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Introduction by the Organisers

It was the aim of the meeting to bring together international experts from the
theory of buildings, differential geometry and geometric group theory.

Buildings are combinatorial structures (simplicial complexes) which can be seen
as simultaneously generalizing projective spaces and trees. Already from these
examples it is clear that there will be interesting groups acting on buildings. Con-
versely, groups can be studied using their actions on given buildings. Groups com-
ing up in this context are in particular groups having a BN -pair. Examples of such
groups include the classical groups, simple Lie groups and algebraic groups (also
over local fields), Kac-Moody groups and loop groups. This already indicates that
these groups play an important role in many different areas of mathematics such
as algebra, geometry, number theory, physics and analysis. Kac-Moody groups
correspond to so-called twin buildings, a particularly active area in the theory of
buildings.

Geometric group theory is concerned with the investigation of group actions on
metric spaces using the interplay of group theoretic properties and metric proper-
ties like curvature in the sense of Alexandrov, or CAT(0)-spaces. The geometric
realization of a building is a metric space with interesting curvature properties on
which the above mentioned groups as well as their subgroups like uniform lattices
or arithmetic groups act in a natural way by isometries. In this respect there are
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a number of canonical connections between the theory of buildings and geomet-
ric group theory. One of the current problems concerns the characterization of
buildings as metric spaces.

In differential geometry these aspects also play an important role, e.g. in con-
nection with Hadamard manifolds, (simply connected Riemannian manifolds of
nonpositive curvature). A special role is played by the Riemannian symmetric
spaces and their quotients of finite volume which one wants to characterize ge-
ometrically. By considering the fundamental groups, one obtains discrete group
actions also studied in geometric group theory. Buildings come up in differen-
tial geometry as the compactifications of Riemannian symmetric spaces yielding
examples of topological buildings. Asymptotic cones (and ultrapowers) of sym-
metric spaces present non-discrete affine buildings and create new and interesting
relations to model theory. These constructions are important in new proofs of
differential geometric rigidity theorems, like Mostow Rigidity and the Margulis
Conjecture.

This shows that there are close connections between the areas, and this meeting
was the first in a number of years in Oberwolfach having these connections as its
topic. Geometric group theory has recently introduced interesting aspects into
the theory of buildings, in particular the hyperbolic buildings. Conversely, new
developments in the theory of buildings, e.g. the twin buildings have interesting
group theoretic applications, for example in the theory of S-arithmetic groups or
in the theory of Kac-Moody groups. All these aspects played an important part
in this meeting and the interaction between the participants from different areas
was very lively.
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Abstracts

Introduction to buildings

Kenneth S. Brown

In this talk I reviewed three ways of thinking about Coxeter complexes and build-
ings. The emphasis was on giving an intuitive understanding, with the aid of
pictures (which are not reproduced here).

1. Geometric realizations of Coxeter groups

1.1. The classical (simplicial) Coxeter complex. Let (W,S) be a Coxeter
system with S finite. The classical geometric realization of (W,S) is Tits’s Cox-
eter complex Σ = Σ(W,S). See [1] for a detailed exposition. Σ is a chamber
complex on which W acts with a strict fundamental domain consisting of a single
closed chamber. The stabilizers along the fundamental domain are the standard
parabolic subgroups W ′ = 〈S′ >, where S′ ⊆ S. [Convention: We include the
empty simplex, whose stabilizer is W .] The simplices of Σ correspond to standard
cosets wW ′, and the face relation on simplices corresponds to the opposite of the
inclusion relation on cosets.

Topologically, Σ is either contractible or a sphere. The latter occurs if and only
if W is finite, in which case there is a canonical way to realize Σ as the boundary
of a convex polytope. [This is a general fact about the cell complex associated
with an arbitrary central hyperplane arrangement.]

The Coxeter complexes Σ(W ′, S′) associated to standard parabolic subgroups
occur naturally as subcomplexes of Σ(W,S); they are the links of the simplices in
the fundamental domain.

An important fact about Σ is that the vertices naturally fall into types, with one
type for each s ∈ S. One can therefore refine the adjacency relation on chambers
by declaring two chambers to be s-adjacent if they have the same panel of cotype s.

1.2. The underlying chamber system. Let’s forget about all simplices except
the chambers, and remember only that they have a family of s-adjacency relations.
The structure now is a graph with colored edges. There is one vertex for each
chamber, and an edge between two adjacent chambers. The edge is colored to
reflect the type of adjacency. Thus there is one color for each s ∈ S. This graph
is in fact nothing but the Cayley graph of (W,S), so it gives a quite natural
geometric representation of the Coxeter group. One can reconstruct the entire
Coxeter complex by taking “residues”. For the sake of intuition, it is useful to
draw the chamber graph superimposed on a picture of the Coxeter complex. There
is a vertex in each open chamber and a (colored) edge cutting across each panel.
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1.3. Davis’s dual Coxeter complex. When one looks at the picture of the
chamber graph superimposed on the Coxeter complex, one sees spherical config-
urations, one for each simplex with finite (hence spherical) link. Davis cones off
these spheres to get cells. See [3], for example. If W is infinite, the resulting cell
complex Σd = Σd(W,S) sits inside the geometric realization |Σ|. It is obtained,
roughly speaking, by deleting each vertex at which Σ fails to be locally finite, and
it is still contractible. If W is finite, on the other hand, then Σ itself is one of
the spherical links that gets coned off. [It is the link of the empty simplex.] Thus
Σd is a topological ball in this case, hence again contractible. It can be realized
as the convex polytope polar to the one mentioned in Section 1.1. This sort of
polytope associated with a central hyperplane arrangement is called a zonotope.
The permutahedron is a famous example.

A more precise description of Σd is that it is a regular cell complex with one
nonempty cell for each finite standard coset, with the face relation now corre-
sponding to inclusion rather than the opposite of inclusion. The closed cells are
themselves isomorphic to complexes Σd(W

′, S′) associated to finite standard sub-
groups, so they can be viewed as convex polytopes. This gives Σd a piecewise
Euclidean structure. Note that it is locally finite and that the W -action is proper.
Moussong [4] proved:

Theorem 1. Σd, with its piecewise Euclidean path metric, is a complete CAT(0)-
space.

For some purposes it is important that Σd has a canonical cubical subdivi-
sion. [Warning: The cells in the subdivision are combinatorial cubes but not
metric cubes except in the special case of right-angled Coxeter groups.] Some
such subdivision is needed, for example, if one wants to describe combinatorially a
fundamental domain for the action of W on Σd. It is also needed when one glues
Coxeter complexes together to form buildings (Section 2.3).

2. Buildings

There are three ways of thinking about buildings, corresponding to the three
approaches to realizing Coxeter complexes. We review them briefly.

2.1. The simplicial approach. This is also sometimes called the old-fashioned
appproach. Here a building of type (W,S) is a simplicial complex ∆ that has a
system of subcomplexes called apartments, each of which is isomorphic to Σ(W,S).
One assumes (a) any two simplices are contained in an apartment and (b) for any
two apartments, there is an isomorphism between them fixing their intersection.

2.2. The Chamber system approach. Buildings, like Coxeter complexes, ad-
mit type functions. Once again, there is one type of vertex for each s ∈ S. So
we can form a graph with colored edges, as in Section 1.2. It is still true that
one can recover all the simplices from the chamber system. There are various
ways to axiomatize buildings from this point of view. See, for instance, Weiss [5].
An interesting variant of this approach views the set of chambers as a “metric
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space” in which the metric takes values in W . A statement of the axioms can be
found in [2], along with a sketch of a proof that this approach is equivalent to the
simplicial definition.

2.3. The Davis realization. To get the Davis realization ∆d of ∆, replace each
apartment Σ by Davis’s Σd. See Davis [3] for a more precise statement and a proof
of the following result, which Davis says was also known to Moussong:

Theorem 2. The Davis realization ∆d admits a metric consistent with the piece-
wise Euclidean metric on each apartment. With this metric it is a complete
CAT(0)-space.

The proof is similar to the proof in [1] for Euclidean buildings. The significance
is that results such as the Bruhat–Tits fixed-point theorem can be applied to
arbitrary buildings.
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Weighted L2-cohomology of Coxeter groups

J. Dymara and T. Januszkiewicz

(joint work with M.W. Davis and B. Okun)

Suppose (W,S) is a Coxeter system. Let i : S → I be a function to some index set
I so that i(s) = i(s′) whenever s and s′ are conjugate. Given an I-tuple q = (qi)i∈I

of positive real numbers, there is a certain deformation of the group algebra of W
called the “Hecke algebra” of W . We denote it by R.

Also associated to q, there is an inner product 〈 , 〉q on R(W ) defined by

〈ew, ew′〉q = qwδww′ , where δww′ is the Kronecker delta. The completion of R(W )

with respect to this inner product is denoted L2
q
(W ) or simply L2

q
when W is

understood. L2
q

is an R-bimodule. There is an anti-involution on R, denoted by
x → x∗ and defined by (ew)∗ := ew−1 . As is explained in [9], this makes R into
a “Hilbert algebra” in the sense of Dixmier. It follows that there is an associated
von Neumann algebra Nq acting on L2

q
from the right.

As in the case of a von Neumann algebra associated to a group algebra, Nq is
equipped with a trace and one can use this trace to define the “dimension” of any
R-stable closed subspace V of a finite direct sum of copies of L2

q
.
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Suppose W acts as a reflection group on a some CW complex U with a strict
fundamental domain Z. Assume further that for each s ∈ S there is a subcomplex
Zs ⊆ Z, called a “mirror” of Z, so that s acts on U as a reflection across Zs. Then
U is formed by gluing together copies of Z, one for each element of W . In other
words, U ∼= (W ×Z)/ ∼, where the equivalence relation ∼ is defined in an obvious
fashion.

The second author [9] has defined “weighted L2-cohomology spaces, ” denoted
L2

q
Hi(U). The weighted L2-cochain complex, L2

q
C∗(U), is a subcomplex of the

complex C∗(U ;R) of ordinary cellular cochains. The subcomplex L2
q
C∗(U) con-

sists of those cochains which are square summable with respect to an inner product
defined via a weight function depending on the multiparameter q.

To each of the Hilbert spaces L2
q
Hi(U) one can attach a “von Neumann di-

mension.” It is a nonnegative real number, denoted by bi
q
(U) and called the ith

L2
q
-Betti number of U .

Our principal interest in the weighted L2-cohomology comes from the fact that
it computes the L2-cohomology of buildings of type (W,S). Here q is a certain
I-tuple of positive integers called the “thickness vector” of the building. In other
words, for buildings only q with integral components can occur.

Non-integral weighted cohomology groups seems to be interesting on their own
right as a rich source of numerical invariants of Coxeter groups which generalize
growth functions. Indeed the theory of the weighted L2-cohomology of Σ is closely
tied to several other topics: growth series of Coxeter groups, decompositions of
“Hecke - von Neumann algebras” and the Singer Conjecture. Moreover, as |q|
goes from 0 to ∞, L2

q
H∗(Σ) interpolates between ordinary cohomology and coho-

mology with compact supports. For these reasons, we believe that the study of
weighted L2-cohomology of Coxeter groups has intrinsic interest, independent of
its connection to buildings. On the technical side, our strategy of computations is
to deal first with the case of small, nonintegral |q|, then derive consequences for
large |q|.

Here is the statement of our calculation of L2
q
-cohomology.

The Main Theorem. [(a)]

(1) If q ∈ R, then

L2
q
H∗(U) ∼=

⊕

T∈S

H∗(Z,ZT ) ⊗DT .

(2) If q ∈ R−1, then

L2
q
H∗(U) ∼=

⊕

T∈S

H∗(Z,ZS−T ) ⊗DS−T .

(We note that for q ∈ R, (ewhT aS−T )w∈W T spans a dense subspace of DT ; while
for q ∈ R−1, (ewhS−TaT )w∈W T spans a dense subspace of DS−T .)

The proof of the Main Theorem depends on the following result.

The Decomposition Theorem. [(a)]
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(1) If q ∈ R, then
∑

T∈S

DT

is a direct sum decomposition and a dense subspace of L2
q
.

(2) If q ∈ R−1, then
∑

T∈S

DS−T

is a direct sum decomposition and a dense subspace of L2
q
.

In the case when W is finite and q = 1 (i.e., when the Hecke algebra is the
group algebra) a similar result was proved by Solomon in 1968. The Decomposition
Theorem is also compatible with the theory of representations of Hecke algebras
developed by Kazhdan–Lusztig.

The results of this paper raise more questions than they answer.

• The Main Theorem gives a complete calculation of L2
q
H∗(Σ). On the other

hand, our knowledge about what happens for q /∈ R∪R−1 is fragmentary.
• Is there a version of this theory for weighted differential forms?
• Is there a version of this for groups other than Coxeter groups?

