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Introduction by the Organisers

It is an interesting artifact that most computational tasks today that arise in
realistic scenarios are intractable, at least if one insists on delivering exact solu-
tions with certainty within a strict deadline. An important mean for surmounting
this intractability barrier is that of approximate computation, where the answer
is guaranteed to be within some small fraction of optimality. One of the great
recent successes in that area has been the discovery of a new paradigm connecting
probabilistic proof verification theory to the theory of approximate computation as
well as some new probabilistic combinatorial and algebraic paradigms in designing
efficient approximation algorithms.

The workshop was concerned with the most important recent developments in
the area of efficient approximation algorithms for NP-hard optimization problems
as well as with new techniques for proving intrinsic lower bounds for efficient
approximation.

In addition to 25 lectures delivered at general sessions, there were several addi-
tional lectures given at the special sessions and the evening problem session. The
Program of the meeting and Abstracts of all talks are listed in the subsequent
sections of this report. The special sessions were on the following topics:

• Steiner Tree and Related Optimization Problems.
• Query Efficient PCPs.
• Routing Problems in Distributed Networks.
• New PCP Results.
• Approximating Combinatorial Auctions Without Randomized Rounding.
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The meeting was held in very informal and stimulating atmosphere. The ad hoc

organized special sessions were extraordinarily interesting and intensive venues for
communicating most recent results. Thanks to everybody who contributed to the
success of this meeting and made it such an enjoyable event!

The organizers and participants thank the Mathematisches Forschungsinstitut

Oberwolfach for its help in organizing this conference.
Special thanks go to Mathias Hauptmann for his help in editing this proceed-

ings. We are also indebted to Christiane Andrade, Cornelia Kaufmann, Martin
Löhnertz, Ignatios Souvatzis and Claus Viehmann for their continuous support in
organizing this conference.

August 2004 Ravi Kannan
Marek Karpinski
Hans Jürgen Prömel



Approximation Algorithms for NP-Hard Problems 1459

Workshop: Approximation Algorithms for NP-Hard Problems

Table of Contents

Alexander Barvinok (joint with Alex Samorodnitsky)
Fast and Crude Combinatorial Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463

Markus Bläser
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Piotr Indyk, and Anastasios Sidiropoulos)
Sublinear Time Approximations for Metric MST and Facility Location
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1474

Petros Drineas
Pass-Efficient Algorithms for Approximating Large Matrices . . . . . . . . . . . . 1476

Martin Dyer
Counting knapsack solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1480

Lars Engebretsen
More Efficient Queries in PCPs for NP and Improved Approximation
Hardness of Maximum CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1482

Uriel Feige (joint with Shimon Kogan)
The Hardness of Approximating Hereditary Properties . . . . . . . . . . . . . . . . . 1485

Sudipto Guha
An Ω(log⋆ n) Hardness of Approximation for the Asymmetric k-Center
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487

Johan H
◦

astad (joint with S. Venkatesh)
On the advantage over a random assignment . . . . . . . . . . . . . . . . . . . . . . . . . 1490

Mathias Hauptmann
PTAS for Dense Steiner Tree Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1492



1460 Oberwolfach Report 28/2004

Tom Hayes (joint with Eric Vigoda)
Coupling with Stationarity: Rapid Sampling for Graph Coloring . . . . . . . . . 1495

Dorit Hochbaum
Transformations to totally unimodular optimizations, Half Integrality and
2-Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1496

Stefan Hougardy (joint with Doratha E. Drake)
Approximation Algorithms for the Weighted Matching Problem . . . . . . . . . . 1499

Klaus Jansen
Improved approximation algorithm for the mixed fractional packing and
covering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1502

Ravi Kannan (joint with Noga Alon, W. Fernandez de la Vega, and Marek
Karpinski)
Random Sampling and Approximation of MAX-CSP Problems . . . . . . . . . . 1505

Marek Karpinski (joint with Piotr Berman and Alex D. Scott)
Approximation Hardness of Short Symmetric Instances of MAX-3SAT . . . 1507

Michael Langberg (joint with Adi Avidor)
On Multicuts and Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509

Monique Laurent (joint with Etienne de Klerk and Pablo Parrilo)
A PTAS for the minimization of polynomials of fixed degree over the
simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513

R. Ravi (joint with Anupam Gupta and Amitabh Sinha)
Boosted Sampling: Approximation Algorithms for Stochastic Optimization 1516

R. Reischuk (joint with Jan Arpe)
Robust Inference of Relevant Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519

Angelika Steger (joint with Jan Remy and Alexander Souza)
Average Case Analysis: Two Seemingly Simple Problems . . . . . . . . . . . . . . . 1520
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Abstracts

Fast and Crude Combinatorial Counting

Alexander Barvinok

(joint work with Alex Samorodnitsky)

We consider the problem of obtaining fast estimates for the cardinality |X | of a
family X ⊂ 2{1,...,n} of subsets of the set {1, . . . , n}. Geometrically, we think
of X as a subset of the Boolean cube {0, 1}n. We assume that X is given to
us by the Optimization Oracle. The oracle accepts a set γ1, . . . , γn of n real
weights as an input and outputs the maximum weight maxx∈X

∑

i∈x γi of a subset
x ∈ X . Examples of families X for which such an oracle is readily available through
existing optimization algorithms include the family of bases of a matroid or bases
in the intersection of two matroids on the common ground set, the family of all
perfect matchings in a given graph, etc. One can argue that the existence of the
Optimization Oracle is a reasonable assumption: the weaker Membership Oracle
which just reports whether a given set x ⊂ {1, . . . , n} belongs the the family
X is obviously too weak for counting purposes: with the Membership Oracle
alone, unless P=NP, we will have hard time deciding whether X is non-empty, for
example, in the case when X is the set of all Hamiltonian cycles in a given graph.
On the other hand, if we consider a slightly more general problem of counting with
multiplicities (each element i of the ground set has a positive integer multiplicity
mi and our goal is to compute

∑

x∈X

∏

i∈x mi), then efficient counting necessarily
implies efficient optimization.

Let us fix a symmetric probability measure µ on R and let us define Γ(X, µ) =
Emaxx∈X

∑

i∈x γi, the expected maximum weight of a subset x ∈ X provided the
weights γ1, . . . , γn are sampled independently at random from the distribution µ.
One can easily see that Γ(X, µ) = 0 if |X | = 1, that Γ(X, µ) ≥ Γ(Y, µ) if Y ⊂ X ,
and that Γ(X × Y, µ) = Γ(X, µ) + Γ(Y, µ), where X ⊂ {0, 1}n, Y ⊂ {0, 1}m, and
X × Y ⊂ {0, 1}n+m. Thus Γ(X, µ) measures how large X is and is somewhat
akin to ln |X |. It turns out that in some rigorously defined sense (see below), the
best measure µ for which Γ(X, µ) approximates ln |X | the closest is the logistic
measure µ0 with the density (2 + eγ + e−γ)−1. Denoting Γ(X) = Γ(X, µ0), we
have ln |X | ≤ Γ(X) with the equality attained if X is a face of the Boolean cube
{0, 1}n. Furthermore, suppose that X is homogeneous, that is, all subsets x ∈ X
have the same cardinality k. Then, for any α > 1 there is a β = β(α) > 0 such that
if |X | ≥ αk then βΓ(X) ≤ ln |X |, and, moreover β −→ 1 as α −→ +∞. In other
words, as long as |X | grows exponentially in k, the value of Γ(X) approximates
ln |X | within a constant factor and the factor approaches 1 as k−1 ln |X | grows.
More precisely, letting t = k−1Γ(X), we have t − ln t − 1 ≤ k−1 ln |X | ≤ t for all

sufficiently large t. Even more precisely, let us define h(t) = sup
0≤δ<1

(

δt + ln
sin πδ

πδ

)

for t ≥ 0. Then h(t) is an increasing convex function and h(t) ≤ k−1 ln |X | ≤ t
for all t ≥ 0. The lower bound is attained asymptotically on random subsets
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X ⊂ {0, 1}n while the upper bound, as we noted above, is attained on faces of
{0, 1}n. Note that the bounds are independent on the size n of the ambient set
and depend only on the size k of the subsets x from X . This phenomenon is
measure-sensitive: roughly, it holds if and only if µ has exponential tail (thus
it does not hold, for example, for the Gaussian measure µ). We also note that
h(t) ≈ (3/2π2)t2 for t ≈ 0 and that h(t) ≈ t − ln t − 1 for large t.

Given the Optimization Oracle for X , it is straightforward to compute Γ(X, µ):
we just sample several n-tuples of weights γ1, . . . , γn and average the outputs.
Suppose that |x| = k for all x ∈ X and that µ = µ0 is the logistic measure (the
case most interesting for us). Then, to approximate Γ(X) = Γ(X, µ0) within an
error ǫ > 0, with an overwhelming probability it is enough to average O(kǫ−2)
outputs. Our numerical experiments indicate that often just one random sample
is enough to compute Γ(X) with a sufficient accuracy. Again, we note that the
number of samples is independent on the size n of the ground set: the same effect
is observed for measures µ with at most exponential tails.

Let µ be the Bernoulli measure: µ{1} = µ{−1} = 1/2. Then the value of
Γ(X, µ) has a very simple geometric meaning: for a subset X ⊂ {0, 1}n, the
value Γ(X, µ) is equal to n/2 minus the average Hamming distance from a point
x ∈ {0, 1}n to X . This observation allows us to relate our method to the classical
Monte Carlo method: sample a number of random points x ∈ {0, 1}n and estimate
|X | by counting how often x lands in X . Indeed, if we choose the trivial distance
d in the Boolean cube: d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y then the
classical Monte Carlo method reduces to estimating the cardinality |X | of a set
through the average distance to the set. It works fine if X is almost the whole cube
{0, 1}n, but it works poorly if X constitutes an exponentially small fraction of the
cube. Changing d to the Hamming metric allows us to recognize exponentially
small subsets X ⊂ {0, 1}n. Finally, fine-tuning the Hamming metric we obtain
the quantity Γ(X) corresponding to the logistic measure µ0. As we noted before,
Γ(X) provides an asymptotically sharp approximation of ln |X | provided X is a
family of k-subsets of {1, . . . , n} of a sufficiently large size: |X | ≥ αk for a large
α. In particular, we should have n ≫ k. The underlying geometric intuition is as
follows: if X is that large, then typical elements x, y ∈ X are roughly 2k Hamming
distance apart, so the difference between “sparse” and “dense” sets X disappears:
all such sets look roughly the same. Thus the upper bound for ln |X | in terms
of Γ(X), achieved for dense sets, and the lower bound, achieved for sparse sets,
converge.

Finally, we state if what sense the logistic measure is optimal. Let M be
the class of symmetric measures µ such that ln |X | ≤ Γ(X, µ) for all subsets
X ⊂ {0, 1}n. Thus, for every µ ∈ M, an upper bound on Γ(X, µ) is automatically
an upper bound for ln |X |. For a µ ∈ M and t ≥ 0, let c(t, µ) = inf k−1 ln |X |,
where the infimum is taken over all families X of k-subsets with k−1Γ(X, µ) ≥ t.
Thus c(t, µ) measures how bad the lower bound for ln |X | can get, given a lower
bound for Γ(X, µ). Then, for all t ≥ 0 and all µ ∈ M, we have c(t, µ) ≤ c(t, µ0),
where µ0 is the logistic measure. The definition of M is quite natural: unless µ is
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concentrated in 0, we have Γ(X0, µ) = α > 0, where X0 is any family of cardinality
2. Then, for direct products X = X0 × . . . × X0, we have Γ(X, µ) ≥ α log2 |X |,
which, after scaling, becomes Γ(x, µ) ≥ ln |X |.

A 3/4-Approximation Algorithm for

Maximum ATSP with Weights Zero and One

Markus Bläser

Introduction

Traveling salesperson problems with weights one and two have been studied for
many years. They are an important special case of traveling salesperson prob-
lems with triangle inequality. Papadimitriou and Yannakakis [8] showed that the
undirected minimization problem is MaxSNP-complete. On the other hand, they
presented a 7/6-approximation algorithm with polynomial running time. Vish-
wanathan [9] considered the corresponding asymmetric problem ATSP(1, 2) and
gave a 17/12-approximation algorithm.

Let MaxATSP(0, 1) be the following problem: Given a directed complete loopless
graph with edge weights zero and one, compute a TSP tour of maximum weight.
MaxATSP(0, 1) is a generalization of ATSP(1, 2) in the following sense: Vishwanathan
[9] showed that any (1−α)-approximation algorithm for the former problem trans-
forms into an (1+α)-algorithm for the latter when replacing weight two with weight
zero. (The other direction is not known to be true.)

