetric space is a Riemannian manifold X with an isometric point reflection
sp at any point p € X, ie. s, € G = I(X) (isometry group) with s,(p) = p
and (dsp), = —I. This notion has various aspects (cf. [3]) leading to different
characterizations of symmetric spaces. These so called “rigidity theorems” state
that certain geometric properties are fulfilled only by symmetric spaces. A common
feature of all such theorems is that a certain dimension must be bounded from
below in order to give enough room for the constructions. In some sense the first
example was Desargues’ theorem: Desargues’ configuration holds in any projective
space of dimension > 3 causing it to be a projectivized vector space over some
(skew) field; however this property may fail in dimension 2 (projective planes).
A vast extension was given by Burns and Spatzier [2]; we will call it Theorem
(A): Spherical buildings of rank > 3 with a decent topology are always associated
to symmetric spaces; for rank 2 this is wrong as the generalized polygons show,
e.g. the generalized quadrangles corresponding to inhomogeneous isoparametric
hypersurfaces (cf [9], [6]). A quite different rigidity theorem (B) was proved by
Berger [1] and Simons [5] with a beautiful new proof of Olmos [10]. It characterizes
an irreducible symmetric space of rank > 2 by “small holonomy” where “small”
means that the holonomy group does not act transitively on the unit sphere.
Recall that the holonomy group at some point p of a Riemannian manifold consists
of the parallel displacements along all loops starting and ending at p; it is a
subgroup of the orthogonal group of the tangent space at p and measures the
path dependence of the Riemannian parallel displacement. Again the dimension
restriction is essential: The theorem holds if the codimension of the holonomy
orbits is > 2 but fails for codimension 1. There are two other classes of rigidity
theorems which are all relying on either (A) or (B). In the first class (C) one
assumes in particular that the manifold has rank > 2, i.e. any geodesic lies in a
totally geodesic flat subspace of dimension > 2; again the dimension restriction is
necessary. The second class (D) does not characterize symmetric spaces themselves
by their geometric properties, but instead the principal orbits of their isotropy
representations; these are the so called isoparametric submanifolds, and indeed
any such submanifold is an isotropy orbit of a symmetric spaces provided that
the codimension is > 3; for codimension 2 the above mentioned inhomogeneous
isoparametric hypersurfaces in spheres are counterexamples. For results of type
(C) and (D) and references see [7] and [8].

The results mentioned so far could be called “absolute rigidity theorems” since
the symmetry group has to be constructed out of the nowhere, using the geo-
metric assumptions. I would like to finish this report with a new result which
can be considered as a “relative rigidity theorem”: The group is already given,
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one only has to show invariance under this group. The theorem characterizes a
certain subclass of symmetric spaces, the extrinsic symmetric spaces. A compact
submanifold M C V of a euclidean vector space V is called extrinsic symmetric
if it is preserved by the reflection s, at any of its normal spaces, i.e. s, is the
affine isometry s, fixing p with ds, = I on the normal space N,M and ds, = —1I
on the tangent space T, M. Clearly such a space is symmetric when viewed as a
Riemannian manifold with the metric induced from the ambient space. In fact
most but not all symmetric spaces allow such an embedding, e.g. the Lie group
U(n) C C™*™ does, but SU(n) does not. By a theorem of D. Ferus ([5], [4]), these
spaces are known to be certain orbits of the isotropy representation of another sym-
metric space (of noncompact type) and hence they also allow an effective action
of a noncompact Lie group containing the isometry group. The easiest example is
the sphere S™ C R™*! where the noncompact group is the conformal (Moebius)
group. But also the projective spaces and more generally the Grassmannians are
embedded as extrinsic symmetric spaces: just assign to each k-plane £ C R™ the
reflection at E which is an element of the vector space of symmetric matrices; the
obvious noncompact group acting on Grassmannians is PGL(n,R).

Theorem 8. Let V' be a euclidean vector space containing an irreducible extrinsic
symmetric space M, which is full, i.e. contained in no proper affine subspace of
V. Let M C 'V be another full submanifold of the same dimension such that each
tangent space of M is also a tangent space of M,:

{T,M; x € M} C{T,M,; pe M,}.

If the codimension of M is > 2, then M is an open subset of M, (up to motions
and rescaling).

Obviously the restriction of the codimension is necessary: If M is an arbitrary
hypersurface (codimension 1), then each tangent space T, M is also a tangent
space of the sphere M, = S, hence our assumption does not give any restriction
in this case.