(the short answer to two last questions is “yes.” )
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Building groups are automatic

Jacek S̀wiatkowski

Let G be a group acting on a building ∆. Suppose that
(1) ∆ is of finite thickness;
(2) G has finitely many orbits on the set of chambers of ∆;
(3) stabilizers of chambers are finite.

Equivalently, G acts properly discontinuously and cocompactly on the Davis’ re-
alization of ∆.

Main result. Every group G as above is automatic.

This result was known previously with the stronger conclusion that G is biau-
tomatic, in the cases when the associated Coxeter system is

• Gromov hyperbolic (Cartwright-Shapiro, 1995)
• right-angled (Niblo-Reeves, 1998)
• affine, with additional assumption that the action of G is free and type-

preserving (Noskov, 2000).

The idea of my proof is to “lift” to buildings, in certain precise sense, the
following result due to Brink-Howlett 1993:
Every Coxeter group admits a geodesic automatic structure.

The proof uses also a new tool, sort of a “finite state orbiautomaton”, that
I have invented for proving automaticity or biautomaticity of groups acting on
various spaces.

An extension of Bruhat-Tits buildings

Helmut Behr

For some applications, e.g. the proof of finiteness properties of S-arithmetic groups
over function fields, Bruhat–Tits buildings seem to be too small. This can be
demonstrated in comparing them with the use of symmetric spaces for arithmetic
groups over number fields.

1. Number fields: The Iwasawa decomposition GLn(R) = KAN is unique
and defines the symmetric space X = K \GLn(R) whose elements may be inter-
preted as lattices, i.e. Z-modules of rank n with an inner product. These lattices
L admit a unique HN -filtration {0} ⊂ L1 ⊂ . . . ⊂ Lk ⊂ L by sublattices which
corresponds to a flag V1 ⊂ . . . ⊂ Vk of proper subspaces of V = L ⊗Z Q; lattices
with trivial filtration {0} ⊂ L are called semi-stable. The flags can be viewed as
simplices in the spherical Tits building X0, their stabilizers in GLn(Q) are proper
parabolic subgroups P , thus each unstable x ∈ X determines a canonical parabolic
group P = π(x). The unstable region X ′ ⊂ X has a cover by contractible sets
X ′

P = {x ∈ X ′ | π(x) ⊇ P}, whose nerve is the simplicial complex X0, which
implies that X ′ is (n− 2)-spherical as is X0 itself.

X ′ can be retracted along geodesic lines to ∂X ′ = X ′ ∩ (X \X ′), and the same
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process also shows that Xss = X \ X ′ is a strong deformation retract of X , so
Xss is contractible. By normalizing the (co-) volumes of lattices or equivalently
passing from GLn to SLn, one obtains that [Xss] is compact modulo the arith-
metic subgroup Γ = SLn(Z). All these ideas can be generalized to arbitrary
number fields and semi-simple groups and provide an alternate proof of Borel–
Serre’s theorem, that all arithmetic groups over number fields are of type F∞

(a group Γ is of type Fn if it admits a K(Γ, 1)-complex with finite n-skeleton, and
it is F∞ if it is Fn for all n). The results of this section are due to U. Stuhler and
D. Grayson (cf. [G2]).

2. Function fields: Consider fields F with [F : Fq(t)] <∞ and a valuation v,
valuation ring R, prime element π and the ring O of S-integers in F , defined by
S = {v}. Denote by X the Bruhat–Tits building of (SLn(F ), v) whose simplices
can be described by chains of R-lattices of rank n, so dim X is only (n− 1). The
Iwasawa decomposition SLn(F ) = KAN with K ∼= SLn(R), A = {diag (πki )},
N = Un(F ) is not unique because there exist shifts between K and N , depending
on the middle term.
Once more there exist filtrations by sublattices which are unique. This was proved
in the language of vector bundles over a projective curve by Serre for trees, and in
general by Harder–Narasimhan, and used by Quillen–Grayson (see [G1]) to define
an unstable region X ′ with a cover by sets X ′

P , P parabolic, whose nerve is again
the Tits building X0, thus proving that X ′ is (n − 2)-spherical and also that the
semi-stable part Xss = X \X ′ is modulo the arithmetic group Γ (with coefficients
in O) a finite complex. The existence of a canonical parabolic group can be shown
for arbitrary reductive groups (cf. [B] and [St]).
But in the function field case, it is not possible to retract X ′ to its boundary ∂X ′,
and Xss is not contractible which can easily be seen for trees. In this situation it

seems to be natural to define an extension X̃ of X ′ in such a way that

(i) X̃ has the same homotopy type as X ′,

(ii) X̃ has a strong deformation retract ∂X̃ which is finite modulo Γ,

and by the way restoring the uniqueness of the Iwasawa decomposition, finally X̃
has the same dimension as the corresponding (real) symmetric space.

3. Definition and properties of an extension X̃ of X: To a given fil-
tration {0} ⊂ L1 ⊂ . . . ⊂ Lk ⊂ L we associate complementary lattices L′

i with
L = Li ⊕ L′

i which constitute an “opposite flag”. Parabolic groups P and P ′ are
called opposite (P opP ′) if P ∩ P ′ is a Levi subgroup of both. Their pairs define
a simplicial complex OppX0 = {(P, P ′) ∈ X0 × X0 | P opP ′}, sometimes called
a “split building” which has the same homotopy type as X0 itself (for a general
proof see [H]).

A pair (B,B′) of opposite Borel groups determines a (split) maximal torus
T = T (B,B′) and also an apartment AT of X — we always think of X0 as the
building X∞ at infinity of X . Set AP,P ′ =

⋃
{AT ∈ X | T = T (B,B′), (B,B′) ⊆

(P, P ′)}. For a fixed pair (P0, P
′
0) there is a bijection between {P ′ | P ′ opP0} and
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UP0
(F ) (the unipotent radical of P0), given by conjugation. Choose now an origin

x0 ∈ AT and acting by g ∈ KAN from the right, we have: x = x0(kan) ∈ AP,P ′

iff n ∈ N1 with N1 = {n ∈ N | ana−1 ∈ K} — this motivates the following

Definition:
X̃ = {(x, y) ∈ X ′ ×X0 | π(x) = P opP ′, y ∈ P ′ , x ∈ AP,P ′} (π(x) denotes the

canonical parabolic subgroup to x ∈ X ′ and P
′
= {Q′ parabolic | Q′ ⊇ P ′}, un-

derstood as the closure of the simplex P ′ in X∞
∼= X0). The elements of X̃ may be

viewed as closed cones (or sectors) with vertex X ′ and “basis” starP ′ at infinity.

The topology on X̃ is induced by the euclidean topology on X ′ and the v-analytic
one onX0, refining the simplicial topology. This definition is valid for a split reduc-

tive group G. Again there is a cover of X̃ by contractible sets X̃P,P ′ whose nerve

is OppX0, and there exists now a retraction of X̃ to ∂X̃ = X̃ ∩ (∂X ′ ×X0) since

the cones provide X ′ with directions — thus ∂X̃ is (r− 1)-spherical, r = rankFG.

Unfortunately ∂X̃ is not a finite complex modulo Γ, so we have to restrict our
definitions: For OppX0 we have to consider pairs of opposite O-modules instead
of subspaces (for G = SLn), described locally by UP (O) instead of UP (F ), denote

this subcomplex by OppΓX0 and the corresponding subcomplex of X̃ by X̃Γ —

and now we can show that X̃Γ mod Γ is finite. For G = SLn also OppΓX0 is

(n − 2)-spherical, in general no direct proof is known, but X̃Γ is a retract of X̃
(which is not true for the pair OppΓX0 and OppX0!).

4. Application: The techniques described in section 3 allow us to prove that
for an almost simple Chevalley group G over F the arithmetic subgroups Γ, de-
fined by one valuation of F , are of type Fr−1, r = rankFG — it remains open if
they are not of type Fr. We hope to treat also S-arithmetic groups for |S| > 1
and non-split groups: for the state of this problem cf. [B].
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Compactifications of Bruhat-Tits buildings

Annette Werner

Let K be an non-archimedean local field, and let G be a reductive group over K.
By X(G) we denote the Bruhat-Tits building associated to G. It is a complete
metric space with an isometric G(K)-action and a poly-simplicial structure. There
are several ways of compactifiyingX(G), e.g. the Borel-Serre compactification (see
[1]) or the polyhedral compactification due to Landvogt (see [2]).

In [4] I have constructed and investigated another compactification of X(G)
for the group G = PGL(V ), where V is a finite dimensional K-vector space. As
boundary components all Bruhat-Tits buildings corresponding to groups PGL(W )
appear, where W runs over the non-trivial linear subspaces of V . In order to
prove that this space is compact and carries a continuous action by the group
PGL(V ) one has to show a mixed Bruhat decomposition theorem involving the
subgroups of PGL(V ) appearing as stabilizers of the boundary points. A related
compactification of the vertex set of X(PGL(V )) was previously sketched in [3].

By work of Goldman and Iwahori, the building X(PGL(V )) can be identified
with the space of norms on V up to scaling. In [5] I have investigated a dual version

X(PGL(V )) of the compactification previously described, where the boundary
components are the Bruhat-Tits buildings corresponding to the groups PGL(W )

for the quotient spaces W of V . It turns out that X(PGL(V )) has a natural
topological and PGL(V )-equivariant identification with the space of seminorms
on V up to scaling.

Besides, it is shown in [5] that in the world of p-adic analytic Berkovich spaces,
the reduction map from Drinfeld’s p-adic upper half-plane to X(PGL(V )) has a
natural extension to a map from the whole projective space to the compactifica-

tion X(PGL(V )). Moreover, this map identifies X(PGL(V )) topologically with a
closed subset of the projective Berkovich space.

In my talk I described a generalization of these results to Bruhat-Tits buildings
associated with arbitrary split semisimple groups G. (The non-split case will
be worked in later on.) Namely, for every irreducible algebraic representation

ρ : G → GL(V ) one can define a compactification X(G)
ρ

of X(G) using the
combinatorics of the weights of ρ. Roughly, this is constructed as follows. Let
A be the appartment corresponding to a maximal torus in G. Using the action
of the weights of ρ on A, I define a cone decomposition of A, which gives rise to
a compactification A of A carrying a natural action by the normalizer N of the
torus. Then I define for all x ∈ A a certain subgroup Px of G(K) which later on

turns out to be the stabilizer of x in the compactified building X(G)
ρ
. With these

data one can imitate the definition of the Bruhat-Tits building in the following

way: The compactification X(G)
ρ

is defined as the quotient of G(K) × A by the
following equivalence relation

(g, x) ∼ (h, y) iff there exists an element n ∈ N

such that nx = y and g−1hn ∈ Px.
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In fact, the space X(G)
ρ

depends only on the Weyl chamber face containig the
highest weight of ρ. Hence we get a finite zoo of compactifications for each X(G).
In special cases, we rediscover the compactification for G = PGL(V ) discussed
previously and also Landvogt’s polyhedral compactification from [2].

Besides, I explained that this construction can be regarded as an analogon of

Satake’s compactifications of symmetric spaces. It is to be expected that X(G)
ρ

can also be identified with a closed subset of some homogeneous Berkovich analytic
space.
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Geometry of linear groups, invariant metrics on reductive groups

Herbert Abels

There are several natural pseudometrics on GL(n,R). They have a geometric
property in common, which we call coarsely geodesic. The main result is that
every such pseudometric is normlike which means that it is determind by a norm
on the vector space of diagonal matrices. This is the main result of the joint work
[AM] with G.A. Margulis. It holds for reductive groups over local fields and more
generally for cocompact proper isometric actions of such groups on pseudometric
spaces.

We start out by giving the examples of pseudometrics we are interested in. We
then define the notion of a normlike pseudometric. After stating the main result
the notion of a coarsely geodesic pseudometric space will be explained.

A pseudometric d : X × X → R+ is a map which has all the properties of
a metric except that d(x, y) = 0 does not imply x = y. A pseudometric d on
a group is called left invariant, if d(g1g, g1h) = d(g, h) for g1, g, h in G. Then
d(g, h) = d(e, g−1h).

An important left invariant metric on a group is the word metric. If Γ is a
discrete group with a finite set A of generators then the word length of an element
γ ∈ Γ with respect to A is defined by

`A(γ) = min{q; γ = aε1

1 · · ·aεq

q , ai ∈ A , εi ∈ {+1,−1}}.

Then dword(γ1, γ2) = `A(γ−1
1 γ2) is a left invariant metric on Γ. The same defi-

nition works for a locally compact topological group G having a compact set A
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of generators. To describe the dependence of these metrics on A the following
definitions are useful.