By computing a matching of maximum weight and patching the edges together
arbitrarily, one easily obtains a polynomial time 1/2-approximation algorithm for
MaxATSP(0, 1). (Note that each edge has weight at least zero, thus we cannot
loose any weight during the patching process.) Vishwanathan [9] was the first
to improve on this by designing a 7/12-approximation algorithm with polynomial
running time. In 1994, Kosaraju, Park, and Stein [6] gave a 48/63-approximation
algorithm with polynomial time that also worked for maximum ATSP with arbi-
trary nonnegative weights. In their work, they also formulated the so-called path
coloring lemma, which will be crucial for our algorithm. Bläser and Siebert [3] ob-
tained a 4/3-approximation algorithm with running time O(n5/2) for ATSP(1, 2).
This algorithm can also be modified to give a 2/3-approximation algorithm for
MaxATSP(0, 1) with the same running time [4]. Finally, Kaplan et al. [5] generalize
this result by designing a 2/3-approximation algorithm that works for maximum
ATSP with arbitrary nonnegative weights but has a worse running time.

Closely related to MaxATSP(0, 1) is the Directed Path Packing Problem DPP.
Here we are given a directed graph G = (V, E). The aim is to find a subset P
of node-disjoint paths of G such that the number of edges in P is maximized.
By giving edges in G weight one and “non-edges” weight zero, any path packing
transforms into a TSP tour by patching the paths arbitrarily together. On the
other hand, any TSP tour yields a path packing by discarding all edges of weight
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zero. The only exception is the case where an optimum TSP tour has weight n.
Here one weight one edge has to be discarded.

Our main result is a 3/4-approximation algorithm for MaxATSP(0, 1) with poly-
nomial running time. As corollaries, we get a 5/4-approximation algorithm for
ATSP(1, 2) and a 3/4-approximation algorithm for DPP.

Outline of our Algorithm

Kosaraju, Park, and Stein [6] formulate the so-called path coloring lemma. It
states that if each node of a multigraph H has indegree and outdegree at most
two and total degree at most three and H does not contain any 2-cycles (that is, a
cycle with exactly two edges) or triple edges, then H is 2-path colorable. Kosaraju,
Park, and Stein proceed with computing a cycle cover and a matching. (A cycle
cover of a graph is a collection of node-disjoint directed cycles such that each node
belongs to exactly one cycle.) If the matching is carefully chosen, then the union
of the cycle cover and the matching fulfills the premises of the path coloring lemma
and henceforth, is 2-path-colorable. (One also has to deal with the 2-cycles in the
cycle cover separately, the interested reader is referred to the original work.) If one
now takes the color class with the larger weight and patches the paths arbitrarily
together, one gets a TSP tour that has at least half the weight of the combined
weight of the cycle cover and the matching. The weight of an optimum cycle cover
is at least the weight of an optimum TSP tour and the weight of an optimum
matching is at least half the weight of an optimum TSP tour. Thus in the ideal
case, this would yield an 3/4-approximation. However, Kosaraju, Park, and Stein
have to deal with 2-cycles and have to avoid triple edges. Therefore, they only get
a 48/63-approximation. This approach is refined in subsequent works [2, 7].

In this work, we directly compute a maximum weight multigraph that fulfills
the premises of the path coloring lemma. This is done via an LP approach. The
fractional solution H∗ is then rounded to an integer one via an iterated decom-
position scheme, inspired by the one of Alon [1]. Finally the integer solution is
transformed into a TSP tour (or Path Packing) via the path coloring lemma.
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Approximation Hardness of Optimization Problems

Janka Chleb́ıková

In the last decade tight bounds on the efficient approximability for several problems
have been achieved using the Probabilistic Checkable Proof (PCP) theory ([9],
[11], [12]). However, the current state of the PCP technique hardly allows to
obtain tight results for some basic problems (e.g., Steiner Tree, Metric Travelling
Salesman) and for restricted instances of several optimization problems (e.g., in
bounded degree graphs or in intersection graphs of some geometric objects). The
research on restricted instances is particularly motivated as an intermediate step
for proving approximation hardness of some important problems, but it is also of
independent interest.

In restricted cases, gap preserving reductions are usually used to prove approx-
imation hardness results for them from those already known. Due to problem
dependence and lack of universal methods of designing gap preserving reductions,
there are more open questions than known tight results in this area. We contribute
to the systematic research of approximation hardness of various optimization prob-
lems and their restricted variants [2, 3, 4, 5, 6, 7].

In this contribution we present some gap preserving techniques which were used
to obtain inapproximability results for various kinds of dominating set problems
(see [7] for more details) and for many optimization problems restricted to some
geometric graphs (e.g., intersection graphs of d-dimensional boxes).

Dominating Set problems. A dominating set D in a graph G is an independent
dominating set if the subgraph GD of G induced by D has no edges; D is a total
dominating set if GD has no isolated vertices; and D is a connected dominating set
if GD is a connected graph. The corresponding problems Minimum Independent
Dominating Set (Min-IDS), Minimum Total Dominating Set (Min-TDS),
and Minimum Connected Dominating Set (Min-CDS) ask for an indepen-
dent, total, and connected dominating set of minimum size, respectively.

Due to a close relation of the Minimum Dominating Set problem to the
Minimum Set Cover problem almost tight approximability results are known
for the Min-DS problem in general graphs. The best upper bound, which is
logarithmic in maximum degree of the graph, almost matches the lower bound.
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Similar approximation results as in general graphs hold for Min-DS, Min-
TDS, and Min-CDS even in split and bipartite graphs, unless NP has slightly
superpolynomial time algorithms.

For B-bounded graphs (B large) we prove asymptotically tight lower bounds
of lnB (up to lower order terms) for Min-DS, Min-TDS, and Min-CDS even
in bipartite graphs. These results follow from Trevisan’s approximation hardness
result for size-bounded instances of Minimum Set Cover [13] using suitable original
reductions.

The B-Min-IDS problem completely differs from other studied variants of Min-
DS. We present the lower bound for B-Min-IDS that increases linearly with B,
similarly as known upper bound. The result can be obtained using a gap preserving
reduction from a bounded occurrence version of the Max-3-SAT problem.

The following table summarizes the current state of the research for dominating
set problems in asymptotical case (upper bounds in all cases are due to [1], [8],
[10]).

B-Min-DS B-Min-CDS B-Min-TDS B-Min-IDS

L lnB − C ln lnB lnB − C ln lnB lnB − C ln lnB δB

U HB+1 − 1
2 HB + 2 HB − 1

2 B − B−1
B2+1

We introduce various kinds of reductions to achieve lower bounds for B-Min-
DS and B-Min-IDS problems for small values of B. The presented reductions
start mainly from small degree instances of vertex cover, for which inapproxima-
bility results are known also in highly restricted cases (regular graphs with perfect
matching) [2, 6]. All these lower bounds are summarized in the table (∗ means
that lower bound is achieved even in bipartite graphs).

3-Min-DS 4-Min-DS 5-Min-DS 3-Min-IDS 4-Min-IDS 5-Min-IDS

L 391
390

∗ 100
99

53
52

681
680

294
293

∗ 152
151

∗

U 19
12

107
60

117
60 2 65

17
63
13

We show that in directed graphs with indegree bounded by a constant B ≥ 2
the directed version of Min-DS has simple (B + 1)-approximation algorithm, but
it is NP-hard to approximate within any constant smaller than B − 1 for B ≥ 3
(1.36 for B = 2). In directed graphs with outdegree bounded by a constant B ≥ 2
we prove almost tight approximation lower bound of lnB for directed version of
Min-DS. We also point out that the problem in directed graphs is NP-complete
(even in case when both in- and outdegree are bounded).

Optimization problems in d-boxes. The challenge problem in d-box intersection
graphs (d ≥ 2) is the Maximum Independent Set (MaxIS) problem: for a given
set R of n axis-parallel d-dimensional boxes, find a maximum cardinality subset
R∗ ⊆ R of pairwise disjoint boxes. As the problem is NP-hard for any fixed d ≥ 2,
the attention is focused on efficient approximation algorithms. However, in spite
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of a great deal of efforts, it remained open possibilities on efficient approximability
of MaxIS in d-box intersection graphs (d ≥ 2) from the existence of a PTAS, to

non-nonexistence of o(logd−1 n)-approximation algorithm.
We answer in the negative the problem of existence of a PTAS for MaxIS in

axis-parallel d-dimensional boxes for d ≥ 3 and present some explicit NP-hard gap
type results, even in highly restricted cases. Furthermore, we provide a generic
method for the proof of APX-hardness (and hence non-existence of a PTAS) for
many combinatorial optimization problems in intersection graphs of axis-parallel
d-dimensional boxes for any fixed d ≥ 3, e.g. Vertex Cover, Dominating
Set, Edge Dominating Set, Independent Dominating Set, and Induced
Matching.

The idea of our APX-hardness results is based on the following two results:
(i) Many optimization problems are APX-hard even when restricted to suitable
subdivisions of graphs of degree 3, e.g., 2k or 3k subdivision of each edge. (ii) Each
graph obtained from an arbitrary graph by at least 3-subdivision of each edge is
an intersection graph of d-boxes (for any d ≥ 3). Moreover, its realization can be
done in time polynomial in size of the subdivision graph.

This is joint work with Miroslav Chleb́ık, MPI Leipzig, Germany.
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Coloring Semirandom Graphs Optimally

Amin Coja-Oghlan

The graph coloring problem – given a graph G, compute the chromatic number
χ(G) – is of fundamental interest in theoretical computer science. At the same
time, graph coloring is notoriously hard. Indeed, no polynomial time algorithm
can approximate the chromatic number of graphs of order n within a factor of
n1−o(1) (under a certain complexity theoretic assumption) [3]. This hardness re-
sults motivates the quest for coloring heuristics that run in polynomial time and
succeed on “most” instances; Krivelevich [7] provides a recent survey.

To evaluate heuristics rigorously, we need to specify a stochastic model of the
input instances. Kučera [8] has suggested the following model Gn,p,k of random
k-colorable graphs: first, partition the vertex set V = {1, . . . , n} into k classes
V1, . . . , Vk of size n/k randomly (we assume that k divides n). Then, include ev-
ery possible Vi-Vj-edge with probability p = p(n) independently (i 6= j). However,
a drawback of this model is that the instances are purely random. As the the-
ory of random graphs shows, such instances have a very particular combinatorial
structure, so that designing heuristics for Gn,p,k yields heuristics for a very special
class of instances.

To figure out more “robust” heuristics, semirandom models have been studied,
where problem instances are made up of a random share and an adversarial part.
For instance, Blum and Spencer [1] have suggested a semirandom model G∗

n,p,k of
k-colorable graphs: first, choosing a random k-colorable graph G0 = Gn,p,k. Let
V1, . . . , Vk be its planted k-coloring. Then, an adversary may add further Vi-Vj-
edges (i 6= j) to complete the instance G = G∗

n,p,k. We say that G∗
n,p,k has some

property with high probability (“whp.”) if this property holds with probability
1 − o(1) as n → ∞ regardless of the adversary’s decisions.

We have the following two results, which complement each other.

Theorem 1. Suppose that k = k(n) and p = p(n) are such that np ≥ max{(1 +
ε)k ln(n), C0k

2} for a certain constant C0. There is a polynomial time algorithm
Color that colors G∗

n,p,k optimally whp.

Theorem 2. Let 3 ≤ k ≤ n99/100. There is no polynomial time algorithm that for
np ≤ (1 − ε)k

2 ln(n/k) k-colors G∗
n,p,k whp., unless NP⊂RP.

The best previous result on coloring G∗
n,p,k is due to Feige and Kilian [4], who

have suggested a semidefinite programming (“SDP”) based heuristic that finds a
k-coloring whp. if k is constant and np ≥ (1 + ε)k ln(n). Theorem 1 improves on
this result in the following respects.
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• It is not clear whether the algorithm in [4] can handle the case that k grows
as a function of n (the analysis of the SDP rounding techniques does not
seem to work in this case). In contrast, choosing p = 1/2 we can make k
as large as Ω(

√
n) in Theorem 1.

• The algorithm Color is somewhat simpler. For instance, it needs to solve
an SDP only once, whereas [4] requires several SDP computations. How-
ever, the techniques of [4] apply to further problems that we do not address
(e.g. “maximum independent set”).

• Instead of just producing a k-coloring of G = G∗
n,p,k whp., Color also

provides a certificate that the output is indeed optimal.

Furthermore, Theorem 2 improves by a factor of k
2 on a hardness result from [4],

where it is shown that it is NP-hard to k-color G∗
n,p,k if np ≤ (1 − ε) ln(n). For

k = o(lnn), Theorem 2 implies that the positive result Theorem 1 is essentially
best possible (up to a factor of 2).