The proof uses the Lie triple product R on V' given by Ferus’ theorem. Since
tangent and normal spaces are Lie subtriples, we can show VR = 0 where V
denotes the Levi-Civita derivative for tangent and normal vectors of M. Hence
the second fundamental form L = V — 0 satisfies L, R = 0 for any tangent vector
v, in other words, L, is a derivation of R. This is the first step to show that the
second fundamental forms of M and M, agree, and the result follows from the
congruence theorem for submanifolds in euclidean space.
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Hyperbolic rank of euclidean buildings
VIKTOR SCHROEDER
(joint work with A. Dranishnikov)

We consider a finitely generated right angled Coxeter group I' , i.e. a group I
together with a finite set of generators S, such that every element of S has order
two and that all relations in I' are consequences of relations of the form st = ts,
where s,t € S.

We prove embedding results of the Cayley graph C(T", S) into products of trees.
On graphs and trees we consider always the simplicial metric, hence every edge
has length 1. On a product of trees we consider the [i-product metric, i.e. the
distance is equal to the sum of the distances in the factors.

In [3] it was shown that the Cayley graph of a Coxeter group admits an equi-
variant isometric embedding into a finite product of locally infinite trees. Here
we give a better estimate on the number of factors in the right-angled case. The
estimate is given in terms of the chromatic number. Consider therefore colourings
c: S — {1,...,n} with the property that for different s,t € S with st = ts we
have ¢(s) # ¢(t). The minimal number n of colours needed is called the chromatic
number of I'.

Theorem 9. Suppose that the chromatic number of a right-angled Coxeter group
[' isn. Then the Cayley graph C(I',S) admits an equivariant isometric embedding
into the product of n simplicial trees.

Besides of trivial cases, these trees are locally infinite. However we are able to
embed the Cayley graph bilipschitz into a product of locally compact trees.

Definition. A pointed simplicial tree (T tg) is called exponentially branching, if
there exists a number ¢ > 0 such that every vertex t € T has more than e?(*:t)
neighbours where d is the metric on 7.

Theorem 10. Let I' be a right-angled Coxeter group with chromatic number n,
let T' be an exponentially branching locally compact simplicial tree, and let r > 0
be a number. Then there ezists bilipschitz embedding ¢ : C(I',S) — T x --- x T
(n-factors), such that 1 restricted to every ball of radius r is isometric.

It is an interesting open problem, if a corresponding embedding result holds for
trees with bounded valence.

We can apply Theorem 10 for a special Coxeter group operating on the hyper-
bolic plane H? and obtain:

Corollary. For every exponentrially branching tree T there exists a bilipschitz
embedding ¢ : H? — T x T.
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Combining this with a result of Brady and Farb we get the following higher
dimensional version:

Corollary. For every exponentrially branching tree T' there exists a bilipschitz
embedding ¢ : H" — T x --- x T of the hyperbolic space H" into the 2(n — 1) fold
product of T.

It is an open question, if for n > 3 there is a bilipschitz embedding of H" into
the n-fold product of locally compact trees or more general for euclidean buildings.
There are two partial results in this direction. In [2] it is show that there exists a
quasiisometric embedding of H" into an n-fold product of locally infinite trees. On
the other hand a recent construction of Januszkiewicz and Swiatkowski [4] shows
for every n the existence of a right angled Gromov hyperbolic Coxeter group with
virtual cohomological dimension and colouring number equal to n. Combining
Theorem 10 with that result we obtain:

Corollary. For every exponentially branching tree T and any given number n
there exits a Gromov hyperbolic group T',, with virtual cohomological dimension n
and a bilipschitz embedding of the Cayley graph of T';, into the product T x --- x T
(n-factors).

Corollary can be used to determine the hyperbolic rank (compare [1]) of a
product of trees:

Corollary. The hyperbolic rank of the product of n trees with exponential branch-
ing is (n —1).
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Two-step nilpotent Lie algebras of type (p,q)
PATRICK EBERLEIN

Definition and examples

A Lie algebra M is 2 — step nilpotent if the commutator ideal [N, MN] lies in
the center of 9. A 2-step nilpotent Lie algebralet I is of type (p, q) if [N, N]
has dimension p and codimension ¢ in 9. Let N(p,q) denote the space of 2-
step nilpotent real Lie algebras of type (p,q). We first describe a simple class of
examples in N(p,q).
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Let (, ) denote the standard inner product on R?, and let (, )* denote the inner
product on so(q,R) given by ( Z, Z’ ) = — trace ZZ’. Every 2-step nilpotent Lie
algebra 91 in N(p,q) can be expressed (up to Lie algebra isomorphism) as a vector
space N = R? @ W, where W is a p-dimensional subspace of so(q,R), together
with a bracket structure defined by the conditions

1) W lies in the center of N

2) For each X,Y in RY, [X,Y] is the unique element of W such that

((X,Y],Z2)* =(Z(X),Y) for all Z in W.