Let (X, d) and (X ′, d′) be pseudometric spaces. A map f : X → X ′ is called a
quasiisometry if there are constants C1 ≥ 0 and C2 > 0 such that

−C1 + C−1
2 d(x, y) ≤ d′(f(x), f(y)) ≤ C2d(x, y) + C1

for every x, y in X and the image f(X) is C1–dense in X ′, i.e., for every x′ ∈ X ′

there is an x ∈ X such that d(f(x), x′) ≤ C1. The map f is a coarse isometry if
one can choose C2 = 1, it is an isometry if C2 = 1 and C1 = 0.

Two pseudometrics on the same set X are called quasiisometric (coarsely iso-
metric) if the identity map is a quasiisometry (coarse isometry).

Note that any two vector space norms on Rn are quasiisometric (even Lipschitz
equivalent, i.e., we can choose C1 = 0) but coarsely isometric only if they are
equal.

Coming back to the word metric, it is easy to see that the word metrics on a
finitely generated discrete group Γ for any two finite generating sets are quasiiso-
metric, even Lipschitz–equivalent, and similarly on a compactly generated locally
compact group, by a Baire category argument.

A second type of metrics comes from actions on metric spaces. Let the group G
act by isometries on the pseudometric space (X, d). Pick a point x0 ∈ X . Define
the G–invariant pseudometric

dgeom(g, h) := d(gx0, hx0) = d(g−1hx0, x0)

on G. Examples to think of are the action of a semisimple real Lie group G on its
symmetric space X = G/K endowed with a G–invariant Riemannian metric or the
action of a semisimple group G over a non–archimedian local field on its Bruhat–
Tits building endowed with an affine metric. In both cases the pseudometric dgeom

is not a metric, because every element of the isotropy group of x0 has distance
zero from the identity.

A third type of pseudometrics can be defined for a subgroup G of the general
linear group GL(V ) where V is a finite dimensional vector space over a local field.
Choose a vector space norm ‖ · ‖ on V . Then define the G–invariant pseudometric

dnorm(g, h) = sup{| log ‖g−1h‖|, | log ‖h−1g‖|}

on G. Since any two norms on V are Lipschitz equivalent, any two dnorm are
coarsely isometric. This construction can be varied by taking for a given group G
a representation ρ : G→ GL(V ).

For the general linear group G = GL(n, k) over a local field k let T (n, k) be the
subgroup of invertible diagonal matrices. T (n, k) contains a cocompact discrete
subgroupD isomorphic to Zn. We call aG–invariant pseudometric d onG normlike
if there is a vector space norm ‖ ·‖ on DR := D

⊗
Z R, such that d | D×D and the

metric on D given by the norm are coarsely isometric, equivalently if the function

|d(e, d) − ‖d‖|

is bounded on D.
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Note that if such a norm ‖ · ‖ on DR exists, it is unique by the remark above. If
follows that then ‖·‖ is invariant against permutation of the coordinates, since any
inner automorphism of G is a coarse isometry (for any left invariant pseudometric
on G). Note also that d is uniquely determined by ‖ · ‖ up to coarse isometry, by
the Cartan decomposition G = K ·D ·K, where K is a compact subset of G.

It is easy to see that dgeom for the symmetric space and the Bruhat Tits building
are normlike — here ‖ · ‖ is the Euclidean norm — and also dnorm with ‖ · ‖ the
`∞–norm. This is also true for the word metric.

Theorem 3. (Abels–Margulis) Let k be a local field, e.g. k = R,Qp or Fq(t).
The word metric on G = GL(n, k) with respect to a compact set of generators of
G is normlike.

This is a special case of the main result of [2]:

Theorem 4. (Abels–Margulis) Let G be a group with a left invariant pseudo-
metric d. Suppose G has a weak Cartan decomposition. If d is coarsely geodesic
and satisfies the properness condition (P ) then it is normlike.

The concept of weak Cartan decomposition is quite technical and cannot be
explained here. It involves a certain subgroup D playing a similar role as the
group D in GL(V ) above. Every reductive group over a local field has a Cartan
decomposition and hence a weak one. But also G = Zn is admitted. The concept
of a normlike pseudometric is then defined exactly as above.

A parametrized curve c : [0, a] → X in a pseudometric space (X, d) is called a
C–coarse geodesic if d(c(s), c(t)) =C |s− t| for any two s, t ∈ [0, a]. The notation
a =C b means |a − b| ≤ C. The space (X, d) is called C–coarsely geodesic if any
two points in X can be joined by a C–coarse geodesic, i.e., for any x, y in X there
is a curve c : [0, a] → X with c(0) = x, c(a) = y and d(c(s), c(t)) =C |s− t| for any
s, t ∈ [0, a]. In particular a =C d(x, y). The space is called coarsely geodesic if it is
C–coarsely geodesic for some C ≥ 0. Examples of coarsely geodesic pseudometric
spaces are Riemannian and Finsler manifolds and a group G with a word metric.
If two pseudometric spaces are coarsely isometric and one of them is coarsely
geodesic then so is the other one. It follows that if a group G acts isometrically
on a coarsely geodesic pseudometric space with a C–dense orbit, then G with the
metric dgeom above is also coarsely geodesic. We thus obtain as a special case
of our theorem Burago’s result [1], namely that every Zn–invariant Riemannian
metric on Rn is of bounded distance from a norm on Rn.
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Lie groups from afar

Katrin Tent

(joint work with Linus Kramer)

We use a generalization of the definition of asymptotic cones due to van den
Dries and Wilkie to prove the following results.

Theorem 5. ([4]) If R is a real closed field, G is a semisimple R-isotropic algebraic
group defined over R and G(R) is equipped with a left-invariant norm-like metric,
then the layers of G(R) are affine Λ-buildings of the form G(Rα)/G(O) where Rα

is a real closed field, O ⊆ Rα is a convex valuation ring and Λ ∼= Rα∗/O∗ is an
archimedean ordered abelian group.

In particular, the asymptotic cone of a semisimple real Lie group G(R) is of the
form G(ρRµ)/G(O) where ρRµ is Robinson’s real closed valued field constructed
from R using the ultrafilter µ used to define the asymptotic cone.

We apply this to prove

Theorem 6. ([4]) If R is a real closed field, G and H are semisimple R-isotropic
algebraic groups defined over R and G(R) and H(R) are equipped with left-invariant
norm-like metrics such that f : G(R) −→ H(R) is a quasi-isometry (with respect
to R), then G and H are isomorphic as algebraic groups. Furthermore, if R̄ is the
total competion of R, then there is an R̄-rational isomorphism g : G(R̄) −→ H(R̄)
which has R-bounded distance from f on G(R).

This generalizes results of Kleiner and Leeb [1] on quasi-isometries between
Riemannian symmetric spaces and the Margulis Conjecture.

As the asymptotic cones are defined with respect to an ultrafilter µ, Gromov
asked whether there are finitely presented groups whose asymptotic cone depends
on µ. If Γ is a uniform lattice in G(R), then Γ is finitely presented and Cone(Γ) =
Cone(G(R)). It follows from our description of Cone(G(R)) that Coneµ(G(R)) ∼=
Coneµ′(G(R)) if and only if ρRµ

∼= ρRµ′ . In joint work with S. Thomas and S.
Shelah we show

Theorem 7. ([2]) The existence of ultrafilters µ, µ′ with ρRµ 6∼= ρRµ′ is equivalent
to the negation of the Continuum Hypothesis (i.e., is equivalent to the statement
2ℵ0 > ℵ1). Furthermore, if the Continuum Hypothesis holds (i.e., if 2ℵ0 = ℵ1),
then any finitely generated group has at most 2ℵ0 -many cones up to homeomor-
phism.
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Rigidity theorems for symmetric spaces

J.-H. Eschenburg

A symmetric space is a Riemannian manifold X with an isometric point reflection
sp at any point p ∈ X , i.e. sp ∈ G = I(X) (isometry group) with sp(p) = p
and (dsp)p = −I . This notion has various aspects (cf. [3]) leading to different
characterizations of symmetric spaces. These so called “rigidity theorems” state
that certain geometric properties are fulfilled only by symmetric spaces. A common
feature of all such theorems is that a certain dimension must be bounded from
below in order to give enough room for the constructions. In some sense the first
example was Desargues’ theorem: Desargues’ configuration holds in any projective
space of dimension ≥ 3 causing it to be a projectivized vector space over some
(skew) field; however this property may fail in dimension 2 (projective planes).
A vast extension was given by Burns and Spatzier [2]; we will call it Theorem
(A): Spherical buildings of rank ≥ 3 with a decent topology are always associated
to symmetric spaces; for rank 2 this is wrong as the generalized polygons show,
e.g. the generalized quadrangles corresponding to inhomogeneous isoparametric
hypersurfaces (cf [9], [6]). A quite different rigidity theorem (B) was proved by
Berger [1] and Simons [5] with a beautiful new proof of Olmos [10]. It characterizes
an irreducible symmetric space of rank ≥ 2 by “small holonomy” where “small”
means that the holonomy group does not act transitively on the unit sphere.
Recall that the holonomy group at some point p of a Riemannian manifold consists
of the parallel displacements along all loops starting and ending at p; it is a
subgroup of the orthogonal group of the tangent space at p and measures the
path dependence of the Riemannian parallel displacement. Again the dimension
restriction is essential: The theorem holds if the codimension of the holonomy
orbits is ≥ 2 but fails for codimension 1. There are two other classes of rigidity
theorems which are all relying on either (A) or (B). In the first class (C) one
assumes in particular that the manifold has rank ≥ 2, i.e. any geodesic lies in a
totally geodesic flat subspace of dimension ≥ 2; again the dimension restriction is
necessary. The second class (D) does not characterize symmetric spaces themselves
by their geometric properties, but instead the principal orbits of their isotropy
representations; these are the so called isoparametric submanifolds, and indeed
any such submanifold is an isotropy orbit of a symmetric spaces provided that
the codimension is ≥ 3; for codimension 2 the above mentioned inhomogeneous
isoparametric hypersurfaces in spheres are counterexamples. For results of type
(C) and (D) and references see [7] and [8].

The results mentioned so far could be called “absolute rigidity theorems” since
the symmetry group has to be constructed out of the nowhere, using the geo-
metric assumptions. I would like to finish this report with a new result which
can be considered as a “relative rigidity theorem”: The group is already given,



Buildings and Curvature 1251

one only has to show invariance under this group. The theorem characterizes a
certain subclass of symmetric spaces, the extrinsic symmetric spaces. A compact
submanifold M ⊂ V of a euclidean vector space V is called extrinsic symmetric
if it is preserved by the reflection sp at any of its normal spaces, i.e. sp is the
affine isometry sp fixing p with dsp = I on the normal space NpM and dsp = −I
on the tangent space TpM . Clearly such a space is symmetric when viewed as a
Riemannian manifold with the metric induced from the ambient space. In fact
most but not all symmetric spaces allow such an embedding, e.g. the Lie group
U(n) ⊂ Cn×n does, but SU(n) does not. By a theorem of D. Ferus ([5], [4]), these
spaces are known to be certain orbits of the isotropy representation of another sym-
metric space (of noncompact type) and hence they also allow an effective action
of a noncompact Lie group containing the isometry group. The easiest example is
the sphere Sn ⊂ Rn+1 where the noncompact group is the conformal (Moebius)
group. But also the projective spaces and more generally the Grassmannians are
embedded as extrinsic symmetric spaces: just assign to each k-plane E ⊂ Rn the
reflection at E which is an element of the vector space of symmetric matrices; the
obvious noncompact group acting on Grassmannians is PGL(n,R).

Theorem 8. Let V be a euclidean vector space containing an irreducible extrinsic
symmetric space Mo which is full, i.e. contained in no proper affine subspace of
V . Let M ⊂ V be another full submanifold of the same dimension such that each
tangent space of M is also a tangent space of Mo:

{TxM ; x ∈M} ⊂ {TpMo; p ∈ Mo}.

If the codimension of M is ≥ 2, then M is an open subset of Mo (up to motions
and rescaling).

Obviously the restriction of the codimension is necessary: If M is an arbitrary
hypersurface (codimension 1), then each tangent space TxM is also a tangent
space of the sphere Mo = Sn, hence our assumption does not give any restriction
in this case.

The proof uses the Lie triple product R on V given by Ferus’ theorem. Since
tangent and normal spaces are Lie subtriples, we can show ∇R = 0 where ∇
denotes the Levi-Civita derivative for tangent and normal vectors of M . Hence
the second fundamental form L = ∇− ∂ satisfies LvR = 0 for any tangent vector
v, in other words, Lv is a derivation of R. This is the first step to show that the
second fundamental forms of M and Mo agree, and the result follows from the
congruence theorem for submanifolds in euclidean space.
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Hyperbolic rank of euclidean buildings

Viktor Schroeder

(joint work with A. Dranishnikov)

We consider a finitely generated right angled Coxeter group Γ , i.e. a group Γ
together with a finite set of generators S, such that every element of S has order
two and that all relations in Γ are consequences of relations of the form st = ts,
where s, t ∈ S.