The algorithm Color for Theorem 1 employs a SDP relaxation ϑ̄2 of the chro-
matic number, which has been studied by Szegedy [9]. The SDP ϑ̄2 is defined as
follows. A rigid vector k-coloring of a graph G = (V, E) is a family (xv)v∈V of unit
vectors in Rn such that 〈xv, xw〉 ≥ − 1

k−1 for all v, w ∈ V , and 〈xv, xw〉 = − 1
k−1

for all {v, w} ∈ E. Let

ϑ̄2(G) = inf{k > 1| G has a rigid vector k-coloring}.
Then, ϑ̄2(G) ≤ χ(G).

The algorithm Color for Theorem 1 is as follows. The input is a graph G =
(V, E), and the output is either an optimal coloring of G or “fail”.

1. Compute ϑ̄2(G) along with a rigid vector ϑ̄2(G)-coloring (xv)v∈V .
2. Let H = (V, F ) be the graph with edge set F = {{v, w}| 〈xv, xw〉 ≤ 0.995}.

Apply the greedy algorithm for graph coloring to H . Let C be the resulting
coloring.

3. If C uses at most ⌈ϑ̄2(G)⌉ colors, then output C as a coloring of G. Otherwise,
output “fail”.

Thus, Color(G) computes the rigid vector coloring (xv)v∈V (this can be done
in polynomial time via SDP [6]) to construct an auxiliary graph in which two
vertices v, w are adjacent if and only if ‖xv − xw‖ ≥ 0.1. To this graph H , Color
applies the simple greedy algorithm that goes through the vertices V in a fixed
order and colors each vertex v with the least color among {1, . . . , n} not yet used
by the neighbors of v.

The proof of Theorem 1 is based on the fact that in G = G∗
n,p,k whp. all

optimal solutions to the SDP relaxation are “integral”, i.e. encode colorings of G.
The phenomenon that optimal fractional solutions are integral whp. has also been
observed in the context of the minmum bisection and the maximum independent
set problem [2, 4, 5].

References

[1] Blum, A., Spencer, J.: Coloring random and semirandom k-colorable graphs. J. of Algo-
rithms 19 (1995) 203–234



1472 Oberwolfach Report 28/2004

[2] Boppana, R.: Eigenvalues and graph bisection: An average-case analysis. Proc. 28th FOCS
(1987) 280–285

[3] Engebretsen, L., Holmerin, J.: Towards optimal lower bounds for clique and chromatic
number. TCS 299 (2003) 537–584

[4] Feige, U., Kilian, J.: Heuristics for semirandom graph problems. JCSS 63 (2001) 639–671
[5] Feige, U., Krauthgamer, J.: Finding and certifying a large hidden clique in a semirandom

graph. Random Structures & Algorithms 16 (2000) 195–208
[6] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimiza-

tion. Springer (1988)
[7] Krivelevich, M.: Coloring random graphs – an algorithmic perspective, Proc. 2nd MathInfo

(2002) 175-195.
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The Natural Random Walk on the Transportation Polytope when the

Number of Sources is Constant

Mary Cryan

(joint work with Martin Dyer, Haiko Müller and Leed Stougie)

In my Oberwolfach talk I presented results on the mixing time behaviour of a
natural random walk on the edge-vertex graph of a transportation polytope. We
are able to show that this walk converges to the uniform distribution on the vertex

set in time nO(m2) whenever the number of sources m is a constant. As far as we are
aware, this is the first result proving rapid mixing of a random walk on the graph
of any non-trivial class of polytopes. Very little is known about the mixing times of
random walks on polytope graphs in general. In fact, it is not even known whether
the diameter of the graph is polynomially bounded in the dimension and number
of facets of the polytope. (See Kalai [6] and Ziegler [11].) In consequence, Markov
chain Monte Carlo (MCMC) has not been well explored as a means of sampling,
or approximately counting, vertices of general polytopes. Even for special classes
of polytopes, such as arbitrary transportation polytopes, approximate counting
algorithms are not known to exist, either by MCMC or by other means (see, for
example, Pak [9]). In fact, the only previous mixing results known are for very
special, and highly symmetric polytopes, such as the n-cube [3] and the Birkhoff
polytope [10].

The transportation problem (TP) is the combinatorial optimization problem of
assigning shipments of some commodity from sources to destinations so that the
transportation cost is minimized. We are given a list of m sources and a list
r = (r1, . . . , rm) of the quantities at each source (ri is the quantity at source i).
We are given a list of n destinations and a list c = (c1, . . . , cn) of the quantities
required at each destination (cj units are required at destination j). Without loss
of generality, we will assume that

∑m
i=1 ri =

∑n
j=1 cj , so that demand exactly

matches supply. We will let the total number of units be denoted by N =
∑m

i=1 ri.
In the general setting of the transportation problem, a list of costs is also given as
input, but these are not relevant for the problem we consider.
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For a given list of supplies r = (r1, . . . , rm) (available from the sources) and
a given list of demands c = (c1, . . . , cn), the elements of the em transportation
polytope P(r, c) can be represented (see, for example, Dyer, Kannan and Mount [5])
as the set of points {X i

j : i ∈ [m − 1], j ∈ [n − 1]} satisfying the system of

inequalities (0.1)-(0.4):

X i
j ≥ 0, i ∈ [m − 1], j ∈ [n − 1](0.1)

∑

j∈[n−1]

X i
j ≤ ri, i ∈ [m − 1](0.2)

∑

i∈[m−1]

X i
j ≤ cj , j ∈ [n − 1](0.3)

∑

i∈[m−1],
j∈[n−1]

X i
j ≥ N − rm − cn(0.4)

The minimum cost for a TP is always attained at a vertex. Therefore counting and
enumerating the vertices of transportation polytopes is of interest. Some results
on the complexity of enumerating the vertices of a polytope appeared in Dyer [4],
where it was shown to be #P-complete to count exactly the number of vertices of
a 2 × n transportation polytope,1 and that it is NP-complete to decide if a 2 × n
transportation polytope is degenerate.

In this paper we consider the problem of sampling the vertices of P(r, c) almost
uniformly at random, when the number of sources m is a constant. We define
a Markov chain W on the set Ω of all vertices of P(r, c) and prove it is rapidly
mixing when m is constant.

Our chain W is a random walk on the edge-vertex graph of the polytope P(r, c).
This graph, also called the skeleton of the transportation polytope, contains a
vertex Z for every vertex of P(r, c), and an edge (Z, W ) for every pair of vertices
Z, W that form an edge of P(r, c). We denote the edge-vertex graph by G(W).
In the full version of this work [2], we show that any vertex Z of P(r, c) has at
most dm incident edges, where dm = ⌊mem−1nm⌋ is polynomially bounded in n.
A single step of our Markov chain W is performed as follows: if Z is the current
vertex, we walk along any incident edge of Z with probability 1/2dm. It is not
difficult to show that this Markov chain is ergodic, and that it converges to the
uniform distribution on the vertices of the transportation polytope. However, our
proof of rapid mixing involves more complex analytical techniques.

Our approach towards proving rapid mixing is inspired by that of Cryan, Dyer,
Goldberg, Jerrum and Martin [1] for sampling contingency tables. This was itself
based on the “balanced permutation” ideas of Morris and Sinclair [7, 8] for the
knapsack problem. However, following the line of proof given in [1], and using
the m-dimensional balanced permutations of [7], leads inevitably to a mixing time

bound of n2O(m)

. To obtain our improvement in the exponent, from exponential to
polynomial, it is necessary to sharpen the tools of [7, 8] using the special structure

1In fact, [4] only claims NP-hardness, but the proof establishes #P-completeness.
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of the problem at hand. Our improvement then results principally from the fact

that we can prove that a strongly O(m2)-balanced nO(m2)-uniform permutation
exists for this problem. Note that it is unknown whether a strongly-balanced
almost-uniform permutation exists for an arbitrary set of m-dimensional vectors.
(See [7] for further information.)

More details and full proofs can be found in [2].
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Sublinear Time Approximations for Metric MST and Facility Location

Problems

Artur Czumaj

(joint work with Christian Sohler and in part with Mihai Bădoiu, Piotr Indyk,
and Anastasios Sidiropoulos)

We present recent advances in the area of sublinear-time approximation algorithms.
We first overview the existing results and briefly discuss the techniques used. Then,
we present two recent results obtained for two classical combinatorial optimiza-
tion problems: metric Minimum Spanning Tree [1] and metric uniform Minimum
Facility Location problem [2].

The design of algorithms operating on massive data sets, has received a lot of
attention in recent years. The practical motivation of this study is that polynomial
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algorithms that are efficient in relatively small inputs, may become impractical for
input sizes of several gigabytes. For example, when we consider approximation
algorithms for clustering problems in metric spaces then they typically have Ω(n2)
running time where n is the number of input points. Clearly, such a running time
is not feasible for massive data sets. But for many problems such a running time
is provably unavoidable. Surprisingly, these lower bounds do not necessarily hold
when one wants to estimate the cost of an optimal solution. In this talk, we will
present two examples of problems for which one can estimate the cost of optimal
solutions in sublinear-time: the metric Minimum Spanning Tree [1] and metric
uniform Minimum Facility Location [2] problems.

Our approach is motivated by the fact that in many applications it suffices to
know the approximate cost of the optimal solution to the problem rather than
to find an approximate solution. Let us consider an example of a company that
wants to invest money and it can relate the cost of the facility location problem
to the possible return on investment. Then it would first solve an instance of the
problem for every market to find out the most profitable one. In such a situation it
is sufficient to know the return on investment before one decides which market to
enter. It is not (yet) necessary to know how to achieve it. Finally, when one knows
which market to enter one only has to compute a solution to a single instance of
the problem. Therefore, if one could approximate the cost of an optimal solution
significantly faster than finding such a particular approximate solution this would
significantly speed up the market analysis.

Similar arguments holds for applications of facility location algorithms, i.e., to
clusterings, and also for other combinatorial optimization problems, including the
minimum spanning tree, the traveling salesman problem, and the minimum Steiner
tree problem.
Specific results: metric MST and its applications [1]. For the Minimum Spanning

Tree problem, we present a randomized algorithm that in time O(n logO(1) n/ǫO(1))
returns a (1 + ǫ)-approximation of the cost of the minimum spanning tree of an
n-point metric space. Since the full description of an n-point metric space is of
size Θ(n2), the complexity of our algorithm is sublinear with respect to the input
size. Our algorithm is almost optimal as it is not possible to approximate in o(n)
time the cost of the minimum spanning tree to within any factor. Furthermore, it
has been previously shown that no o(n2) algorithm exists that returns a spanning
tree whose cost is within a constant times the optimum.

We also mention two interesting applications of our result: randomized

O(n log(O(1) n/ǫO(1))-time algorithms that return a (2 + ǫ)-approximation of the
cost of the minimum-cost traveling salesman and the minimum Steiner tree of an
n-point metric space.
Specific results: metric Facility Location [2]. Next, we discuss the problem of com-
puting the optimal cost of the Minimum Facility Location problem, in the case
of uniform costs and uniform demands. We present a randomized algorithm that
runs in O(n log2 n) time and that approximates the optimal cost to within a con-
stant factor, where n is the number of metric space points. Since the size of the
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representation of an n-point metric space is Θ(n2), the complexity of our algorithm
is sublinear with respect to the input size.

Furthermore, we prove that if the set of facilities and the cites (points that
are to be connected to the facilities) are allowed to be disjoint, then any, even
randomized, approximation algorithm for the cost of the Minimum Facility Loca-
tion that guarantees any bounded approximation ratio for the cost, requires time
Ω(n2). Moreover, our proof can be extended to the problems of estimating the
cost of minimum-cost matching, the cost of bi-chromatic matching, and the cost
of k-median for k = n/2; all these problems require Ω(n2) to estimate the cost of
their optimal solution to within any factor.
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Pass-Efficient Algorithms for Approximating Large Matrices

Petros Drineas

Introduction

We are interested in developing and analyzing fast Monte Carlo algorithms for
performing useful computations on large matrices. We consider new methods for
common problems such as matrix multiplication, the Singular Value Decomposi-
tion (SVD), and the computation of a compressed approximate decomposition of
a large matrix. Since such computations generally require time which is superlin-
ear in the number of nonzero elements of the matrix, we expect our algorithms
to be useful in many applications where data sets are modeled by matrices and
are extremely large. In all these cases, we assume that the input matrices are
prohibitively large to store in Random Access Memory (RAM) and thus that only
external memory storage is possible. Our algorithms will be allowed to read the
matrices a few, e.g., one or two or three, times and keep a small randomly-chosen
and rapidly-computable “sketch” of the matrices in RAM; computations will then
be performed on this “sketch”. We will work within the framework of the Pass-
Efficient computational model, in which the scarce computational resources are
the number of passes over the data, the additional RAM space required, and the
additional time required [7, 8].