Remarks 1)1t is easy to see that [, M] = W in the examples above. Moreover,
W = 3, the center of M, <= {0} = Ker W ={u € R? :Z(u) =0forall Z

2) The most interesting examples occur when W is a special subspace of s0(q,R).
One interesting class (Heisenberg type) arises from representations j : Cl(p) —
End(RY), where C/(p) denotes the classical negative definite Clifford algebra de-
fined by RP with its natural inner product. In this case there exists an inner
product ( , ) on R? such that W = j(R?) C j(Cl(p)) is a p-dimensional subspace
of s0(q,R) with the property that j(Z)? is a negative multiple of the identity for
any nonzero element Z of RP. Conversely, if W is a p-dimensional subspace of
s0(q,R) with the property that Z? is a negative multiple of the identity for every
nonzero element Z of W, then W arises as above from a representation j : C/(p)
— End(R?) of the Clifford algebra C¢(p).

Another interesting class of subspaces W of so0(q,R) occurs when W is a Lie
subalgebra of so(q,R). These arise from representations p : G — GL(R?), where
G is a compact, connected Lie group. If R? is equipped with a p(G)-invariant
inner product ( , ), then W, the Lie algebra of p(G), is a subalgebra of so(q,R).

A subspace W of s0(q,R) is called a Lie triple system if [W,[W,W]] C W. Clearly
every subalgebra W of so(q,R is a Lie triple system, but the converse is false. For
example, the subspace W arising as above from a Clifford algebra representation j :
Cl(p) — End(RY) is a Lie triple system in so(q,R) but not a subalgebra of so(q,R).

The space X (p, q) of isomorphism classes in N(p, q) ([E3])

Let X(p,q) denote the space of isomorphism classes in N(p,q). Using the no-
tation above, let 9, = R? @ Wi and My = R? @ W be two elements of N(p,q),
where W1 and Wy are p-dimensional subspaces of so(q,R). One can show that
M; and Ny are isomorphic <= Wy = gWyg! for some element g in GL(q,R). It
follows that X(p,q) can be identified with the compact coset space G(p,s0(q,R)) /
GL(q,R), where GL(q,R) acts on so(q,R) by g(Z) = gZg' for g € GL(q,R) and Z
€ so(q,R).

We define the dimension of the coset space X(p,q) = G(p,s0(q,R)) / GL(q,R)
to be the codimension of a generic GL(q,R) orbit in G(p,s0(q,R)). The pairs
(p,q) where X(p,q) has dimension zero (i.e. where GL(q,R) has an open orbit in
G(p,s0(q,R))) are of particular interest. The following is a complete list of such
pairs, including a ”duality” which follows from the fact that X(p,q) and X(D-p,q)
are always homeomorphic, where D = (1/2)q(g-1).
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Zero dimensional examples

[1] (1, q) and (D—1,q) q>2
2] (D, q) q > 2 (free 2-step nilpotent Lie algebras)
3] (2, 2k+1) and (D—2,2k+1), k> 1
[4] (2, 4) and (4,4)
[5] (2, 6) and (13,6)
[6] (3, 4) (self dual)
[7] (3, 5) and (7,5)
] (4,

We complete the description of the dimension of X(p,q) : dim X(3,6) = dimX(12,
6) = 2 ; dim X(2, 2k) = dim X(2k?*— k — 2, 2k) = k — 3 for k > 4 and dim X(p,q)
= p(D-p) + 1 — g2 > 0 for all remaining pairs (p,q).

Lattices and the Mal cev criterion ([E2])

Let N be a simply connected nilpotent Lie group, and let 9t denote the Lie
algebra of N. Recall that exp : 91 — N is a diffeomorphism, and log : N — I
denotes the inverse of exp. A lattice in N is a discrete cocompact subgroup I'.
A basis B of 91 defines a rational structure on N if the structure constants of B
are rational numbers, or equivalently, if Mg = g-span{B} is a Lie algebra over q.
A result of Mal’cev states that N admits a lattice I' <= 91 admits a rational
structure. If I is a lattice in N, then 914 = g-span(log I') is a rational structure
in 1. There is a one-one correspondence between rational structures in 91 and
commensurability classes of lattices in N.

If 91 = Ri® W, where W C s0(q,R) is a Lie triple system with compact center,
then O admits a rational structure. See [E4].

Since the number of matrices with rational entries that describe structure con-
stants is countable it follows that only countably many elements of X(p,q) admit a
rational structure. In particular, if X(p,q) has positive dimension, then a generic
element N of N(p,q) determines an isomorphism class [N] in X(p,q) with no ra-
tional structure. On the other hand, if X(