We prove embedding results of the Cayley graph C(Γ, S) into products of trees.
On graphs and trees we consider always the simplicial metric, hence every edge
has length 1. On a product of trees we consider the l1-product metric, i.e. the
distance is equal to the sum of the distances in the factors.

In [3] it was shown that the Cayley graph of a Coxeter group admits an equi-
variant isometric embedding into a finite product of locally infinite trees. Here
we give a better estimate on the number of factors in the right-angled case. The
estimate is given in terms of the chromatic number. Consider therefore colourings
c : S → {1, . . . , n} with the property that for different s, t ∈ S with st = ts we
have c(s) 6= c(t). The minimal number n of colours needed is called the chromatic
number of Γ.

Theorem 9. Suppose that the chromatic number of a right-angled Coxeter group
Γ is n. Then the Cayley graph C(Γ, S) admits an equivariant isometric embedding
into the product of n simplicial trees.

Besides of trivial cases, these trees are locally infinite. However we are able to
embed the Cayley graph bilipschitz into a product of locally compact trees.

Definition. A pointed simplicial tree (T, t0) is called exponentially branching, if
there exists a number σ > 0 such that every vertex t ∈ T has more than eσd(t,t0)

neighbours where d is the metric on T .

Theorem 10. Let Γ be a right-angled Coxeter group with chromatic number n,
let T be an exponentially branching locally compact simplicial tree, and let r > 0
be a number. Then there exists bilipschitz embedding ψ : C(Γ, S) → T × · · · × T
(n-factors), such that ψ restricted to every ball of radius r is isometric.

It is an interesting open problem, if a corresponding embedding result holds for
trees with bounded valence.

We can apply Theorem 10 for a special Coxeter group operating on the hyper-
bolic plane H2 and obtain:

Corollary. For every exponentrially branching tree T there exists a bilipschitz
embedding φ : H2 → T × T .
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Combining this with a result of Brady and Farb we get the following higher
dimensional version:

Corollary. For every exponentrially branching tree T there exists a bilipschitz
embedding ψ : Hn → T × · · · × T of the hyperbolic space Hn into the 2(n− 1) fold
product of T .

It is an open question, if for n ≥ 3 there is a bilipschitz embedding of Hn into
the n-fold product of locally compact trees or more general for euclidean buildings.
There are two partial results in this direction. In [2] it is show that there exists a
quasiisometric embedding of Hn into an n-fold product of locally infinite trees. On
the other hand a recent construction of Januszkiewicz and Swiatkowski [4] shows
for every n the existence of a right angled Gromov hyperbolic Coxeter group with
virtual cohomological dimension and colouring number equal to n. Combining
Theorem 10 with that result we obtain:

Corollary. For every exponentially branching tree T and any given number n
there exits a Gromov hyperbolic group Γn with virtual cohomological dimension n
and a bilipschitz embedding of the Cayley graph of Γn into the product T ×· · · ×T
(n-factors).

Corollary can be used to determine the hyperbolic rank (compare [1]) of a
product of trees:

Corollary. The hyperbolic rank of the product of n trees with exponential branch-
ing is (n− 1).
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Two-step nilpotent Lie algebras of type (p, q)

Patrick Eberlein

Definition and examples
A Lie algebra N is 2 − step nilpotent if the commutator ideal [N,N] lies in

the center of N. A 2-step nilpotent Lie algebraLet N is of type (p, q) if [N,N]
has dimension p and codimension q in N. Let N(p,q) denote the space of 2-
step nilpotent real Lie algebras of type (p,q). We first describe a simple class of
examples in N(p,q).
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Let 〈 , 〉 denote the standard inner product on Rq , and let 〈 , 〉* denote the inner
product on so(q,R) given by 〈 Z, Z’ 〉 = − trace ZZ’. Every 2-step nilpotent Lie
algebra N in N(p,q) can be expressed (up to Lie algebra isomorphism) as a vector
space N = Rq ⊕ W, where W is a p-dimensional subspace of so(q,R), together
with a bracket structure defined by the conditions

1) W lies in the center of N

2) For each X,Y in Rq , [X,Y] is the unique element of W such that
〈[X,Y ], Z〉* = 〈Z(X), Y 〉 for all Z in W.

Remarks 1)It is easy to see that [N,N] = W in the examples above. Moreover,
W = Z, the center of N, ⇐⇒ {0} = Ker W = {u ∈ Rq : Z(u) = 0 for all Z ∈
W}.

2) The most interesting examples occur when W is a special subspace of so(q,R).
One interesting class (Heisenberg type) arises from representations j : C`(p) →
End(Rq), where C`(p) denotes the classical negative definite Clifford algebra de-
fined by Rp with its natural inner product. In this case there exists an inner
product 〈 , 〉 on Rq such that W = j(Rp) ⊂ j(C`(p)) is a p-dimensional subspace
of so(q,R) with the property that j(Z)2 is a negative multiple of the identity for
any nonzero element Z of Rp. Conversely, if W is a p-dimensional subspace of
so(q,R) with the property that Z2 is a negative multiple of the identity for every
nonzero element Z of W, then W arises as above from a representation j : C`(p)
→ End(Rq) of the Clifford algebra C`(p).

Another interesting class of subspaces W of so(q,R) occurs when W is a Lie
subalgebra of so(q,R). These arise from representations ρ : G → GL(Rq), where
G is a compact, connected Lie group. If Rq is equipped with a ρ(G)-invariant
inner product 〈 , 〉, then W, the Lie algebra of ρ(G), is a subalgebra of so(q,R).

A subspace W of so(q,R) is called a Lie triple system if [W,[W,W]] ⊆ W. Clearly
every subalgebra W of so(q,R is a Lie triple system, but the converse is false. For
example, the subspace W arising as above from a Clifford algebra representation j :
C`(p) → End(Rq) is a Lie triple system in so(q,R) but not a subalgebra of so(q,R).

The space X (p, q) of isomorphism classes in N (p, q) ([E3])
Let X(p,q) denote the space of isomorphism classes in N(p,q). Using the no-

tation above, let N1 = Rq ⊕W1 and N2 = Rq ⊕W2 be two elements of N(p,q),
where W1 and W2 are p-dimensional subspaces of so(q,R). One can show that
N1 and N2 are isomorphic ⇐⇒ W2 = gW2g

t for some element g in GL(q,R). It
follows that X(p,q) can be identified with the compact coset space G(p,so(q,R)) /
GL(q,R), where GL(q,R) acts on so(q,R) by g(Z) = gZgt for g ∈ GL(q,R) and Z
∈ so(q,R).

We define the dimension of the coset space X(p,q) = G(p,so(q,R)) / GL(q,R)
to be the codimension of a generic GL(q,R) orbit in G(p,so(q,R)). The pairs
(p,q) where X(p,q) has dimension zero (i.e. where GL(q,R) has an open orbit in
G(p,so(q,R))) are of particular interest. The following is a complete list of such
pairs, including a ”duality” which follows from the fact that X(p,q) and X(D-p,q)
are always homeomorphic, where D = (1/2)q(q-1).
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Zero dimensional examples
[1] (1, q) and (D−1,q) q ≥ 2
[2] (D, q) q ≥ 2 (free 2-step nilpotent Lie algebras)
[3] (2, 2k+1) and (D−2,2k+1), k ≥ 1
[4] (2, 4) and (4,4)
[5] (2, 6) and (13,6)
[6] (3, 4) (self dual)
[7] (3, 5) and (7,5)
[8] (4, 5) and (6,5)
We complete the description of the dimension of X(p,q) : dim X(3,6) = dimX(12,

6) = 2 ; dim X(2, 2k) = dim X(2k2− k − 2, 2k) = k − 3 for k ≥ 4 and dim X(p,q)
= p(D−p) + 1 − q2 > 0 for all remaining pairs (p,q).

Lattices and the Mal ′cev criterion ([E2])
Let N be a simply connected nilpotent Lie group, and let N denote the Lie

algebra of N. Recall that exp : N → N is a diffeomorphism, and log : N → N

denotes the inverse of exp. A lattice in N is a discrete cocompact subgroup Γ.
A basis B of N defines a rational structure on N if the structure constants of B

are rational numbers, or equivalently, if Nq = q-span{B} is a Lie algebra over q.
A result of Mal’cev states that N admits a lattice Γ ⇐⇒ N admits a rational
structure. If Γ is a lattice in N, then Nq = q-span(log Γ) is a rational structure
in N. There is a one-one correspondence between rational structures in N and
commensurability classes of lattices in N.

If N = Rq⊕ W, where W ⊂ so(q,R) is a Lie triple system with compact center,
then N admits a rational structure. See [E4].

Since the number of matrices with rational entries that describe structure con-
stants is countable it follows that only countably many elements of X(p,q) admit a
rational structure. In particular, if X(p,q) has positive dimension, then a generic
element N of N(p,q) determines an isomorphism class [N] in X(p,q) with no ra-
tional structure. On the other hand, if X(p,q) has dimension zero, then a generic
element N of N(p,q) determines an isomorphism class [N] in X(p,q) with a rational
structure.

Equivalence classes of rational structures ([E1], section 5)
A subspace W of so(q,R) is said to be a standard rational subspace if W has

a basis B’ of matrices with rational entries ; that is, a basis B’ in so(q,q) It is
easy to check that the N = Rq ⊕ W as defined above has a rational structure
Nq = q-span{B}, where B is the union of B’ and the natural basis {e1, ... eq} of
Rq . Conversely, one may show that if N is a 2-step nilpotent Lie algebra of type
(p,q) that admits a rational structure, then N is isomorphic to a Lie algebra Rq ⊕
W for some standard rational subspace W of so(q,R).

Let N be a 2-step nilpotent Lie algebra of type (p,q) that admits a rational
structure, and let B1 and B2 be bases of N such that N1,q = q-span{B1} and
N2,q = q-span{B2} are rational structures for N. We say that N1,q and N2,q are
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equivalent rational structures if there exists an automorphism ϕ of N such that
ϕ(N1,q) = N2,q.

To determine the space of equivalent rational structures on N we may assume
without loss of generality that N = Rq ⊕ W, where W is a standard rational
subspace of so(q,R). Let G denote GL(q,R) and let Gq(W) denote those subspaces
in G(W) = {gWgt : g ∈ G} that are standard rational. Clearly GL(q,q) leaves
Gq(W) invariant.

Proposition Let N = Rq ⊕ W be a 2-step nilpotent Lie algebra of type (p,q),
where W is a p-dimensional standard rational subspace of so(q,R). Then the
space of rational structures on N may be identified with the coset space Gq(W) /
GL(q,q).

Ricci tensor ([E1],[E2])
Let N be a 2-step nilpotent Lie algebra of type (p,q), and let 〈 , 〉 be an inner

product on N. This defines a unique left invariant inner product on N, the simply
connected Lie group with Lie algebra N. Let Z denote the center of N, and let
V denote the orthogonal complement of Z in N. It is known that V and Z are
orthogonal with respect to the Ricci tensor Ric. Moreover, Ric is negative definite
on Rq and positive semidefinite on W. It is of interest to find inner products 〈 , 〉
on N such that Ric has special properties. In particular we say that Ric is optimal
if Ric is a negative multiple of the identity on V and a positive multiple of the
identity on Z. We say that Ric is geodesic flow invariant if the Ricci curvature in
TN is constant along orbits of the geodesic flow in TN.

Existence of elements of X (p, q) with special Ricci tensors 9 ([E1] , section 7)
Let N be a 2-step nilpotent Lie algebra of type (p,q). A basis

B = {v1, ... , vq ; Z1, ... , Zp}

of N is said to be an adapted basis of N if {Z1, ... , Zp} is a basis of [N,N]. Let
{C1, ... , Cp} ⊂ so(q,R) be the structure matrices defined by the bracket relations

[vi,vj ] =
∑p

k=1 C
k
ijZk

Define CB = (C1, ... , Cp) ∈ so(q,R)p = so(q,R) x ... x so(q,R) (p-times).
Extend the action of SL(q,R) on so(q,R) to the diagonal action on so(q,R)p. Recall
that so(q,R)p is isomorphic to so(q,R) ⊗ Rp under the map (C1, ... , Cp) →∑p

k=1 C
k ⊗ vk , where {v1, ... , vp} is any basis of Rp. We obtain an action of

SL(q,R) x SL(p,R) on so(q,R) ⊗Rp such that (g,h)(C ⊗ v) = (g(C) ⊗ h(v)) for all
(g,h) ∈ SL(q,R) x SL(p,R), C ∈ so(q,R) and v ∈ Rp.