Recent interest in computing with massive data sets has led to the development
of computational models in which the usual notions of time-efficiency and space-
efficiency have been modified [3, 7, 13, 14, 15]. In the applications that motivate
these data-streaming models the data sets are much too large to fit into main
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memory. Thus, they are either not stored or are stored in a secondary storage de-
vice which may be read sequentially as a data stream but for which random access
is very expensive. Typically, algorithms that compute on a data stream examine
the data stream, keep a small “sketch” of the data, and perform computations on
the sketch. Thus, these algorithms are usually randomized and approximate, and
their performance is evaluated by considering resources such as the time to process
an item in the data stream, the number of passes over the data, the additional
workspace and additional time required, and the quality of the approximations
returned. The motivation for our particular “pass-efficient” approach is that in
modern computers the amount of disk storage (external memory) has increased
enormously, while RAM and computing speeds have increased, yet at a substan-
tially slower pace. Thus, we have the ability to store large amounts of data, but
not in RAM, and we do not have the computational ability to process these data
with algorithms that require superlinear time.

The Matrix Multiplication Algorithm

We present a simple, novel algorithm for the Matrix Multiplication Problem.
Suppose A and B (which are m × n and n × p respectively) are the two input
matrices. In our main algorithm, we perform c = O(1) independent trials, where
in each trial we randomly sample an element of {1, 2, . . . n} with an appropriate
probability distribution P on {1, 2, . . . n}. We form a m× c matrix C consisting of
the sampled columns of A, each scaled appropriately, and we form a c× n matrix
R using the same rows of B, again scaled appropriately. The choice of P and
the column and row scaling are crucial features of the algorithm. When these
are chosen judiciously, we prove that CR is a good approximation to AB; more
precisely, we show that, with high probability,

‖AB − CR‖F ∈ O( ‖A‖F ‖B‖F /
√

c),

where ‖·‖F denotes the Frobenius norm, i.e., ‖A‖2
F =

∑

i,j A2
ij . This algorithm

can be implemented without storing the matrices A and B in RAM, provided it
can make two passes over the matrices stored in external memory and use O(m+p)
additional RAM memory to construct C and R.

The CUR approximation algorithm

We subsequently present an algorithm which, when given an m × n matrix A,
computes approximations to A which are the product of three smaller matrices,
C, U , and R, each of which may be computed rapidly. Let A′ = CUR be the
computed approximate decomposition; our algorithm has provable bounds for the
error matrix A − A′. The CUR algorithm chooses c = O(1) columns of A and
r = O(1) rows of A randomly; if the m × c matrix C consists of those c columns
of A (after appropriate rescaling) and the r × n matrix R consists of those r rows
of A (also after appropriate rescaling) then the c× r matrix U may be calculated
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from C and R. For any matrix X , let ‖X‖F and ‖X‖2 denote its Frobenius norm
and its spectral norm, respectively. It is proven that

‖A − A′‖ξ x ≤ min
D:rank(D)≤k

‖A − D‖ξ + poly(k, 1/c) ‖A‖F

holds in expectation and with high probability for both ξ = 2, F and for all
k = 1, . . . , rank(A); thus by appropriate choice of k

‖A − A′‖2 ≤ ǫ ‖A‖F

also holds in expectation and with high probability. This algorithm may be imple-
mented without storing the matrix A in Random Access Memory (RAM), provided
it can make two passes over the matrix stored in external memory and use O(m+n)
additional RAM memory. To achieve an additional error (beyond the best rank
k approximation) that is at most ǫ ‖A‖F , the CUR algorithm takes time which is
a low-degree polynomial in max(m, n), k, 1/ǫ, and 1/δ. The proofs for the error
bounds make important use of matrix perturbation theory and previous work on
approximating matrix multiplication and computing low-rank approximations to
a matrix. The probability distribution over columns and rows and the rescaling
are crucial features of the algorithms and must be chosen judiciously.

A PTAS for the weighted Max-Cut Problem on dense graphs

Recent work in the development and analysis of randomized approximation
algorithms for NP-hard problems has involved approximating the solution to a
problem by the solution to an induced subproblem of constant size, where the sub-
problem is constructed by sampling elements of the original problem uniformly at
random. In light of interest in problems with a heterogeneous structure, for which
uniform sampling might be expected to yield suboptimal results, we investigate
the use of nonuniform sampling probabilities. We show that by judicious choice
of sampling probabilities and a variant of the CUR approximation algorithm, one
can obtain error bounds that are superior to the ones obtained by uniform sam-
pling for weighted versions of the Max-Cut problem, for certain regimes of the
error parameter ǫ. Of particular interest is one of our techniques: we develop a
method to approximate the feasibility of a large linear program by a nonuniformly
randomly chosen subprogram; for more details see [11].

Related Work

In other related work, Achlioptas and McSherry have also computed succinctly-
described matrix approximations using somewhat different sampling techniques
[2, 1]. Also included in [2, 1] is a comparison of their methods with those of [7].

Recent work has focused on developing new techniques for proving lower bounds
on the number of queries a sampling algorithm is required to perform in order to
approximate a given function accurately with a low probability or error [4].

Acknowledgements: The aforementioned results emerged from joint work with
Ravi Kannan (Computer Science Department, Yale University) and Michael W.
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Mahoney (Math Department, Yale University); more details can be found in [12,
5, 6, 7, 11, 8, 9, 10].
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Counting knapsack solutions

Martin Dyer

We give efficient algorithms to sample uniformly, and count approximately, the
solutions to a zero-one knapsack problem. The algorithm is based on using dy-
namic programming to provide a deterministic relative approximation. Then “dart
throwing” is used to give arbitrary approximation ratios.

Introduction

We describe an efficient algorithm to sample uniformly, and count approxi-
mately, solutions to the zero-one knapsack problem. The algorithm is based on a
dynamic programming computation which provides a deterministic approximation
ratio of polynomial size. Then simple “dart throwing” techniques give arbitrary
approximation ratios. Previous approaches to this problem were based on the
Markov chain Monte Carlo (MCMC) approach. See, for example, the survey of
Jerrum and Sinclair [2]. The best result known, due to Morris and Sinclair [3],
gave sampling in time O(n9/2+ǫ), for any ǫ > 0, for a problem with n variables.
We give an O(n3) time sampling algorithm and a fully polynomial randomized ap-
proximation scheme (fpras), with relative error ε, running in time O(n3 + ε−2n2),
i.e. essentially the same time bound. The algorithm can be improved using ran-
domized rounding, and also extended to several related problems [1].

The zero-one knapsack problem

Throughout, N will denote the set of all non-negative integers. For positive
integers i ≤ j, we denote by [i, j] the set of integers {i, . . . , j}, and by [j] the set
[1, j] for 1 ≤ j.

Let S denote the solution set of
n
∑

j=1

ajxj ≤ b, with x ∈ Bn = {0, 1}n,

where 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ b are integers.1

Let k be such that aj ≤ b/n for j ≤ k and either k = n or ak+1 > b/n. Let

C = {0, 1}k × {0}n−k. If x ∈ C then
∑n

j=1 ajxj ≤∑k
j=1 aj ≤ kb/n ≤ b, so x ∈ S.

Thus C ⊆ S.
Let αj = ⌊n2aj/b⌋ and δj = n2aj/b − αj , so 0 ≤ δj < 1. Let S′ be the solution

set of
n
∑

j=1

αjxj ≤ n2, with x ∈ Bn,

Now |S′| can be determined in O(n3) time, using dynamic programming. Write
F (r, s) = |{x ∈ Br :

∑r
j=1 αjxj ≤ s}|. In O(n3) time, the dynamic programming

1A single (rational) linear inequality in zero-one variables can always be put in this form.
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tabulates F (r, s) (1 ≤ r ≤ n, 0 ≤ s ≤ n2), using the recursion

F (1, s) =

{

1 if s < α1

2 otherwise

F (r, s) = F (r − 1, s) + F (r − 1, s − αr) (r ≥ 2).

Then we have |S′| = F (n, n2).
If x ∈ S,

∑n
j=1 αjxj ≤ (n2/b)

∑n
j=1 ajxj ≤ (n2/b)b = n2, so x ∈ S′. Thus

S ⊆ S′ and |S| ≤ |S′|. If S′ 6= S, suppose x ∈ S′ \ S. Then clearly there exists
an integer p(x) such that xp = 1 and p /∈ [k]. Otherwise x ∈ C ⊆ S ⊆ S′, a
contradiction. If there is more than one such integer, take p(x) to be the smallest.
Note that we have αp ≥ n.

Define a map f : S′ → Bn, as follows. If x ∈ S then f(x) = x. Otherwise
x ∈ S′ \ S, and p(x) is well defined. Define f(x) = y, where yj = xj for j 6= p(x),
and yp = 0. If x ∈ S′ \ S then, with y = f(x),

n
∑

j=1

ajyj =
b

n2

n
∑

j=1

(αj + δj)yj

=
b

n2

(

n
∑

j=1

αjyj +
n
∑

j=1

δjyj

)

=
b

n2

(

n
∑

j=1

αjxj − αp +

n
∑

j=1

δjyj

)

≤ b

n2
(n2 − n + n)

= b,

so f(x) ∈ S. Hence f(S′) = S. But, for y ∈ S, we have |f−1(y)| ≤ (n + 1), since
any element of f−1(y) may change a single coordinate of y or none. Thus

|S′| = |f−1(S)| ≤ (n + 1)|S|.
Hence 1 ≤ |S′|/|S| ≤ (n + 1) so |S′|/

√
n + 1 approximates |S| deterministically

within a factor
√

n + 1 and can be computed in O(n3) time. Since knapsack is
obviously self-reducible, existence of an for the problem now follows indirectly
from a general result of Sinclair and Jerrum [2]. However, we will now describe a
simpler and more efficient “dart-throwing” method to construct an fpras directly.

The F (r, s) table can be used to determine a uniform point in S′ in O(n)
time, by tracing back probabilistically from F (n, n2), as follows. With probability
F (n − 1, n2)/F (n, n2) set xn = 0, else set xn = 1 with the remaining probability
F (n−1, n2−αn)/F (n, n2). If xn = 0, recursively determine xn−1, xn−2, . . . , x2, x1

by tracing back from F (n− 1, n2) and, if xn = 1, trace back similarly from F (n−
1, n2 −αn). The resulting point of S′ has probability at least 1/(n+ 1) of lying in
S. If so, it is uniformly distributed in S, and we accept it. Otherwise we repeat
the whole process independently. After n + 1 repetitions we have a sample with
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probability at least 1 − e−1. Hence a sample of ν uniform points in S can be
determined in O(n3 + n2ν) time2 with probability at least 1 − e−Ω(n).

To have an fpras for |S|, we need only estimate the probability ρ = |S|/|S′| ≥
1/(n + 1), since |S′| = F (n, n2). With ν points in S′, the sampling error is
O(1/

√
νn). We require this to be smaller than ερ = Ω(ε/n). Hence we need

ν = O(ε−2n). The complexity of the fpras is then O(n3 + ε−2n2).
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More Efficient Queries in PCPs for NP and Improved Approximation

Hardness of Maximum CSP

Lars Engebretsen

Background. For more than a decade, one of the most powerful techniques for
proving approximation hardness results for various types of discrete optimization
problems, in particular constraint satisfaction problems, has been the use of Prob-
abilistically Checkable Proofs (PCPs) for NP. In the PCP model, the verifier is
given an input and oracle access to an alleged proof of the fact that the input
belongs to some specified language. The verifier also has access to a specified
amount of random bits. Based on the random bits and the input, the verifier
decides which positions in the proof it should look at. Once it has examined the
positions of its choice, it uses all available information to decide if the input should
be accepted or rejected. The PCP theorem [1] asserts the startling fact that any
language in NP can be probabilistically checked by a verifier that uses logarithmic
randomness, always accepts a correct proof of an input in the language, accepts
proofs of inputs not in the language with probability at most 1/2, and examines
a constant number of bits of the proof. The probability that the PCP verifier
accepts a correct proof of an input in the language is called the completeness c,
while the probability that the verifier accepts any proof of an input not in the
language is called the soundness s. It is generally desirable to have c ≈ 1 and s as
small as possible.

PCPs using a logarithmic number of random bits can be used to prove ap-
proximation hardness results for many combinatorial optimization problems. In
particular, PCPs querying a small number of bits, say q bits, are intimately con-
nected with Boolean q-ary constraint satisfaction problems: Strong approximation

2Here and elsewhere we count arithmetic operations, rather than operations on bits.



Approximation Algorithms for NP-Hard Problems 1483

hardness results follow immediately from such PCPs with high completeness and
low soundness.

H
◦

astad’s approximation hardness result for linear equations mod 2 gives such
a characterization [4]: The verifier in his PCP for NP queries three bits, has
completeness 1 − ǫ and soundness 1/2 + δ for arbitrary ǫ and δ. Allowing the
verifier to make more queries to the proof is a natural way to lower the soundness

even further; independent repetition of H
◦

astad’s protocol k times gives a PCP that
queries 3k bits, has completeness at least 1 − kǫ and soundness at most (1/2 +
δ)k. Hence the soundness goes down exponentially fast with the number of bits
read from the proof. The purpose of our work [3] is to study exactly how fast
the soundness can go down. There are several possible measures of “fast” in
this context. One is the so called amortized query complexity: For a PCP with
q queries, the amortized query complexity is defined as q̄ = q/ log(c/s). The task
of constructing PCPs for NP with low amortized query complexity—as well as the
related question of testing if a function is linear—has been explored previously,
most notably in a sequence of papers by Trevisan with different coauthors [8,

6, 5]. The key idea in those papers is to use dependent repetitions of H
◦

astad’s
basic protocol. The technical part of the argument then boils down to showing
that this dependence does not destroy the soundness of the verifier. We adapt
and extend these previous ideas. In particular, we show that the idea of using
dependent repetitions can be combined with the recently introduced layered label
cover problem [2].

Our results. Another important efficiency measure for PCPs is the free bit
complexity: A PCP has free bit complexity f if there are, for every outcome of
the random bits used by the verifier, at most 2f possible answers to the verifier’s
queries that make the verifier accept. Using the free bit complexity, our first main
result can be written as follows:

Theorem 3. For any integer f ≥ 2, any positive integer t ≤ f(f − 1)/2, and any
constant ǫ > 0, there is a PCP for NP with free bit complexity f , query complexity
f + t, completeness 1 − ǫ, and soundness 2−t + ǫ.

To compare this with the previously best known result, due to Samorodnitsky
and Trevisan [5], it is instructive to cast this result in terms of the amortized query
complexity as a function of the number of queries:

Corollary 1. For any integer q ≥ 3 and any constant ǫ > 0, there is a PCP for
NP with query complexity q and amortized query complexity 1 +

√

2/q + ǫ.

Writing the soundness of our PCP as a function of the number of queries, we
also get as an immediate corollary of our main result an improved approximation
hardness result for the q-CSP problem:

Corollary 2. For any integer q ≥ 3, it is NP-hard to approximate the q-CSP
problem within 2q−√

2q−2−1/2.

The previously best known construction, due to Samorodnitsky and Trevisan [5]
gives amortized query complexity 1 + 2/

√
q + ǫ and hardness of approximation



1484 Oberwolfach Report 28/2004

within 2q−2
√

q+1+1. While our improvements might at first seem moderate, we
remark that it is possible to approximate the q-CSP problem within 2q−1 in
polynomial time and that a PCP for NP cannot have amortized query complex-
ity 1 + 1/(q − 1) unless P = NP; this follows from Trevisan’s approximation
algorithm for q-CSP [7]. Hence the only possible further improvements, unless
P = NP, along this line of research concern the lower order term in q̄ and the
lower term in the exponent of the approximation factor—where we get an improve-
ment by a factor of

√
2.

In the full version of our paper [3], we also show that there seems to be an un-
derlying reason for why our improvement compared to previous work is moderate.
Our construction follows a paradigm for query efficient PCPs for NP outlined by
many previous researchers: On a high level, it combines a state-of-the-art “outer
verifier” corresponding to a so called “layered label cover problem” with a cor-
responding “inner verifier” that is more query efficient than previously known
verifiers. There are natural ways to extend this inner verifier in certain ways to
produce what, at first, looks like even more query efficient verifiers. We prove,
however, that all such extensions give verifiers that are less query efficient than
our proposed verifier in the sense that the new verifiers have the same soundness
as our verifier but pose more queries. This implies that significantly new ideas re-
garding proof composition and encoding of PCP proofs are required to construct
PCPs for NP that are more query efficient than the one we propose here.
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The Hardness of Approximating Hereditary Properties

Uriel Feige

(joint work with Shimon Kogan)

A graph property π is a collection of graphs. A property π is called nontrivial
if there are infinitely many graphs for which π holds and infinitely many graphs
for which π does not hold. A nontrivial graph property is said to be hereditary if
whenever a graph G satisfies property π then also every vertex induced subgraph
of G satisfies π. The maximum subgraph with property π problem is defined in the
following manner: Given a graph G find the maximum vertex induced subgraph
of G which satisfies property π. The maximum subgraph problem is NP -hard for
any nontrivial hereditary property [LY80].

It is shown in [LY93] that for any nontrivial hereditary property π which is
false for some complete multipartite graph, the maximum subgraph with property
π problem cannot be approximated within a factor of nǫ for some ǫ > 0 unless P =
NP . In particular this theorem applies to the following graph properties: complete
graph, independent set, planar, outerplanar, bipartite, complete bipartite, acyclic,
max degree, interval, chordal.

Furthermore it was proven in [LY93] that for every nontrivial hereditary prop-
erty π, the maximum subgraph with property π problem cannot be approximated
within a factor of 2(log n)c

for some c > 0, unless NP ⊆ QP . Here QP is the class

of languages which can be recognized in quasipolynomial time, i.e. time 2(log n)d

for some constant d. The conclusion of this theorem applies to the graph proper-
ties stated above and the following graph properties: comparability, permutation,
perfect, circular-arc, circle, line graph.

In [Has99] it was shown that max-clique cannot be approximated within a factor
of n1−ǫ for any ǫ > 0, unless NP = ZPP . We prove the following result:

Theorem 4. For every nontrivial hereditary property π and for every ǫ > 0,
the maximum subgraph with property π problem cannot be approximated within a
factor of n1−ǫ, unless NP = ZPP .

For nontrivial hereditary properties which are false for some clique or indepen-

dent set, this result follows in a straightforward manner by combining H
◦

astad’s
result with the proof described in [LY93]. Thus the main contribution of this
paper is in showing that this hardness result holds even for nontrivial hereditary
properties which hold for all cliques and all independent sets.

A hereditary property π for which feasibility can be decided in time at most
exponential in the size of the input is called a feasible hereditary property. In
[Hal00] it was shown that for each feasible hereditary property π, the maximum
subgraph with property π problem can be approximated within a factor of n/ logn.
The maximum hereditary subgraph problem can be approximated within a fac-
tor of O(n(log log n/ logn)2), for feasible properties that fail for some clique or
independent set (Theorem 2.6 of [Hal00]).
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In certain situations we may wish to find a subgraph which does not only
satisfy a property π but is also connected. A property π is called nontrivial on
connected graphs if it holds only for connected graphs, and there are infinitely
many connected graphs for which π holds and infinitely many connected graphs
for which π does not hold. A nontrivial graph property on connected graphs is
said to be hereditary if whenever a connected graph G satisfies property π then
also every vertex induced connected subgraph of G satisfies π. The maximum
connected subgraph with property π problem is defined in the following manner:
Given a graph G find the maximum vertex induced connected subgraph of G
which satisfies property π. The maximum connected subgraph problem is NP -
hard for any nontrivial hereditary problem [Yan79]. Examples of properties that
are hereditary and nontrivial on connected graphs include: clique, star, complete
bipartite, path, tree, planar, outerplanar, bipartite, chordal, interval, max degree
and others.

It is shown in [LY93] that for every property that is nontrivial and hereditary
on connected graphs, the maximum connected subgraph problem cannot be ap-
proximated with ratio 2(log n)c

for some c > 0, unless NP ⊆ QP . Furthermore
it is stated in [LY93] that if π is a nontrivial hereditary property on connected
graphs which is satisfied by all paths and does not hold for some complete bipartite
graph, then the maximum connected subgraph with property π problem cannot
be approximated within a factor of n1−ǫ for every ǫ > 0, unless P = NP . We
prove the following results:

Theorem 5. For every property that is nontrivial and hereditary on connected
graphs and for every ǫ > 0, the maximum connected subgraph problem cannot be
approximated with ratio n1−ǫ, unless NP = ZPP .

Theorem 6. Let π be a nontrivial hereditary property on connected graphs which
is satisfied by all paths and does not hold for some star. Then for every ǫ > 0,
the maximum connected subgraph with property π problem cannot be approximated

within a factor of n/(log n)1+ǫ, unless 3-SAT can be solved in time 2n1−δ

for some
δ > 0.

The reduction used in the proof of theorem 6 is similar to the one used in
in theorem 1 of [Yan79] to show the NP -hardness of the maximum connected
subgraph problem. It is interesting to notice that it follows from theorem 6 that for
certain hereditary properties it is harder to approximate the maximum connected
subgraph problem then the maximum subgraph problem. For example by theorem
6 the maximum connected subgraph of degree smaller then k for every k ≥ 3,
cannot be approximate within a factor of n/(logn)1+ǫ (under the assumption
that there is no subexponential time algorithm for 3-SAT). On the other hand by
Theorem 2.6 of [Hal00] the maximum subgraph of degree smaller then k for every
k ≥ 3, can be approximated within a factor of O(n(log log n/ log n)2) and thus it
is easier to approximate then its connected counterpart.

One can also consider hereditary properties in directed graphs as well as in
undirected graphs. Examples of such properties are: acyclic, transitive, symmetric,
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antisymmetric , tournament, max degree, line digraph. It was proved in [LY93]
that for every nontrivial hereditary property on directed graphs, the maximum
subgraph problem cannot be approximated with ratio 2(log n)c

for some c > 0,
unless NP ⊆ QP . we prove the following:

Theorem 7. For every nontrivial hereditary property on directed graphs and for
every ǫ > 0, the maximum subgraph problem cannot be approximated with ratio
n1−ǫ, unless NP = ZPP .
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An Ω(log⋆ n) Hardness of Approximation for the Asymmetric k-Center

Problem

Sudipto Guha

Abstract

In this short note we discuss the approximability of the Asymmetric k-Center
problem. In the Asymmetric k-Center problem, the input is an integer k and
a complete digraph over n points together with a distance function obeying the
directed triangle inequality. The goal is to choose a set of k points to serve as
centers and to assign all the points to the centers, so that the maximum distance
of any point to its center

This is the first natural problem whose approximability threshold does not
polynomially relate to the known approximation classes.

Introduction

The input to the Asymmetric k-Center problem consists of a complete di-
graph G with vertex set V , a non-negative weight (or distance) function cuv ≥ 0
for every u, v ∈ V , and an integer k. The weight function c satisfies the directed
triangle inequality, that is, cuv + cvw ≥ cuw for all u, v, w ∈ V . Note that cuv

might differ from cvu. The goal is to find a set S of k vertices, called centers, and



1488 Oberwolfach Report 28/2004

to assign each vertex of V to a center, such that the maximal distance of a vertex
from its center is minimized. More formally, we want to find a subset S ⊆ V of
size k, that minimizes maxv∈V minu∈S cuv. This quantity is called the covering
radius of the centers S.

The problem is well-known to be NP-hard [5] and although factor 2 approx-
imation algorithms were known for the symmetric case (when cuv = cvu for all
u, v ∈ V ), good approximation algorithms for Asymmetric k-Center were elu-
sive. In a significant step, Panigrahy and Vishwanathan [6] designed an ele-
gant O(log∗ n) approximation algorithm for the Asymmetric k-Center prob-
lem, which was subsequently improved by Archer [2] to O(log∗ k). Recently
Chuzhoy et al. [3] showed that the approximation algorithms of [6, 2] are asymp-
totically the best possible, unless NP ⊆ DTIME(nlog log n). This is a lower bound
for a natural problem that does not conform to any of the known classes of ap-
proximation (see [1]). A hardness of log∗ n is not even polynomially related to any
of the known approximation classes.

In what follows we review the upper and lower bounds for the
Asymmetric k-Center problem. We will focus on the bicriteria bounds, namely
what is the best approximation that can be achieved using 2k centers. Thus we
would prove a stronger lower bound and a weaker version of the upper bound, but
the overall discussion will be significantly simpler due to this choice.