We now relate the existence of inner products 〈 , 〉 on N with special Ricci
tensors to closed orbits of the groups SL(q,R) and SL(q,R) x SL(p,R) acting on
so(q,R)p.

Proposition Let N be a 2-step nilpotent Lie algebra of type (p,q), and let Z

denote the center of N. Let B be an adapted basis of N and let CB ∈ so(q,R)p

be as above. Then the following statements are equivalent :
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1) [N,N] = Z and N admits an inner product 〈 , 〉 whose Ricci tensor is geodesic
flow invariant.

2) The SL(q,R) orbit of CB in so(q,R)p is closed in so(q,R)p.

Proposition Let N be a 2-step nilpotent Lie algebra of type (p,q), and let Z

denote the center of N. Let B be an adapted basis of N and let CB ∈ so(q,R)p

be as above. Then the following statements are equivalent :
1) [N,N] = Z and N admits an inner product 〈 , 〉 whose Ricci tensor is optimal.
2) The SL(q,R) x SL(q,R) orbit of CB in so(q,R)p is closed in so(q,R)p.
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Spherical buildings, submetries and isoparametric foliations

Alexander Lytchak

We discuss a rigidity result for spherical building that is motivated by a theorem of
Leeb ([6]) and a theorem of Eberlein ([3]), closely related to the rank rigidity. The
theorem of Leeb describes the structure of a Hadamard space if the Tits geometry
of the boundary at infinity is a spherical building and the result of Eberlein can
be interpreted in a similar way.

Our theorems describe the structure of surjective 1-Lipschitz maps of spheri-
cal buildings onto geodesically complete CAT (1) spaces. The connections with
the theorems mentioned above is provided by the fact, that there are canonical
(logarithmic) map from the boundary at infinity of a Hadamard spaces to the
links and that these maps are 1-Lipschitz and surjective if the Hadamard space is
geodesically complete. This work is a continuation of [7], where it was shown that
if f : G → X is a surjective 1-Lipschitz map of a spherical building G of dimension
≥ 1 and X is a geodesically complete CAT (1) space of finite dimension ([5]), then
X is a spherical join or a building. We prove the following results, that also give
a precise description of the map f :

Theorem 11. Let G be an irreducible building, f : G→ X a surjective 1-Lipschitz
map onto a geodesically complete finite dimensional CAT (1) space X. Then f

splits as f = f̂ ◦ f̃ , where f̂ : G → Gf is a submetry onto a simplicial space of the
same dimension as G and f̃ : Gf → X is bijective and 1-Lipschitz. The space Gf

is a building unless G is a generalized 6k-gon and X is the Euclidean sphere S13.
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Theorem 12. Let f : G→ X be a bijective 1-Lipschitz map. If G is an irreducible
building of dimension ≥ 1 and X is a geodesically complete finite dimensional
CAT (1) space, then either f is an isometry or X is a Euclidean sphere S l and f
corresponds to an isoparametric foliation.

The two types of surjective 1-Lipschitz maps that appear in the theorems above
(folding maps between buildings of the same dimension and bijective maps induced
by isoparametric foliations) correspond precisely to the logarithmic maps of the
boundary at infinity onto a link in an affine building resp. in a symmetric space.

The proof of the first theorem resembles and is connected to the theorem of
Thorbergsson ([8]) and uses essentially the results of [4] and [2]. The proof of the
second theorem is established by finding relations between surjective 1-Lipschitz
maps as above, special submetries of spheres and isoparametric foliations and by
the observation that submetries of spheres are very rigid. The second theorem can
be considered as a metric version of the topological result of [1].
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Randomly generated subgroups of Aut(T )

Yair Glasner

(joint work with Miklós Abért)

Randomly generated groups were studied extensively in the setting of finite and
pro-finite groups. In particular random generation was studied in the automor-
phism of rooted trees (see for example [1] [2]).

Let T be a (bi-)regular tree and A = Aut(T ) its automorphism group. We
investigate properties of randomly generated subgroups of A. Our sample space,
after fixing the number of generators to be n, is the group An with its (infinite)
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Haar measure µ. One says that a group property is generic if it holds for the group
〈a〉 = 〈a1, a2, . . . , an〉 for almost all a ∈ An. 1

Theorem 13. A randomly generated subgroup of Aut(T ) will generically:

(1) be a non-Abelian free group.
(2) have one of the following as its closure:

• A discrete group.
• The whole group A, or its index 2 subgroup.
• A compact group.

(3) Act almost freely on the vertices.

Definition. A group acts almost freely on a set if every non trivial element fixes
only a finite number of points. In our case this is the same as saying that every
elliptic element fixes no points on the boundary ∂T .

The structure of these groups.
Discrete free groups. These are fundamental groups of regular graphs. The graphs
will typically be infinite but they will admit a strong deformation retract to a finite
graph.
Dense groups. By Bass-Serre theory a dense free subgroup in Aut0(T ) decomposes
as an amalgamated free product Fn = A∗CB, where A,B,C < F are all countably
generated free groups. All the groups A,B,C are proper subgroups of F but they
map onto every proper image of F .
Pre-compact subgroups. These fix a vertex (or a geometric edge) so one can think
of them as random subgroups acting on a rooted tree. The closure of these groups
will never be the full automorphism group of the rooted tree because the later is not
finitely generated as a topological group. One should consult [1] and the references
therein for what is known about randomly generated subgroups of rooted trees. I
mention just a two results from that paper:

• A random subgroup admits a maximal Hausdorff dimension.
• The quotient of the tree by the action of a random subgroup will be a tree

with finitely many ends.

We can generalize the second result and show that the quotient of the tree by
a non-cyclic subgroup of a randomly generated subgroup will have finitely many
ends.
Free action The key point of the proof. Here is an example of the arguments
involved. Choose a word in the free group, say ω = aab ∈ F (a, b) and a sequence
of different vertices (v0, v1, v2). Consider

(s, t)C = {(a, b) ∈ A2|v0
b
→ v1

a
→ v2

a
→ v0}.

The notation (s, t)C signifies a coset of the subgroup

C = Stab({v1, v2}) × Stab({v0}) < A2 .

1Another possible interpretation of randomness is the purely topological one, say that a group
property is generic if it holds for all but a set of the first category in An. All of the theorems
that I will state hold also in the topological setting.
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Fix (s, t) once and for all thus pushing all of the randomness into our choice of
elements (x, y) ∈ C. Our goal is to show that there is only a null set of elements
(x, y) ∈ C such that ω(sx, ty) has infinitely many fixed points.

After some rearrangement one can write

ω(sx, ty) = sxsxty = (sst)(xt−1s−1

)(xt−1

)(y) = α0x
α1xα2y

as a product of elements fixing the point v0. By induction on the length of the

word we can assume that if d(v0, w0) is big enough then the points w0
α0→ w1

xα1

→

w2
xα2

→ w3 will all be distinct. Consider the corresponding maps induced on the
“shadows”:

Sh(v0, w0)
α0→ Sh(v0, w1)

xα1

→ Sh(v0, w2)
xα2

→ Sh(v0, w3)
y
→ Sh(v0, w0).

Here Sh(v0, w) = {v|w ∈ [v, v0]}. The map y is independent of all the other
maps so the product ω(sx, ty) is a random element when restricted to each one
of these shadows. This argument concludes the proof for this example. For more
general words though we can not assume that one of the maps is independent of
all the others. The maps xα1 , xα2 for example need not be independent, in fact
one of them might even be a function of the other. Even if one can not establish
independence one can always find one of the words that is independent of the
others when restricted to the l’th level of the shadow for each l. As it turns out
this is enough to finish the proof.
Classification of closures: Consider a free group generated by 2 random el-
ements (a, b). There are 3 different possibilities: both are elliptic, both are hy-
perbolic, one is elliptic and one is hyperbolic. The most interesting part of the
theorem is to prove that an elliptic and a hyperbolic element almost surly generate
a dense subgroup. After establishing this then more or less standard arguments
show that:

• If both (a, b) are elliptic but don’t have a common fixed point then (a, ab)
is (elliptic,hyperbolic).

• If both (a, b) are hyperbolic but don’t generate a discrete free group then
after applying a sequence of Nielsen transformations one can reduce to the
(elliptic,hyperbolic) case.
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Limit groups and free actions on Rn-trees

Vincent Guirardel

In his first paper about the Tarski problem, [13], Sela introduced the notion of
limit group. These groups appeared to coincide with the long-studied class of
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finitely generated fully residually free groups (see [2], [1], [8, 9], [4] and references).
In a joint work with Champetier ([3]), we interpret the set of limit groups as a
compactification of the set of marked free group in the compact set of marked
groups.

One can give several other equivalent characterizations of limit groups ([11]):
limit groups are the finitely generated subgroups of a non-standard free group,
and are the finitely generated groups having the same universal theory as a free
group.

One major result about limit groups is the fact that they are finitely presented
([8, 9, 13]). More precisely, one can prove that for every limit group G there is a
complexity C(G) ∈ N such that

(1) limit groups of complexity 0 are free products of free abelian groups and
surface groups

(2) if C(G) > 0, then G can be written as the fundamental group of a graph
of groups with trivial or cyclic edge groups, and whose vertex groups are
limit groups of lower complexity.

In particular, G has a finite classifying space.
We give a new proof of this result using the fact that a limit group has a free

action on an Rn-tree ([10]).

Theorem 14. ([7],[5]) Any finitely generated group having a free action on an
Rn-tree (n ≥ 2) can be written as the fundamental group of a graph of groups with
trivial or cyclic edge groups, and whose vertex groups are finitely generated and
have a free action on an Rn−1-tree.

The proof is based on Sela’s version of Rips Theory for finitely generated groups
acting on R-trees.
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Some results on groups acting on trees and Moufang polygons

Richard Weiss

We discuss various connections between Moufang polygons and the action of
groups on trees, for example:

Theorem 15. ([2]). Let Γ be an arbitrary graph (in particular, Γ may be a tree),
let G be a subgroup of Aut(Γ) and let n be an integer greater than two. Suppose
that for every path (x0, x1, . . . , xn) in Γ,

(i) G
[1]
x1,...,xn−1

acts transitively on Γxn
\{xn−1} and

(ii) Gx0,x1
∩Gx0,...,xn

= 1

(where G
[1]
x denotes the pointwise stabilizer of {x} ∪ Γx and G

[1]
x,...,y = G

[1]
x ∩

· · · ∩ G
[1]
y for all vertices x, . . . , y of Γ). Then there is a G-invariant equivalence

relation ≡ on the vertex set V (Γ) of Γ such that Γ/ ≡ is a generalized polygon
(where the two equivalence classes are joined by an edge in Γ/ ≡ whenever there
is some edge of Γ joining a vertex in the one equivalence class with a vertex in the
other) and the map from Γ to Γ/ ≡ is a local isomorphism.

This means that every such triple (Γ, G, n), where now Γ is assumed to be a
tree, arises as follows. Let ∆ be a Moufang n-gon, let D be a subgroup of Aut(D)
containing all the root groups of ∆ and let {u, v} be an edge of ∆. Then set G
equal to the free amalgamated product of Du and Dv over their intersection Du,v

and set Γ equal to the corresponding tree associated with this free amalgamated
product. Moufang polygons were classified in [1].
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Lattices in product of trees

Shahar Mozes

The talk described an ongoing study of lattices in the automorphisms groups
of products of trees. We refer to [BM97], [BM00a], [BM00b], [Moz98], see also
[Gla03], [BG02], [Rat04]. The talk concerned a joint work with Marc Burger and
Bob Zimmer on the interplay between the linear representation theory and the
structure of these lattices, see [BMZ04]. Let T1 and T2 be locally finite regular
trees. We are interested in cocompact lattices Γ < AutT1 × Aut T2. Such a
lattice is called reducible when both projections pri(Γ) are discrete. Considering
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an irreducible lattice Γ < AutT1 × AutT2 let us denote byHi = pri(Γ) the closures
of the projections in each factor.
Basic Question. Which groups arise as closures of projections of cocompact
lattices in AutT1 × AutT2?

A main theme in [BM97], [BM00a], [BM00b] was that certain local properties
of the subgroups Hi < Aut Ti have far reaching consequences for the structure
of Γ. For a regular tree T we shall say that a subgroup H < Aut T is locally
quasiprimitive (resp. primitive) if for each vertex x ∈ T its stabilizer in H acts on
the neighbouring edges as a quasiprimitive (resp. primitive) permutation group.
To state our results we need the following definitions from [BM00a]:

H(∞) = ∩L<HL

where the intersection is taken over all open finite index subgroups. Let

QZ(H) = {h ∈ H : ZH(h) is open }

be the quasi-center of H . Both are topologically characteristic subgroups of H .
The subgroup H(∞) is closed, and any normal discrete subgroup of H is contained
in QZ(H). We recall next a few basic results established in [BM00a] concerning
the structure of these subgroups.