The Panigrahy-Vishwanathan upper bound

Panigrahy and Vishwanathan observed that we can guess the optimum answer.
They set up a natural set covering instance where there is a set and an element
each for every vertex. Element v belongs to set u if cuv is less than the optimum
radius. If there exists a solution using k centers for the Asymmetric k-Center
problem, then the greedy algorithm yields a set cover of size k(log n

k + 1) for this
set cover instance. Let this cover be S. We can now solve a set cover instance
where the vertices corresponding to the sets in S are the elements. Observe that
there exists a cover of size k using the solution of the Asymmetric k-Center
problem. Thus the greedy algorithm yields a cover S′ of size k(log(log n

k +1)+1).
Observe that if the vertices corresponding to the sets in the cover S′ were chosen

as centers we would be covering every vertex within radius 2 times the optimum
radius. This process after log∗ n steps gives us a cover Ŝ of size at most 2k, such
that the vertices corresponding to Ŝ cover every other vertex within radius log∗ n
times the optimum in the original graph.

Panigrahy and Vishwanathan show that the 2k vertices can be reduced to k by
blowing up the coverage radius by O(1), the reader is referred to [6] for further
details.

The log∗ n lower bound

To motivate the construction, we start from a set cover instance. Given a
collection of subsets S = {S1, . . . , Sm} of a ground set U , we construct a 3 level
graph. There is one vertex at level 0, m vertices in level 1 (corresponding to the



Approximation Algorithms for NP-Hard Problems 1489

sets) and |U | vertices at level 2 (corresponding to the elements). The root is at
level 0, which has a directed edge to the m vertices at level 1 . The vertex si at
level 1 (corresponding to the set Si) has a directed edge to vertex j if and only if
element j belongs to Si. The length of each directed edge is 1.

It is easy to see that every vertex can be covered at radius 1 using k +1 centers
iff there is a set cover of size k. If the triangle inequality does not hold then we
can set all remaining lengths as ∞ and show that there exists a set cover of size k
if and only if we have a bounded covering radius with k +1 centers. In presence of
(directed) triangle inequality, choosing the root covers every vertex within radius
2.
A natural question arises: can we continue this trend, i.e., create a new set cover

instance with m′ sets and |U ′| elements with m′ = |U | and introduce a level 3 of
|U ′| vertices where the directed edges from vertex i of level 2 to vertex j in level 3
is present if and only if j belongs to set i in the new set cover instance. We would
like to argue that a small number of vertices can be used to cover all vertices at
radius 1 if and only if both instances have small set covers.

But there is a difficulty to be overcome in the above - first the two set cover
instances have to be correlated. This is not difficult. The hard part is to argue
that if we had allocated all the centers to level 1 vertices even then we do not
cover all the level 2 vertices within radius 1 and further, there is a vertex in level 3
which can only be reached (from the root) through the vertices in level 2 which are
covered within radius 2. Thus we require a set cover instance where it is NP-hard
to decide between the existence of a small set cover or any cover that excludes a
small fraction of the sets leaves a fraction of elements uncovered.
Chuzhoy et al. in [3] show that using the recent hardness results for the

d-Hypergraph Cover problem, given a 3SAT(5) formula and a parameter d we
can construct a set cover instance such that if the input formula is satisfiable then
an 2/d-fraction of the sets are sufficient to cover all the elements. On the other
hand, if at most 1 − ǫ fraction of the clauses of the given formula are satisfiable,
then any collection of (1− 2/d)-fraction of the sets covers at most a (1− 1/f(d))-
fraction of the elements where f(d) = 2poly(d). Further, the ratio of the number
of elements to number of sets is f(d).

Given the above, for the second set cover instance we choose d′ = 2df(d) (and
assume that the number of sets is the same as level 3 vertices) then in the good case
we would choose 2/d fraction of the level 1 vertices and 2/(2df(d)) fraction of the
level 2 vertices plus the root. Observes that this adds up to 2/d + 1/d fraction of
the vertices of level 1 and the root (using the ratio of sets and elements for the first
instance). If we were to keep adding levels using the recurrence di = 2di−1f(di−1)
(with d1 = d), it is easy to see that the total number of sets used across the level
can be at most 4/d due to the geometrically decreasing terms.

In the good case (the formula is satisfiable) we would cover all vertices within
radius 1. In the bad case, suppose we allocated all the centers to level 1 vertices
then if 8/d1 ≪ 1 − 2/d1 we will cover at most 1 − 1/f(d) fraction of the vertices
in level 1, and since 1 − 1/f(d1) < 1 − 2/d2 at most 1 − f(d2) level 2 vertices are
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covered and so on. Thus if we have a h + 1-level construction we can easily argue
that there will be a vertex in level h none of whose ancestors are covered. This
would imply that this element must be covered at distance h from the root.

Now, it is well known that it is NP-hard to decide if a 3SAT(5) formula lies in
the good case or the bad case. Thus it is NP-hard to decide if in the graph we
constructed, if there is a solution of radius 1 using k centers or radius h using 2k
centers. How large can we make h ? Observe the recurrence sets up a tower of 2’s
and thus h can be made log∗ n − O(1) while ensuring that the overall size of the
graph remains subexponential.
To keep the discussion simple, we have been a bit inaccurate in the above de-

scription, e.g., we cannot control the parameter d as well as the number of sets,
the parameters have to be slightly different due to technical reasons, etc., – but
the above captures the main intuition of the lower bound proof. The reader is
encouraged to look up the detailed reduction in [3].
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On the advantage over a random assignment

Johan H
◦

astad

(joint work with S. Venkatesh)

Given an NP-hard optimization problem we are interested in efficiently finding
a reasonably good solution. Usually, an algorithm is said to be a c-approximation
algorithm for a maximization problem if it, for each instance, produces a solution
whose objective value is at least OPT/c where OPT is the global optimum. A
more general criterion to evaluate its performance is:

OPT − X

ALG − X

where OPT is the optimum, ALG is the objective value of the solution output by
the algorithm and X is a parameter to be chosen. In the usual definition, X is
chosen to be zero since in most optimization problems, all feasible solutions have
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non-negative values. Another possibility previously used by Bellare and Rogaway
[2] is to let X be the minimum possible value of a feasible solution.

In this paper, we focus on constraint satisfaction problems with an underlying

Boolean predicate P. H
◦

astad [4] has shown that for many constraint satisfaction
problems like Max-Lin-p, in which we are required to maximize the number of
satisfied equations in a system of linear equations modulo a prime p, and Max-E3-
Sat, in which we are required to maximize the number of satisfied clauses in a 3-
CNF formula, the random assignment algorithm essentially yields the best possible
approximation ratio. This makes the study of a new measure of approximation that
compares the performance of an algorithm for a constraint satisfaction problem
with the random assignment algorithm interesting. In a related work, Alon, Gutin
and Krivelevich [1] recently studied a new measure for approximation algorithms
called the domination ratio.

Preliminaries. We are given a system of m linear equations modulo 2 in n vari-
ables, together with positive weights wi, 1 ≤ i ≤ m.

We consider two cases: Max-k-Lin-2, in which each equation only contains at
most k variables and Max-Lin-2, the general case. If W is the total weight of all
equations our performance measure is given by

max
L

SAT [OPT (L)]− W/2

SAT [ALG(L)] − W/2
(0.1)

where L is an instance, SAT[OPT(L)] denotes the total weight of equations satis-
fied by the optimal solution and SAT[ALG(L)] denotes the total weight of equa-
tions satisfied by the solution output by the algorithm ALG.

Previous results give some bounds for our current measure. In particular, using

H
◦

astad’s results [4], it can be shown, for k ≥ 3, that it is hard to approximate
Max-k-Lin-2 (and hence Max-Lin-2) within c for every c > 1 unless NP=P and
within (log m)c for some constant c > 0 unless NP ⊆ DTIME

[

mO(log log m)
]

.

Our results. We start with a randomized approximation scheme for our new
measure for the case of few variables in each equation.

Theorem 8. Consider Max-k-Lin-2. There exists a fixed constant c > 1 such that
the following holds: for any k ∈ O(log n), there is a randomized polynomial time
algorithm that, with probability at least 3/4, outputs an assignment that gives an
approximation ratio at most ck√m.

We improve on the inapproximability results mentioned above by using a slightly
stronger assumption.

Theorem 9. Unless NP ⊆ DTIME
[

2(log m)O(1)
]

, for all k ≥ 3 and ǫ > 0, there is

no algorithm that approximates Max-k-Lin-2 within 2(log m)1−ǫ

and runs in time

2(log m)O(1)

.

The proof of this result is similar to the proof of the above cited result by H
◦

astad
but replaces the long code by the split code defined by Khot [3]. This bound can
be strengthened if we allow more variables in each equation.
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Theorem 10. There exists a constant γ > 0 such that it is NP-hard to approxi-
mate Max-Lin-2 within mγ .

This proof uses an idea from derandomization and in particular it is based on
the “walk on expanders” construction. If we allow randomization, we can get a
stronger inapproximability result.

Theorem 11. For any ǫ > 0, unless NP ⊆ RP, there is no randomized polynomial
time algorithm that, with probability at least 1

2 , outputs an assignment for Max-

Lin-2 with an approximation ratio at most m
1
2−ǫ.

The best upper bound we can show for the general case is rather poor.

Theorem 12. For any c > 0, there is a randomized polynomial time algorithm
that, with probability 3/4, outputs an assignment for Max-Lin-2 with approxima-
tion ratio at most m

c log m . There is also, for any c > 0, a deterministic approxi-

mation algorithm that approximates Max-Lin-2 within m
c .

Note: This paper was presented at FOCS 2001 and is accepted for publication in
Random Structures and Algorithms.
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PTAS for Dense Steiner Tree Problems

Mathias Hauptmann

We study the approximability of the Steiner Tree Problem and various related
problems restricted to dense instances. According to Karpinski and Zelikovsky
[KZ97a], an instance of the Steiner Tree Problem is called ǫ-dense if it consists of
graph G = (V, E) (all edge weights are 1) and terminal set S ⊆ V such that each
terminal has at least an ǫ-fraction of V \S in its direct neighborhood. They proved
that for every fixed ǫ > 0, the ǫ-Dense Steiner Tree Problem admits a polynomial
time approximation scheme. We obtain polynomial time approximation schemes
for the ǫ-dense Group Steiner Tree Problem and the ǫ-dense variants of the Prize
Collecting Steiner Tree Problem and k-Steiner Tree Problem. For the ǫ-average
dense case of these problems we obtain APX-hardness results. For the Steiner Tree
Problem in ǫ-everywhere graphs we obtain a PTAS by a reduction to the ǫ-Dense
Steiner Tree Problem.
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Introduction

The Steiner Tree Problem asks for a minimum cost tree connecting a given set
of points S ⊆ V (called the set of terminals) in a graph G = (V, E) with edge
weights c : E → R+. The Steiner Tree Problem is known to be NP-hard even to
approximate. The currently best known lower bound for approximability is ≈ 1.01
due to Chleb́ık and Chleb́ıková [CC02], and Robins and Zelikovsky [RZ00a] gave
a series of polynomial time algorithms with ratio 1 + ln(3)/2 + ǫ ≈ 1.55 + ǫ (ǫ > 0
arbitrary small).

Here we consider the ǫ-Dense Steiner Tree Problem, where the instance consists
of a graph G = (V, E) (all edge weights are 1, i.e. we are just counting edges) and
a terminal set S ⊆ V such that the following condition holds:

ǫ-Density: ∀ s ∈ S |NV \S(s)| ≥ ǫ · |V \ S| (⋆)

where for some vertex v and some set of vertices U ⊆ V , NU (v) = {u ∈ U |{u, v} ∈
E} is the neighborhooh of v in U . Karpinski and Zelikovsky obtained the following
result.
Theorem 13. (Karpinski, Zelikovsky 1997 [KZ97a])
For every fixed ǫ > 0, there is a polynomial time approximation scheme for the
ǫ-Dense Steiner Tree Problem.

Our Results

We consider ǫ-dense versions of various generalizations of the Steiner Tree Prob-
lem and study relaxations of the density condition as well as average and every-
where density. In particular we obtain the following results:
Dense Group Steiner, Prize Collecting and k-Steiner Tree Problems.

The Group Steiner Tree Problem is the following: Given a graph G = (V, E)
with edge weights c(e) ≥ 0, e ∈ E and pairwise disjoint groups Si ⊆ V, 1 ≤ i ≤
m, construct a minimum cost tree T containing at least one representative from
each group Si. Known algorithms for the general case of this problem achieve a
polylogarithmic approximation ratio [GKR98]. An instance G = (V, E), Si, 1 ≤
i ≤ m of the Group Steiner Tree Problem in graphs (all edge weights are 1) is
called ǫ-dense if for each 1 ≤ i ≤ m |NV \S(Si)| ≥ ǫ · |V \ S|, where S :=

⋃

i Si.
In the k-Steiner Tree Problem we are given an instance of the usual Steiner Tree
Problem with terminal set S and a number k ∈ {1, . . . , |S|}, and we have to
construct a minimum cost tree T containing at least k vertices from S. Given a
graph G = (V, E), edge costs c : → R, terminal set S and a function p : S → R,
the Prize Collecting Steiner Tree Problem asks for a tree T containing a possibly
empty subset S′ ⊆ S such as to minimize c(T ) + p(S \ S′). For both problems, an
instance is called ǫ-dense if edge weights are all equal to 1 (graph case) and the
density condition (⋆) holds. We obtain the following result:

Theorem 14. For each ǫ > 0, the ǫ-dense versions of the Group Steiner Tree

Problem, the Prize Collecting Steiner Tree Problem and the k-Steiner Tree Prob-

lem provide a polynomial time approximation scheme.
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The Algorithm for the ǫ-Dense Group Steiner Tree Problem. The basic
idea was already used by Karpinski and Zelikovsky for obtaining a PTAS for
the Dense Steiner Tree Problem: The density condition enables us to perform
a cheap greedy pick. Namely, there exists at least one vertex v ∈ V \ S with
|{i| NSi(v) 6= ∅}| ≥ ǫ · m. We pick such vertex v, arbitrarily choose neighbors si

in the neighbored groups Si and contract the resulting star into a single vertex.
Hence at this point we decide which representatives of the involved groups will
be part of the tree. In order to preserve density, we declare the vertex resulting
from contraction as a non-terminal and iterate. In this way we are able to perform
O(log(m)) greedy picks to reduce number of terminals to constant. Then we
redeclare the contracted vertices as one-element groups. Now for each choice of
representatives of the remaining groups not involved in contractions so far, we solve
exactly an instance of the graph Steiner Tree Problem with a logarithmic number
of terminals. Using Dreyfus-Wagner algorithm, this can be done in polynomial
time. Note that the constants as well as the degree of the polynomial depend on
ǫ as well as on the precision parameter δ.

Obtaining Efficient Approximation Schemes

When performing greedy picks we remove the resulting vertices from the ter-
minal set. This happens in order to preserve the density condition and results in
a running time of the form O(n1/δ). In order to obtain a running time bound not
depending exponentially on 1/δ, we have to reduce the number of terminals to
constant instead of logarithmic. This can be done as follows: Although after one
round of greedy picks, ǫ-density cannot be guaranteed anymore, we observe that
each terminal has lost at most one of its non-terminal neighbors. Hence for suffi-
ciently large terminal set S ǫ

2 -density will still hold. Now we can iterate the greedy
process log⋆(|S|) times, guaranteing ǫ

2 -density in each iteration and resulting in a
terminal set of constant size.

Summary

Our results for the dense versions of the Steiner Tree Problem and related prob-
lems are listed in the two tables below. Possible extensions include the relaxation
of the density notions considered so far and defining some intermediate density
condition between everywhere and average density.

Problem Definition General Case ǫ-Dense

Upper Lower Upper

Steiner Tree Problem ≈ 1.55 [RZ00a] ≈ 1.01 [CC02] PTAS [KZ97a]
Group Steiner Tree polylog. [GKR98] (1 − δ) · log(n) PTAS

k-Steiner Problem 2 + δ [AK00] ≈ 1.01 [CC02] PTAS

Prize Collecting STP 2 ·
(

1 + 1
|S|

)

[GW92] ≈ 1.01 [CC02] PTAS

Steiner Forest 2 ·
(

1 + 1
|S|

)

[GW92] ≈ 1.01 [CC02] improved

ratio
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Problem Density Condition Result

in ǫ-Everywhere ∀ v ∈ V dG(v) ≥ ǫ · n PTAS

Dense Graphs
in ǫ-Average |E| ≥ ǫ · n2 APX-

Dense Graphs hard

ǫ-Average Dense |E(S, V \ S)| ≥ ǫ · |S| · |V \ S| APX-

Steiner Tree P. hard
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Coupling with Stationarity: Rapid Sampling for Graph Coloring

Tom Hayes

(joint work with Eric Vigoda)

Let G be a graph on n vertices with maximum degree ∆, and let k ≥ δ + 2. For
these parameters, it is trivial to construct a k-coloring of G. However the problem
of exactly counting the number of such colorings is ♯P -complete. (By k-coloring
we mean a function f : V → {1, . . . , l} such that ∀ edges {u, v} f(u) 6= f(v).)
We are interested in the related problem of almost-uniform random generation of
k-colorings of G.

The ”Glauber dynamics” is a very simple Markov chain on state space Ω =
{k-colorings of G}.Given Xt ∈ Ω, the distribution of Xt+1 ∈ Ω is defined by:
Choose v ∈ V uniformly at random, and c ∈ {1, . . . , k} \ Xt(N(v)), uniformly at
random, where N(v) = {w ∈ V |{v, w} ∈ E} is the set of neighbors of v. Then

Xt+1(w) −
{

c if w = v
Xt(w) otherwise
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For k ≥ ∆+2, this is an ergodic Markov chain with stationary distribution uniform
over Ω. For k > 2∆, the chain is known to converge rapidly to stationarity:
∀X0∀T ≥ Cn log(n/ǫ), ||µT − π|| ≤ ǫ, where π is the uniform distribution over Ω
and µT is the distribution of XT . This is conjectured to hold whenever k ≥ ∆+2.
However, for k < 11∆

6 , it is not known whether Cn log(n) can be replaced by a
subexponential dependency on n.

Under some restrictions on G, better results are known. Notably, O(n log n)
convergence has been shown assuming:

• k ≥ 1.763∆, k = Ω(log(n)) and girth(G) ≥ 5[Dyer, Frieze 2001], [Hayes
2003]

• k ≥ 1.489...∆, k = Ω(log(n)) and girth(G) ≥ 6[[Hayes 2003], [Molloy 2002]
• k ≥ (1 + ǫ)∆, k = Ω(log(n)) and girth(G) ≥ 9[Hayes, Vigoda 2003]

All these results have rather complicated proofs, and rely on proving certain reg-
ularity properties hold with high probability for XT when T is sufficiently large.

We present a simpler proof of O(n log n) convergence time, assuming

k ≥ 1.763..∆, k = Ω(log(n)) and girth(G) ≥ 4 (i.e. triangle-free).

Our method only requires regularity properties to be established for the stationary
distribution, which is typically much easier to analyze than the distributions µT .

More generally, we present an extension to the Coupling Inequality, a classical
and general technique for proving rapid mixing of Markov chains [Doeblin 1938]:

Suppose ρ : Ω × Ω → N ∪ {0} is an integer valued distance metric on Ω, and
S ⊆ Ω satisfies ∀(Xt, Yt) ∈ S × Ω: There is a coupling (Xt, Yt) → (Xt+1, Yt+1) of
the Markov chain with itself, such that

E(ρ(Xt+1, Yt+1)) ≤ (1 − ǫ)ρ(Xt, Yt).

Then, ∀T ≥ 0, ∀X0,

||µT − π||1 ≤ diam(Ω) · ((1 − ǫ)T +
π(Ω \ S)

ǫ
),

where diam(Ω) = maxX,Y ρ(X, Y ).

Transformations to totally unimodular optimizations, Half Integrality

and 2-Approximations

Dorit Hochbaum

We describe a set of techniques for dealing with intractable problems. The tech-
niques consist of a transformation of the the problem constraint matrix into a
matrix that is totally unimodular. The transformed problem, since defined on a
totally unimodular constraint matrix, is easy to solve in polynomial time. The
transformations are effective when the loss of integrality is bounded. That is, the
inverse transformation of the integer solution maps it to non-integers that are in-
teger multiple of some 1

α . In most cases we show that the value of α is 2 thus

providing 1
2 integer solution that are superoptimal. Superoptimality means that

the associated objective value of such a solution is only better than the optimal
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integer solution. In that sense the superoptimal solution provides a bound on the
optimum solution. In many cases, which we characterize, it is possible to derive
α-approximate solutions from this superoptimal solution.

We now add more details on each one of the problem classes listed.

1. Two variables per inequality

This is the class of integer programs with up to two variables per inequality. So
a generic constraint would be of the form ax + by ≤ c. All these problems have
a 2-approximation algorithm resulting from the transformation to a minimum
cut problem. The monotonization transformation and the existence of rounding
procedure leading to a 2-approximation algorithms are discussed in [HMNT93].
Major applications include the complement of maximum clique problem, minimum
weight of true variables in a 2SAT truth assignment and the set cover problem.

2. Three variables per inequality

This class of problems is integer programs with up to three variables per in-
equality, where the third variable appears in one constraint only. ax+ by ≤ c+dz.
If d = 1 then the transformation yields superoptimal half integral solutions. If
there exists a feasible rounding then this rounded solution is a 2-approximation.
For |d| > 1 the inverse transformation yields rationals with denominator 2d at
most. In that case the approximation factor can be as large as 2d. The algorithm
solving the transformed problem is also a minimum cut algorithm.

Min
∑n

j=1 wjxj +
∑

eizi

subject to aixji + bixki ≥ ci + dizi for i = 1, . . . , m
ℓj ≤ xj ≤ uj j = 1, . . . , n
zi integer i = 1, . . . , m
xj integer j = 1, . . . , n.

The transformation process and numerous applications resulting in 2-approxi-
mation algorithms are described in [Hoc02]. Applications to problems involving
cliques and bicliques are given in [Hoc98].

3. Integer and linear programs with two nonzeroes per column

This problem is investigated in [Hoc03]. For linear programs with up to two
nonzeroes per column the transformation transforms the problem to a generalized
flow problem. Although the latter is not known to be solvable in polynomial time
in integers, it is solvable more efficiently than a general linear program.

When the two nonzero values are of absolute value 1, the problem is also known
as the bidirected network flow problem. The transformation maps the problem into
a flow problem which is solved in integers in polynomial time. The inverse map
provides half integral super optimal solution for this problem. This solution serves
as a tight bound for a relaxation of the maximum cut problem.
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4. Integer problems with k blocks of 1s per column/row.

The multi-set cover problem with k blocks of 1s per column is the basic prob-
lem in mutli-shift scheduling. In [HL03] we describe the process of mapping the
constraints into a matrix of consecutive 1 per column. The latter is known to be
equivalent to a flow problem. The inverse mapping provides solutions that when
rounded form a k-approximation for the problem.

The set cover problem with up to k blocks of 1s per row is the formulation of the
rectangle stabbing problem in a k dimensional space. Gaur, Ibaraki, Krishnamurti
showed (2002) that by solving the linear programming relaxation first, and finding
for each row the block that covers at least 1

d , one gets a new formulation with
consecutive 1’s per row on this single found block. The (integer) solution for this
formulation is a k approximation for the stabbing problem (since it is of value at
most k times the linear programming optimum).

5. Tree ”paths” structure integer programming

This interesting case of transformation to totally unimodular matrices was
pointed out to me by R. Ravi at the Oberwolfach approximation algorithms work-
shop. This provide a 2-approximation algorithm for minimum cost 2-edge con-
nected subgraph. Take a minimum spanning tree in the graph, and suspend it
from an arbitrarily selected root node. We now want to add minimum cost selec-
tion of out of tree arcs that will doubly connect every pair. We will restrict it to
edges that go between a node i in the tree and its ancestor j = a(i) only. Adding
such edge assures double connectivity of all nodes on the path between i and j.
So we present it as a covering problem where each edge covers the nodes along the
path [i, j]. Each such edge is assigned its own weight in the set cover problem.

Now for edges that are cross edges (i, j) (do not go between a node and an
ancestor) we replace those by two edges going from i and from j to their least
common ancestor a(i, j). each one of these edges get the same weight. This is
where the factor of 2 appears.

A matrix with each column corresponding to a path in the tree – that is, have
the value 1 for each node (or edge) that is on the path – is totally unimodular. To
see that, we use the necessary and sufficient condition of Ghouila-Houri 1962 (p.
269 Schrijver), specifying that a matrix is totally unimodular iff for every subset
of rows there is a partition of the subset to S1 ∪ S2 so that the sum of the rows in
S1 minus the sum of the rows in S2 is a row vector with no entry larger than 1 in
absolute value. Now, given a subset of rows S we sort them according to the level
of each node in the tree. So in S we might have level L(S) = 2, 5, 6, 9, 11 etc. Now
we assign alternating levels in the sorted set of levels to S1 and S2 alternately. the
sum for each column will be either 0 if it includes even number of levels in S, or
1 or −1 if the number of levels is odd.

This proves that the constraint matrix of this set cover is totally unimodular.
Of course the same set cover solves the k-connectivity within a factor of 2. Just
have each right hand side equal to k.
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Approximation Algorithms for the Weighted Matching Problem

Stefan Hougardy

(joint work with Doratha E. Drake)

1We present a linear time approximation algorithm for the weighted matching

problem with a performance ratio of 2/3 − ǫ. This improves the previously best
performance ratio of 1/2.