Theorem 16. ([BM00a] Prop. 1.2.1) Let H < Aut T be a closed non discrete
locally quasiprimitive group. Then

(1) H/H(∞) is compact.
(2) QZ(H) is a discrete not cocompact subgroup of H.
(3) Any closed normal subgroup of H either contains H (∞) or is contained in

QZ(H).

We turn now to the results reported in the talk:

Proposition 17. Let H < AutT be a closed non discrete locally quasiprimitive
group. Assume that it admits a Qp-analytic structure. Let H denote the Lie

algebra of H, let G = Aut(H ⊗ Qp) a linear algebraic group defined over Qp and
let Ad : H → G(Qp) be the adjoint representation. Then

(1) G is adjoint and semisimple.
(2) kerAd = QZ(H).
(3) Ad(H) ⊃ G+.

Our main result is:

Theorem 18. Let T1, T2 be locally finite trees. Let Γ < AutT1 × Aut T2 be a
cocompact lattice. Assume

(1) H(∞) < pri(Γ) < Hi, where Hi < AutTi is a closed non discrete, locally
quasiprimitive subgroup.

(2) There is a linear representation π : Γ → GL(n,C) with infinite image.

Then there are prime numbers p1, p2 such that Hi is Qpi
-analytic and we have an

exact sequence
1 → Λ1 × Λ2 → Γ → (Ad1 ×Ad2)(Γ) → 1
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where

- Λi := Γ ∩Hi is of finite index in QZ(Hi) = kerAdi.
- (Ad1 ×Ad2)(Γ) is an arithmetic lattice in G1(Qp1

) × G2(Qp2
), where Gi

is the Qpi
-semisimple group given by Proposition 17.

Using the above result we can now characterize the “classical”situation:

Corollary 19. Let T1, T2 be locally finite trees. Let Γ < AutT1 × AutT2 be a
cocompact lattice. Assume

(1) Hi
(∞) < pri(Γ) < Hi, where Hi < AutTi is a closed non discrete, locally

primitive subgroup.
(2) There is a linear representation π : Γ → GL(n,C) with infinite image.

Then the following are equivalent:

(1) Γ is linear over C.
(2) Γ is residually finite.
(3) rankQpi

(Gi) = 1 for both i = 1, 2.

In this case the geometric realization |Ti| is isometric to the Bruhat-Tits tree as-
sociated to Gi.
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The normal subgroup property according to Bader-Shalom;
application to Kac-Moody groups

Bertrand Rémy

We introduce the normal subgroup property, a purely group-theoretic property
which was first proved by G.A. Margulis for (irreducible) lattices in higher-rank
(semi)simple Lie groups. We quote a recent theorem by U. Bader and Y. Shalom
generalizing this result to lattices of topological groups. We explain why it fits
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particularly well to topological groups obtained as closed automorphism groups
of buildings. We recall then why Kac-Moody groups over finite fields belong to
this framework. We announce finally that the main technical assumption to apply
Bader-Shalom’s theorem is fulfilled; this is a square-integrability condition which
not only proves the normal subgroup property for Kac-Moody lattices, but may
also have other applications in rigidity theory.

3. Normal subgroup property; amenable and Kazhdan groups

3.1. Normal subgroup property. We start by recalling the following result,
which is due to G.A. Margulis and which covers the case of lattices in Lie groups,
[4], §IV, and [9], §8.

Theorem 20. Let G be a connected (semi)simple Lie group of rank at least 2 with
finite center. Let Γ be an (irreducible) lattice in G. If N/Γ, then either N < Z(G)
or Γ/N is finite.

We henceforth say that a group Γ has the normal subgroup property (NSP) if
any normal subgroup of Γ either is finite and central, or has finite index in Γ.

3.2. Amenability and Kazhdan property. Each of these two properties has a
lot of equivalent definitions, and the properties themselves are complementary to
one another [3].

Definition. (i) Let ρ : G → U(H) be a unitary representation. We say that ρ
almost has invariant vectors if for any ε > 0 and any compact subset C ⊂ G,
there is a unit vector v such that sup

g∈C

‖ρ(g).v − v‖< ε.

(ii) A locally compact group G is called amenable if its regular representation
L2(G) almost has invariant vectors.

(iii) A locally compact group G is called Kazhdan if any unitary representation
of G which almost has invariant vectors actually has non-trivial invariant vectors.
Then G is also said to have property (T).

The properties are complementary since a locally compact group G which is
both amenable and Kazhdan is such that the constant functions lie in L2(G), which
implies its compactness. The main idea in Margulis’ normal subgroup theorem
(Theorem 20) is to prove that a factor group Γ/N , when N is not central, is both
amenable and Kazhdan for the discrete topology.

3.3. Bader-Shalom’s result. This strategy is also the starting point of the theo-
rem below ([1], Theorem 1.1), which deals with the case of quite arbitrary products
of locally compact groups as ambient groups of irreducible lattices.

Theorem 21. Let G1, G2 be two locally compact, non-discrete, compactly gener-
ated groups, not both isomorphic to (R,+). Let Γ < G1 × G2 be an irreducible
cocompact lattice. If every non-trivial closed normal subgroup of G1 or G2 is co-
compact, then every proper quotient of Γ is finite.

Recall that in this general context, a lattice Γ in a product of topological groups
is called irreducible if the projections of Γ to each factor is dense.
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4. Building automorphisms

4.1. Strong transitivity and normal subgroups. The structure of buildings is
well-adapted to the normal subgroup property since there is also a sharp dichotomy
on the size of normal subgroups of automorphism groups of buildings.

Proposition 22. Let X be an irreducible, thick building. Let G be a group acting
faithfully and strongly transitively on it, that is transitively on the inclusions of a
chamber in an apartment. Then any normal subgroup of G acts transitively on the
chambers of X.

This result is the combination of [2], IV.2.7, Lemme 2, and of the well-known
fact that a group acting on a building as above has a BN -pair. Note that if X
is furthermore locally finite, then Aut(X) is naturally a locally compact group,
and its closed normal strongly transitive subgroups are cocompact (in particular
amenable).

4.2. Amenable quotients. As already mentioned (Section 1.2), the proof of the
normal subgroup property splits into proving amenability and property (T) for
quotient groups. We can state a more precise result due to U. Bader and Y.
Shalom, only dealing with amenability but not requiring cocompactness of the
irreducible lattice [1], Theorem 1.3.

Theorem 23. Let G1, G2 be two locally compact groups. Let Γ < G1 ×G2 be an
irreducible lattice. Let N be a normal subgroup in Γ. Then Γ/N is amenable if

and only if both Gi/pri(N) are.

Here pri denotes the projection on the factor Gi. The proof of this theorem
makes heavy use of probability theory on topological groups, more precisely of
Poisson and Furstenberg boundaries for such groups. Together with the ideas pre-
sented in 2.A, this leads U. Bader and Y. Shalom to show that if Γ is a cocompact
lattice of a product of irreducible buildings with strongly transitive actions on
simple factors, then Γ has no infinite proper quotient.

5. Exotic things

5.1. Kac-Moody groups over finite fields. The analogy between Kac-Moody
groups and S-arithmetic lattices in positive characteristic is supported by many
arguments. We refer to [6] instead of going into details, but we note that for results
on lattices in general topological groups, Kac-Moody theory provides a wide family
of groups which are new with respect to the classical algebraic group case. An
infinite Kac-Moody group Λ (over a finite field) acts diagonally on the product
X−×X+ of its twinned (locally finite) buildings. The Λ-action on a simple factor is
not discrete (because it is strongly transitive), and we call geometric completion of
positive (resp. negative) sign the closure Λ+ (resp. Λ−) of the image of Λ in the
action on the positive (resp. negative) building. If we set G := Λ− × Λ+, then
Λ can be seen as a discrete subgroup of G via the diagonal embedding. If we
denote by W (t) the growth series of the common Weyl group W of X− and X+,
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then the finiteness of W ( 1
q
) implies that Λ is a lattice of G. The group Λ is

generated by finitely many finite subgroups, which provides a length function `Λ.
To any fundamental domain X for G/Λ is attached a cocycle αX : G × X → Λ
by: αX(g, x) = λ⇔ gxλ∈X .

5.2. Square-integrability. The main difficulty with Kac-Moody lattices is that
they are never cocompact; so we cannot apply to them 1.C. Still, in Y. Shalom’s
work on property (T) for quotients [8], a square-integrability criterion is proposed
as a measure-theoretic substitute for the cocompactness of irreducible lattices.
That this criterion is fulfilled by Kac-Moody lattices follows from the following
theorem, the main result of [7].

Theorem 24. Let Λ, G and W be as above. Then, there is a fundamental domain
D for G/Λ, which is a countable union of compact open subsets {Dw}w∈W and
such that for any p∈ [1; +∞) and any g∈G, we have:

∫

D

`Λ
(
αD(g, d)

)p
dµ(d) < +∞

whenever the minimal order q of the root groups satisfies W ( 1
q
) < +∞.

This, combined with Bader-Shalom’s theorem, proves:

Corollary. Kac-Moody lattices with irreducible Weyl group have the normal sub-
group property.

As mentioned in [5], the above square-integrability is also a useful hypothesis
to prove super-rigidity results for some actions on non-positively curved metric
spaces by irreducible lattices.
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Combinatorial structure of some hyperbolic and Euclidean buildings

Alina Vdovina

We will call a polyhedron a two-dimensional complex which is obtained from
several oriented p-gons by identification of corresponding sides. Consider a point
of the polyhedron and take a sphere of a small radius at this point. The intersection
of the sphere with the polyhedron is a graph, which is called the link at this point.

We construct several families of finite polyhedra with a given number p of
sides of every face, such that the link of every vertex is a generalized 3-gon. Those
polyhedra are interesting because of their universal coverings, which are hyperbolic
buildings in the case mp > 2m + p see, [4], and Euclidean buildings in the case
p = 3, m = 3, see [1], [2].

We recall the definition of the polygonal presentation, introduced in [5].

Definition. Suppose we have n disjoint connected bipartite graphs G1, G2, . . .Gn.
Let Pi and Li be the sets of black and white vertices respectively in Gi, i = 1, ..., n;
let P = ∪Pi, L = ∪Li, Pi ∩ Pj = ∅ Li ∩ Lj = ∅ for i 6= j and let λ be a bijection
λ : P → L.

A set K of k-tuples (x1, x2, . . . , xk), xi ∈ P , will be called a polygonal presenta-
tion over P compatible with λ if

(1) (x1, x2, x3, . . . , xk) ∈ K implies that (x2, x3, . . . , xk , x1) ∈ K;
(2) given x1, x2 ∈ P , then (x1, x2, x3, . . . , xk) ∈ K for some x3, . . . , xk if and

only if x2 and λ(x1) are incident in some Gi;
(3) given x1, x2 ∈ P , then (x1, x2, x3, . . . , xk) ∈ K for at most one x3 ∈ P .

If there exists such K, we will call λ a basic bijection.
Polygonal presentations for n = 1, k = 3 were listed in [3] with the incidence

graph of the finite projective plane of order two or three as the graph G1.
We can associate a polyhedronK on n vertices with each polygonal presentation

K as follows: for every cyclic k-tuple (x1, x2, x3, . . . , xk) from the definition we take
an oriented k-gon on the boundary of which the word x1x2x3 . . . xk is written. To
obtain the polyhedron we identify the sides with the same label of our polygons,
respecting orientation. We will say that the polyhedron K corresponds to the
polygonal presentation K.

Lemma 25. ([5]) A polyhedron K which corresponds to a polygonal presentation
K has graphs G1, G2, . . . , Gn as the links.

Remark. Consider a polygonal presentation K. Let si be the number of vertices of
the graph Gi and ti be the number of edges of Gi, i = 1, ..., n. If the polyhedron K
corresponds to the polygonal presentation K, then K has n vertices (the number
of vertices of K is equal to the number of graphs), k

∑n
i=1 si edges and

∑n
i=1 ti

faces, all faces are polygons with k sides.

Let G be an incidence graph of a finite projective plane P2(Fq). Its black and
white vertices correspond to points and lines of P2(Fq) respectively.
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We mark black points of G with the different letters x1, ..., xq2+q+1 of some
group alphabet A and white points by the letters of another group alphabet B =
{y1, . . . , yq2+q+1}.

Let T0 be the triangle presentation with , described in 4 of [3] with k = 3, n = 1
and let G be the unique graph of this presentation, λ0 be its basic bijection.

We consider three graphs G1, G2, G3 such that G1,G2 are isomorphic to G and
G3 is isomorphic to G′. The black vertices of Gt are marked with letters of an
alphabet At, isomorphic to A, At = {xt

1, . . . , x
t
q2+q+1}, t = 1, 2, 3.

The white vertices of Gt are marked with letters of an alphabet Bt, isomorphic
to B, Bt = {yt

1, . . . , y
t
q2+q+1}, t = 1, 2, 3.

Let P = ∪At, L = ∪Bt. The bijection λ : P → L is defined as λ : xt
i → yt+1

i ,
t = 1, 2, 3; i = 1, ..., q2 + q + 1 (t+ 1 and t+ 2 are taken modulo 3). We construct
a set of triples T and show later, that T is a polygonal presentation with k = 3,
n = 3 and basic bijection λ.

We construct the set T as following:
Let xi be a point of P2(Fq), yi = T (xi). Let I(yi) be the set of points incident

to the line yi.

Definition. For each cyclic triple (xi, xj , xl) from T0 we take to T three cyclic
triples (x1

i , x
2
j , x

3
l ),(x

1
j , x

2
l , x

3
i ),(x

1
l , x

2
i , x

3
j ) if i, j and l are not equal pairwise and

one cyclic triple (x1
i , x

2
j , x

3
l ), if i = j = l .

The polyhedron which corresponds to T contains three vertices, 1,2,3. For each
cyclic triple (x1

i , x
2
j , x

3
l ) ∈ T we take an oriented triangle with letters x1

i , x
2
j , x

3
l on

its sides. Vertex 1 lies between x1
i and x2

j , vertex 2 lies between x2
j and x3

l , vertex

3 lies between x3
l and x1

i . The polyhedron is obtained by identification sides with
the same labels respecting orientation.

Now we explain, how to construct a polyhedron with k > 3 vertices and faces,
which are polygons with k sides. Let w = z1 . . . zk be a reduced word of length
k in three letters a, b, c which does not contain proper powers of the letters a, b, c
(each one of z1 . . . zk is a, b or c. We take k− 3 alphabets Ai = {xi

1, . . . , x
i
q2+q+1},

i = 4, ..., k isomorphic to Ai, i = 1, 2, 3 and the isomorphism induced by indexes.
Now, each triple (x1

i , x
2
j , x

3
l ) from the main construction T we replace by a k-tuple

such that zs = a has to be replaced by xs
i ; zs = b has to be replaced by xs

j and
zs = c has to be replaced by xs

l . Then, with each k-tuple we consider all its cyclic
permutations. The construction Pk,k just described is a polygonal presentation.
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Isomorphisms of groups acting on buildings

Pierre-Emmanuel Caprace

(joint work with Bernhard Mühlherr)

We are interested in the isomorphism problem for two classes of groups:

• Coxeter groups, which act on thin buildings,
• Kac-Moody groups, which act on thick twin buildings.

Coxeter groups

A Coxeter group W possesses a set of involutory generators S such that all
relations satisfied by pairs of elements of S provide a presentation of W . The
ordered pair (W,S) is called a Coxeter system.

The isomorphism problem for Coxeter groups can be stated as follows.

Problem. Determine all pairs of Coxeter systems (W1, S1), (W2, S2) such that
W1 and W2 are isomorphic. Equivalently, given a Coxeter group W , determine
all subsets S ⊆W such that (W,S) is a Coxeter system.

Although the complete answer to this question is still unknown, many results
in this direction have been obtained over the past 5 years. Moreover, it is con-
jectured in [2] that all irreducible Coxeter groups of finite rank are strongly rigid
up to diagram twisting. The following result gives an example of a very favorable
situation.

Theorem 26. Let W be an infinite, irreducible Coxeter group of finite rank and
2-spherical type. Then W is strongly rigid. In other words, all subsets S ⊆ W
such that (W,S) is a Coxeter system are conjugate in W .

The same property was proved to hold for Coxeter groups acting effectively,
properly and cocompactly on contractible manifolds by Charney-Davis [7].

The proof of the previous result has two main steps. The first one is the reflec-
tion independence (namely, the fact that any automorphism of W leaves the union
of the conjugacy classes of elements of S invariant). It is due to Haglund-Mühlherr
[8]. The second step was completed in [4]. It uses a version of Kac’ conjugation
theorem due to Howlett-Rowley-Taylor [9] and valid for arbitrary Coxeter groups
of finite rank.

Kac-Moody groups

A Kac-Moody group G over a field K (see [11] and [15] for the definitions)
possesses a system of subgroups ((Uα)α∈Φ(W,S), H) such that G is generated by
(
⋃

α∈Φ(W,S) Uα) ∪ H and has a presentation in terms of these generators which

is analogous to Steinberg’s presentation of Chevalley groups. Here, the symbol



Buildings and Curvature 1271

Φ(W,S) denotes the set of roots of some Coxeter system (W,S) of finite rank;
if (W,S) has spherical type, then G is a Chevalley group over K. The triple
(G, (Uα)α∈Φ(W,S), H) is called a twin root datum (see [11] for the definition).

The isomorphism problem for Kac-Moody groups can be stated as follows.

Problem. Determine all pairs of twin root data (G1, (U1,α)α∈Φ(W1 ,S1), H1),
(G2, (U2,α)α∈Φ(W2,S2), H2) such that Gi is a Kac-Moody group over a field Ki

(i ∈ {1, 2}) and G1 is isomorphic to G2. Equivalently, given a Kac-Moody group
G over a field K, determine all systems of subgroups ((Uα)α∈Φ(W,S), H) of G such
that such that (G, (Uα)α∈Φ(W,S), H) is a twin root datum.

In the special case of Chevalley groups, a complete answer is known, due to
Steinberg [13] and Borel-Tits [1]. It says that a Chevalley group G over a field
K is involved in an essentially unique twin root datum of spherical type up to
conjugation, except if the field K is very small (of cardinality ≤ 7) in which case
there are some well known exceptions.

In the general case, we have the following result.

Theorem 27. ([3], [5]) Let Di = (Gi, (Ui,α)α∈Φ(Wi,Si), Hi) be a twin root datum
coming from a Kac-Moody Gi over Ki, where Ki is a finite field of cardinality ≥ 4
or an algebraically closed field (i ∈ {1, 2}). Let ϕ : G1 → G2 be an isomorphism.
Then K1 ' K2 and ϕ induces an isomorphism of D1 to D2, except if G1 and G2

are both finite and ϕ is one of the exceptional isomorphisms mentioned above.

This result was conjectured in the case K1 = K2 = C by Kac-Peterson [10],
and proved for complex Kac-Moody groups of affine type by Carter-Chen [6] and
certain Kac-Moody groups of hyperbolic type over finite fields by Rémy [12].

Remark. It is a fact that a Kac-Moody group G over a field K is finitely generated
if and only if K is finite. Thus we may assume that K1 and K2 are either both
finite or both algebraically closed in the previous statement.

Our proof of Theorem 27 rests heavily on the properties of the action of a
Kac-Moody group on the associated twin building. The main idea is to reduce
the problem to an analogous problem within a fixed apartment. We can then
apply the aforementioned version of Kac’ conjugation theorem to finish the proof.
This reduction is achived by analyzing certain finite subgroups of the Kac-Moody
groups under consideration. A crucial tool is the fixed point theorem for finite
groups acting on arbitrary buildings. Another relevant tool is a theorem of Tits
[14] on fixed points of SL2(K) acting on a tree.
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Automorphisms of Rank One Buildings

Markus Stroppel

(joint work with Hendrik Van Maldeghem)

The title is not a misprint. Although buildings of rank one are, by definition,
nothing but sets, there is additional structure obtained by extending constructions
from higher rank buildings to this boundary case.

Let X be a noncompact symmetric space of rank one, and let U denote its
boundary. We may think of X as a hyperbolic space (over K ∈ {R,C,H,O}),
embedded in a projective space in such a way that the traces of lines are sub-
spaces of minimal constant curvature (Beltrami–Klein model). The boundary U
is homeomorphic to a sphere (of dimension d, say), and the non-trivial traces of
lines on U are spheres of some fixed dimension s. Our aim is to determine all the
automorphisms of the structure (U,B), where B consists of the non-trivial traces
(blocks).

The present notes give an overview of results that are obtained in [6].

6. Hermitian Forms, Semi-Similitudes, and Reflections.

Adopting a general point of view — and ignoring hyperbolic spaces over R

(where the boundary should be treated as a Möbius space) and the hyperbolic
plane over O which also requires a different approach — we consider a (not nec-
essarily commutative) field K with charK 6= 2, an involution σ on K, and a
non-degenerate σ-hermitian form f of Witt index 1 on Kn. We write x̄ := σ(x).
The unital corresponding to this form is U := {vK | v ∈ Kn \ {0}, f(v, v) = 0}.
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A semi-linear bijection γ : Kn → Kn (with companion automorphism αγ) is
called a semi-similitude of f if there is a scalar rγ such that for all v, w ∈ Kn

we have f(γ(v), γ(w)) = rγ αγ(f(v, w)). The unitary transformations are just
the semi-similitudes γ with rγ = 1 and αγ = idK. Clearly, every semi-similitude
induces a bijection of the unital that preserves the system of blocks.

A linear transformation is called a transvection if it fixes every vector in some
hyperplaneH and every coset in Kn/H . For a unitary transvection, the hyperplane
of fixed points has to be the orthogonal space v⊥ of some vector with f(v, v) = 0.
The automorphism τ of (U,B) induced by a unitary transvection different from
the identity fixes exactly one point of U (called the center of τ) and every block
through that point.

It suffices to treat the case where n = 3, because automorphisms of the higher
dimensional unitals can be reduced to automorphisms of plane sections. Replacing
f by a scalar multiple and choosing a suitable basis, we may assume that f has
the form f(v, w) = v0 w2 + v1 w1 + v2 w0.

We generalize a result obtained by J. Tits (see [7] for a proof under the assump-
tion that K is commutative):

Proposition 28. The group T generated by all transvections of U is normal
in AutU,B.

The main step in the proof of this basic observation consists of a purely geo-
metric characterization of the generators of T in terms of their action on (U,B).

Remark. Using a standard argument due to Iwasawa, one proves that T is a simple
group; in fact, it acts two-transitively on U , and the stabilizer Tu of u ∈ U contains
the group Ξ(u) induced by all unitary transvections with center u as a nilpotent
normal subgroup. For each block b through u, the commutator group Ξ(u)′ of
Ξ(u) acts sharply transitively on b \ {u}. This provides one way of describing the
blocks in a purely group-theoretical way.

The group AutU,B acts faithfully on T by conjugation, inducing exactly those
automorphisms of T that preserve the system {Ξ(u) | u ∈ U} of subgroups.

Our aim is to reconstruct an ambient building (namely, the projective space
∆(K) consisting of all subspaces of Kn) in an AutU,B-equivariant way. To this
end, we study the unitary reflections : a unitary involution γ is called a reflection
if it fixes some hyperplane H pointwise, the orthogonal space H⊥ is then called
the center of γ.

A unitary reflection is called exterior if it fixes some point on U , it is called
interior otherwise. Describing the reflections as suitable products of elements of T,
we obtain:

Proposition 29. (1) Every exterior reflection belongs to T, and each of its
conjugates under AutU,B is a reflection, as well.

(2) If the center of a reflection is spanned by some v with

f(v, v) ∈ {zx̄x | z ∈ Z (K) , x ∈ K}

then this reflection belongs to T, and so do all its conjugates under AutU,B.
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(3) If the center of a reflection is spanned by a vector v such that there exists
p ∈ K \ {0} with p̄ = −p and f(v, v) p = p f(v, v) then this reflection
belongs to T, and so do all its conjugates under AutU,B.

Each of the unitals over C or H is covered by at least one of the cases mentioned
in the previous proposition.

7. Reconstruction of the Ambient Building.

The unitals that we consider are described by subsets of projective spaces.
After our reduction to K3, we actually deal with a projective plane. In order to
reconstruct this structure, we note that every point outside U is the center of a
uniquely determined unitary reflection. Mapping each subspace to its orthogonal
space gives a polarity interchanging the center of a reflection with the axis of the
same reflection, and a point u ∈ U with the tangent to U at u.

This makes it possible to reconstruct the projective plane, as follows: points are
the points of U and the reflections (used as names for their centers), lines are the
points of U (used as names for the tangents) and the reflections (used as names for
their axes). It remains to describe incidence: this is possible because the center of
a reflection α lies on the axis of a reflection β if, and only if, the product of these
reflections has order 2.

Thus the action of AutU,B by conjugation on the set of all involutions in
AutU,B induces an action on the projective plane if, and only if, the set of reflec-
tions remains invariant. In several cases, we obtain that reflections belong to T,
see the previous proposition. This gives the following result:

Theorem 30. Under each one of the following assumptions, we can show that
the group AutU,B normalizes the set of reflections, that its action on U and on
B extends to an action on the ambient building, and that AutU,B consists of the
bijections induced by semi-similitudes:

(1) Fix (σ) ⊆ {zx̄x | z ∈ Z (K) , x ∈ K}.
(2) For each s ∈ Fix (σ), there exists p ∈ K \ {0} with p̄ = −p and sp = ps.
(3) Every reflection is an exterior one.

Corollary. In particular, these results cover the cases where K is commutative
(this case had already been settled by M.E. O’Nan [2] in the finite case, and by
J. Tits [7] in the infinite case), the case where σ is an involution of the second
kind (i.e., Z (K) 6⊆ Fix (σ)), and the cases where K is a field of quaternions over
any pythagorean field (because the norm x 7→ x̄x is a surjection onto Fix (σ) for
each involution on such a field).

Remark. Applications of our results include a partial solution for the problem
of recognizing the unitals defined by hermitian forms among more general ones
(see [5], cf. also [3] and [4]), and answers to questions regarding uniqueness of
topological, differentiable or symmetric structures.

As a more ambitious prospect, we hope that it becomes possible to obtain a
new, conceptual proof for Mostow’s rigidity theorem [1] in the rank one case.
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Geometry of orbits and holonomy

Carlos Olmos

Holonomy groups play a central role in Riemannian geometry. The holonomy
group, i,e. the orthogonal group obtained by parallel transporting along based
loops, measures the deviation of a Riemannian manifold from being flat. In the
non-generic case (i.e. when it is not the full orthogonal group) it encodes very
useful information about the space. Namely, the parallel tensors of M are just the
extension of those algebraic tensors at a given point p that are invariant under the
holonomy group. The reducibility of the holonomy group representation implies,
via the de Rham decomposition theorem, the local product decomposition of the
space. One of the most important and beautiful results in Riemannian geometry
is the so called Berger Holonomy Theorem: if the holonomy group of an
irreducible Riemannian manifold M is not transitive on the tangent sphere, then
M must be locally symmetric.

The above theorem follows from the classification given by Marcel Berger [1] in
1955 of the possible holonomy groups of non-locally symmetric spaces. He used
the fact that the curvature tensor and its covariant derivative at one point, take
values in the holonomy algebra. Some years later James Simons [5] gave a purely
algebraic proof of this fact. But his proof is long and involved, using case by
case arguments and double induction. The problem of given a conceptual proof
of Berger Theorem remained. The goal of this lecture is to give the main ideas of
a recent conceptual proof of the above result which is given in [3]. It is based on
submanifold geometry and relates Riemannian holonomy with normal holonomy.
The basic tools can be found in [2]. The proof follows the following lines: let Mbe
an irreducible Riemannian manifold with holonomy group Φ at p. Then

a) The normal space at v to any holonomy orbit Φ.v is totally geodesic in
M , locally, when exponentiated (we call such a submanifold N(v)). This is a
consequence of the Ambrose-Singer holonomy theorem, the Bianchi identity and a
result of Cartan on the existence of a totally geodesic submanifolds with a given
tangent space. Moreover, N(v) splits off the direction of v.

b) The normal holonomy group of Phi.v at v acts by isometry on N(v). This is
by producing a perpendicular variation N(v(t)) of totally geodesic submanifolds of
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M (using the normal parallel transport in Φ.v, along an arbitrary closed curve v(t)
starting at v). A perpendicular variation of totally geodesic submanifolds must
be by isometries. The normal holonomy group must always contain the isotropy
group Φv of Φ at v (restricted to the normal space νv(Φ.v). This is a general result
for full orbits which can be found in [2]. But, since N(v) splits off the direction of
v, we have that the intrinsic holonomomy ofN(v) must lie in the isotropy group Φv

(restricted to the normal space). Then the isotropy of N(v) contains the (intrinsic)
holonomy of N(v) at v. From this fact it is standard to show that N(v) is locally
symmetric.

c) If Φ is not transitive on the sphere then, for any principal vector w, there
exists a line in the normal space of Φ.w, not going through the origin, such that the
normal spaces to Φ-orbits, through points of such a line, generate the full tangent
space. Moreover, w belongs to the intersection of this one-parameter family of
normal spaces. This is in fact, a general lemma about orthogonal (non-transitive)
group actions. Such a line is in fact generic and passes eventually through focal
orbits.

d) Therefore, for almost any w there exists a family of totally geodesic locally
symmetric submanifolds ofM whose tangent spaces generate the full tangent space
TpM and such that w belongs to the intersection of this family. This implies the
local symmetry of M .

Using similar arguments it is given in [4] a proof of the theorem of Simons on
holonomy systems.
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Isoperimetric inequalities for quotients of buildings

Enrico Leuzinger

Let B be a Euclidean or hyperbolic building and let G ⊂ Aut B be a locally
compact unimodular group, which acts strongly transitively on B. We use graphs
G, quasi-isometric to B, to study asymptotic properties of quotients Γ\B, where
Γ is a discrete subgroup of G. If G has Kazhdan’s property (T) we show that
such quotients satisfy strong isoperimetric inequalities. This yields new examples
of graphs with positive Cheeger constant. Such graphs cannot be bi-Lipschitz
embedded into Hilbert space. Moreover, simple random walks on such quotients
are shown to be recurrent if and only if Γ is a uniform lattice in G.
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Combinatorial Building Theory

Peter Abramenko and Hendrik Van Maldeghem

8. Characterizations of apartments

In the following, (W,S) denotes a Coxeter system and ∆ a thick building of
type (W,S). The set of chambers of ∆ will be denoted by C(∆) and the Weyl-
distance on C(∆) with values in W by δ. We summarize some of our results
dealing with the interrelations between the fundamental notions of combinatorial
building theory such as chambers, adjacency, W -distance, opposition (in the case
of spherical buildings), convexity and apartments.

The first theorem to be mentioned here gives a nice combinatorial characteriza-
tion of apartments in spherical buildings by means of the opposition relation. As
pointed out in [1], a similar result also holds true for twin buildings. Our investi-
gations of twin buildings eventually led to a new definition of them in [2]. In order
to avoid additional notation, we confine ourselves to spherical buildings here.

Theorem 31. Let ∆ be spherical and M a non-empty subset of C(∆). For any C
in C(∆), we denote by nM(C) the number of chambers X in M which are opposite
C. Then M is the set of chambers of an apartment of ∆ if and only if the following
two conditions are satisfied.

(i) For each C ∈ M, we have nM(C) = 1
(ii) For each C ∈ C(∆) \M, we have nM(C) ≡ 0 mod 2.

Let us mention in passing that replacing (ii) by the requirement nM(C) ≥ 2 for
C ∈ C(∆)\M does not yield a characterization of apartments. Now observing that
two chambers C and X in ∆ are opposite if and only if δ(C,X) = w0, where w0 is
the element of maximal length in W , one can ask whether similar characterizations
of apartments in not necessarily spherical buildings are available by using other
Weyl distances w. So let ∆ be an arbitrary (thick) building, w ∈ W and M a non-
empty subset of C(∆). For any C in C(∆), we denote by nM,w(C) the number
of chambers X ∈ M satisfying δ(C,X) = w. We now introduce the following
Condition (PM,w):

(PM,w) For each C ∈ M, we have nM,w(C) = 1;
for each C ∈ C(∆) \M, we have nM,w(C) ≡ 0 mod 2.

It is proved in [3] that apartments always satisfy this condition.

Theorem 32. If Σ is an apartment of ∆ and M = C(Σ), then Condition (PM,w)
is satisfied for all w ∈ W .

However, counter-examples show that Condition (PM,w) only characterizes
apartments if we require it for “sufficiently many” w or combine it with the prop-
erty of (gallery) connectedness. So the best possible result to be obtained here is
the following (see [4]).
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Theorem 33. Let `0 be a positive integer which is not greater than the diameter
of ∆ and M a non-empty subset of C(∆). Assume that one of the following two
assumptions is satisfied.

(a) Condition (PM,w) holds true for all w ∈W with length `(w) ≥ `0.
(b) M is connected, `0 is greater than or equal to the diameter of any spherical

rank 2 residue of ∆ and (PM,w) holds for all w ∈ W with `(w) = `0.

Then M = C(Σ) for some apartment Σ of ∆.

In both cases, the main work consists in verifying that M is a convex set of
chambers. In the second case, the following characterization of convexity (which is
not difficult to show but seems to have gone unnoticed before) proves to be useful.

Theorem 34. A non-empty subset M of C(∆) is convex if and only if it is con-
nected and its intersection with any spherical rank 2 residue of ∆ is either empty
or convex.

9. Opposition and W -valued distance

We shall now state a general, rather technical theorem, and afterwards mention
informally some consequences.

Let (W,S) be a Coxeter system, and let w ∈ W be arbitrary. Denote by S(w) all
elements of S that appear in a reduced expression of w in elements of S. It is well
known that S1(w) := {s ∈ S : `(sw) < `(w)} generates a spherical Coxeter group
W1 and, denoting the longest element in that group by wo

1 , that w can be written as
w = wo

1w1, with `(w) = `(wo
1) + `(w1). But now S1(w1) =: S2(w) again generates

a spherical Coxeter group W2 with some unique longest element wo
2 , and hence we

may write w = wo
1w

o
2w2, with `(w) = `(wo

1)+`(w
o
2)+`(w2). Going on like that, we

obtain a unique reduced decomposition of w ∈ W1W2 . . .Wk as w = wo
1w

o
2 . . . w

o
k

for some natural number k, where w0
j is the longest word of the spherical Coxeter

subgroup WSj(w) =: Wj , 1 ≤ j ≤ k. We now have Sj(w) = S(wo
j ), and S(w) is the

union of all Sj(w). A similar reduced decomposition v = vo
1 . . . v

o
m can be defined

for v = w−1, but note that m 6= k is possible!
For a subset T ⊆ S, we say that two chambers are T -adjacent if they are

i-adjacent for some i ∈ T .

Theorem 35. Let ∆ and ∆′ be two thick buildings of type (W,S) and let w ∈W .
Let ϕ : C(∆) → C(∆′) be a surjective map such that δ(C,D) = w if and only if
δ′(ϕ(C), ϕ(D)) = w, for all C,D ∈ C(∆). Then ϕ is a bijection and both ϕ and
its inverse preserve Si(w)-adjacency, for all i ∈ {1, 2, . . . , k}. Similarly for w−1

and Sj(w
−1)-adjacency, for all j ∈ {1, . . . ,m}. Finally, δ(C,D) = u if and only if

δ′(ϕ(C), ϕ(D)) = u, for all u ∈ {w0
1 , . . . , w

0
k , v

0
1 , . . . , v

0
m}, with the decompositions

w = w0
1 . . . w

0
k and w−1 = v0

1 . . . v
0
m introduced above.

A major consequence is that, given a Coxeter system (W,S) and an element
w ∈W , with S(w) = S, every 2-spherical building ∆ of type (W,S) is determined
by its set of chambers and all (ordered) pairs (C,D) of chambers, with δ(C,D) = w.
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A similar conclusion holds for arbitrary types of buildings if w has a unique reduced
decomposition. In other cases there are counterexamples available, see [3].

In particular, a spherical building is completely determined by its set of cham-
bers and all pairs of opposite chambers.

The proof Theorem 35 is rather involved, but the special case of opposition
mentioned in the previous paragraph is illuminating for the general case. We
outline the proof.

It suffices to recover the adjacency relation on the set of chambers from the set
of opposite chambers. Therefore, we prove that two chambers C,D are adjacent
if and only if there exists a third chamber E (note that we assume the building to
be thick!) such that no chamber is opposite exactly one of {C,D,E}. That this
condition is sufficient is proved as follows. Suppose C and D are not adjacent.
Choose an apartment Σ containing C,D, and let Σ′ be an apartment containing a
minimal path from D to C, except for C, and intersecting Σ in a half apartment.
One verifies that Σ′ contains exactly two chambers C ′, C ′′ opposite C, and one
chamber D′ opposite D. Moreover, D′ /∈ {C ′, C ′′} precisely because we assumed
that C and D are not adjacent. Our condition now implies that C ′, C ′′, D′ are the
only chambers of Σ′ opposite E, and this contradicts Theorem 31.

Other consequences of Theorem 35 can be found in [3].
With some additional work, one can also prove that every 2-spherical building is

determined by its set of chambers and all pairs (C,D) of chambers with δ(C,D) =
w, where we do not presuppose the type (W,S) of ∆, nor the element w, but where
we know that S(w) = S! The same conclusion holds for arbitrary buildings if w
has a unique reduced decomposition.
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