A matching M in a graph G = (V, E) is a subset of the edges of G such that
no two edges in M are incident to the same vertex. In a graph G = (V, E)
with edge weights given by a function w : E → R

+ the weight of a matching
M is defined as w(M) :=

∑

e∈M w(e). The weighted matching problem is to
find a matching in G that has maximum weight. The first polynomial time al-
gorithm for the weighted matching problem was given by Edmonds [7] in 1965.
A straightforward implementation of this algorithm requires a running time of
O(n2m), where n and m denote the number of vertices and edges in the graph.
Lawler [13] and Gabow [8] improved the running time to O(n3). Galil, Micali, and
Gabow [11] presented an implementation of Edmond’s algorithm with a running
time of O(nm log n). This was improved by Gabow, Galil, and Spencer [10] to a
running time of O(nm log log log n+n2 log n). The fastest known algorithm to date
for solving the weighted matching problem in general graphs is due to Gabow [9]
and has a running time of O(nm + n2 log n).

Together with the research on improving the worst case running time of Ed-
mond’s algorithm for the weighted matching problem there has been a parallel
line of research concerned with the implementations of these algorithms. Imple-
mentations of Edmond’s algorithm that turn out to be efficient in practice usually
not only require the use of sophisticated data structures but also need additional
new ideas to lower the running time in practice. During the last 35 years many

1supported by DFG research grant 296/6-3, supported in part by DFG Research Center
Mathematics for key technologies, this is an extended abstract of the results presented in [5]
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different implementations of Edmond’s weighted matching algorithm have been
presented. See [2] for a good survey on these. Currently the fastest implementa-
tions of Edmond’s algorithm are due to Cook and Rohe [2] and to Mehlhorn and
Schäfer [14].

Many real world problems require graphs of such large size that the running
time of the fastest available weighted matching algorithm is too costly. Therefore,
there is considerable need for approximation algorithms for the weighted matching
problem that are very fast, and that nevertheless produce very good results even
if these results are not optimal. The quality of an approximation algorithm for
the weighted matching problem is measured by its so-called performance ratio. An
approximation algorithm has a performance ratio of c, if for all graphs it finds a
matching with a weight of at least c times the weight of an optimal solution.

Approximation algorithms for the weighted matching problem have been used
in practice already for a long time. Their good running times are one of the main
motivations for using them. Another reason why these algorithms are used in
practice is that they usually require only a few lines of code for their implemen-
tation contrary to several thousand lines of code that a good implementation of
Edmond’s algorithm may require [2].

The two approximation algorithms that are most often used in practice are
variants of the maximal matching algorithm and the greedy algorithm. A max-
imal matching in a graph is a matching that is not properly contained in any
other matching. Such a matching can easily be computed by starting with an
empty matching and extending it in each step by an arbitrary edge in such a way
that it remains a matching. Several variants of this simple algorithm are used in
practice [12]. The advantage of maximal matching algorithms is that they have
linear running time. The major disadvantage of these algorithms is that they have
a performance ratio of 0, i.e., the solutions returned by these algorithms can be
arbitrarily bad. The greedy algorithm works similarly to the maximal matching
algorithm but chooses in each step not an arbitrary but the heaviest edge currently
available. It is easy to see that the greedy algorithm has a performance ratio of
1
2 [1]. The running time of this algorithm is O(m log n) as it requires sorting the
edges of the graph by decreasing weight.

Preis [15] was the first who was able to combine the advantages of the greedy
algorithm and the maximal matching algorithm in one algorithm. In 1999 he pre-
sented a linear time approximation algorithm for the weighted matching problem
with a performance ratio of 1

2 . The idea of his algorithm is to replace the heaviest
edge that is needed in the greedy algorithm by a so called locally heaviest edge. It
is easy to see that the performance ratio of Preis’ algorithm is 1

2 . But it is difficult
to prove that finding a locally heaviest edge in each step can be done in such a
way that the total running time remains linear.

By using a completely different approach Drake and Hougardy [3] obtained
another linear time approximation algorithm for the weighted matching problem
with a performance ratio of 1

2 . The main idea of their algorithm is to grow in a
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greedy way two matchings simultaneously and return the heavier of both as the
result. Their algorithm and its analysis are simpler than that of Preis.

In [4] the idea of local improvements is used as a postprocessing step to enhance
the performance of approximation algorithms for the weighted matching problem
in practice. This postprocessing step requires only linear running time and it is
shown for a large set of test instances that it significantly improves the quality of
the solutions. However, this postprocessing step does not improve the performance
ratio of 1

2 .
As the main result we prove in [5, 6] that there exist linear time approxima-

tion algorithms for the weighted matching problem that have performance ratios
arbitrarily close to 2

3 .

Main Theorem 1. For each ǫ > 0 there exists a linear time approximation
algorithm for the weighted matching problem with a performance ratio of 2

3 − ǫ.

The dependence on ǫ of the running time of these algorithms is quite moderate.
Moreover our new algorithm is easy to implement and therefore is of relevance in
practice.

The main idea of our algorithm is to start with a maximal matching M and
to increase its weight by local changes. These local changes which we call short
augmentations add in each step at most two new edges to M while up to four edges
of M will be removed. A graph can possess up to Ω(n4) short augmentations. To
achieve linear running time only some part of these can be looked at. For each edge
of the maximal matching M our algorithm only looks at all short augmentations
that involve the endpoints of this edge. The maximality of M ensures that the
short augmentations considered by the algorithm are in some sense spread evenly
over the graph.

As the short augmentations are partly overlapping it can happen that after
performing one short augmentation several others are no longer available. For the
performance ratio it is therefore important to be able to reject short augmentations
that achieve only minor improvements in the weight of the matching. This is
achieved by taking only short augmentations into consideration that gain at least
some constant factor β. Such augmentations are called β-augmentations. In linear
time it seems not to be possible to find the best β-augmentation. However we show
that in linear time a constant factor approximation of the best β-augmentation
can be found.

To prove the performance ratio of our algorithm we use an amortized analysis.
The idea is that the gain that is achieved by an augmentation is not realized
immediately but part of it is stored for later use. This way we are able to prove
that the algorithm increases the weight of the given matching by some constant
factor. By repeating the algorithm a constant number of times and choosing β
sufficiently small the resulting matching will have a weight that comes arbitrarily
close to 2

3 .
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Improved approximation algorithm for the mixed fractional packing

and covering problem

Klaus Jansen

We study mixed fractional packing and covering problems (MPCǫ) of the fol-

lowing form: Given a vector f : B → IRM
+ of M nonnegative continuous convex

functions and a vector g : B → IRM
+ of M nonnegative continuous concave func-

tions, two M - dimensional nonnegative vectors a, b, a nonempty convex compact
set B and a relative tolerance ǫ ∈ (0, 1), find an approximately feasible vector
x ∈ B such that f(x) ≤ (1 + ǫ)a and g(x) ≥ (1− ǫ)b or find a proof that no vector
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is feasible (that satisfies x ∈ B, f(x) ≤ a and g(x) ≥ b). W.l.o.g. we may assume
that a and b are equal to the vector e of all ones.

The fractional packing problem with convex constraints, i.e. to find x ∈ B
such that f(x) ≤ (1 + ǫ)a, is solved in [3, 4, 7] by the Lagrangian decomposi-
tion method in O(M(ǫ−2 + lnM)) iterations where each iteration requires a call
to an approximate block solver ABS(p, t) of the form: find x̂ ∈ B such that
pT f(x̂) ≤ (1 + t)Λ(p) where Λ(p) = minx∈B pT f(x). Furthermore, Grigoriadis et
al. [5] proposed also an approximation algorithm for the fractional covering prob-
lem with concave constraints, i.e. to find x ∈ B such that g(x) ≥ (1 − ǫ)b, within
O(M(ǫ−2+lnM)) iterations where each iteration requires here a call to an approxi-
mate block solver ABS(q, t) of the form: find x̂ ∈ B such that qT g(x̂) ≥ (1−t)Λ(q)
where Λ(q) = maxx∈B qT g(x). Both algorithms solve also the corresponding min-
max and max-min optimization variants within the same number of iterations.
Furthermore, the algorithms can be generalized to the case where the block solver
has arbitrary approximation ratio [6, 7, 8].

Further interesting algorithms for the fractional packing and fractional covering
problem with linear constraints were developed by Plotkin et al. [11] and Young
[13]. These algorithms have a running time that depends linearly on the width
- an unbounded function of the input instance. Several relatively complicated
techniques were proposed to reduce this dependence. Garg and Könemann [2] de-
scribed a nice algorithm for the fractional packing problem with linear constraints
that needs only O(Mǫ−2 lnM) iterations. On the other hand, the algorithm by
Grigoriadis et al. [5] is the only known algorithm that solves the fractional covering
problem with a number of iterations independently on the width.

For the mixed packing and covering problem (with linear constraints), Plotkin
et al. [11] proposed also approximation algorithms where the running time de-
pends on the width. Young [14] described an approximation algorithm for a special
mixed packing and covering problem with linear constraints and special convex set
B = IRN

+ . The algorithm has a running time of O(M2ǫ−2 lnM). Recently, Fleis-
cher [1] gave an approximation scheme for the optimization variant (minimizing
cT x such that Cx ≥ b, Px ≤ a and x ≥ 0 where a, b, and c are nonnegative integer
vectors and P and C are nonnegative integer matrices). Young [14] posed the fol-
lowing interesting open problem: find an efficient width-independent Lagrangian-
relaxation algorithm for the abstract mixed packing and covering problem: find
x ∈ B such that Px ≤ (1 + ǫ)a, Cx ≥ (1 − ǫ)b, where P, C are nonnegative ma-
trices, a, b are nonnegative vectors and B is a polytope that can be queried by an
optimization oracle (given a vector c, return x ∈ B minimizing cT x) or some other
suitable oracle.

New Result: Our contribution is an efficient width-independent Lagrangian-
relaxation algorithm for the mixed packing and covering problem. Interestingly,
our algorithm works also for a more general problem with a convex set B and
nonnegative convex packing and concave covering constraints. The algorithm uses
a variant of the Lagrangian or price directive decomposition method. This is an
iterative strategy that solves (MPCǫ) by computing a sequence of triples (p, q, x)
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as follows. A coordinator uses the current vector x ∈ B to compute two price

vectors p = p(x) ∈ IRM
+ and q = q(x) ∈ IRM

+ with
∑M

m=1 pm + qm = 1. Then
the coordinator calls a feasibility oracle to compute a solution x̂ ∈ B of the block
problem BP (p, q)

find x ∈ B s.t. pT f(x̂) ≤ qT g(y) + α,

(where α is a value that depends on p and q) and makes a move from x to (1 −
τ)x + τx̂ with an appropriate step length τ ∈ (0, 1). Such a iteration is called a
coordination step. Our main result is the following:

Theorem 15. There is an approximation algorithm that for any given accuracy
ǫ ∈ (0, 1) solves the mixed fractional packing and covering problem (MPCǫ) within

N = O(M(ǫ−2 ln ǫ−1 + lnM))

iterations or coordination steps, where each of which requires a call to the block
problem BP (p, q) and a coordination overhead of O(M ln(Mǫ−1)) arithmetic op-
erations.

Alternatively, we can use also approximate variants of the block problem. Inde-
pendently, Khandekar and Garg [9] proposed an approximation algorithm for the
mixed fractional packing and covering problem that uses O(Mǫ−2 lnM) iterations
or coordination steps.
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Random Sampling and Approximation of MAX-CSP Problems

Ravi Kannan

(joint work with Noga Alon, W. Fernandez de la Vega, and Marek Karpinski)

Suppose r is a fixed integer. In the MAX-rSAT problem, we are given a Conjunc-
tive Normal Form Boolean formula on n variables, with each clause being the OR
of precisely r literals. The objective is to maximize the number of clauses satisfied
by an assignment to the n variables. The exact problem is NP-hard for each fixed
r ≥ 2. A special case of our result is that for any ǫ > 0, there is a positive integer
q ∈ O(log(1/ǫ)/ǫ4) such that if we pick at random a subset of q variables (among
the n) and solve the “induced” problem on the q variables (maximize the number
of clauses satisfied among those containing only those variables and their nega-
tions), then the answer multiplied by nr/qr is, with high probability, within an
additive factor ǫnr of the optimal answer for the n variable problem. The q needed
here will be called the “sample complexity” of the problem for obvious reasons.

In fact, we show the same result for all MAX-rCSP problems. (MAX-rCSP
problems, also called MAX-rFUNCTION-SAT, are equivalent to MAX-SNP [2]).
Recall that the input to a MAX-rCSP problem (for r fixed) consists of a set F
of m distinct Boolean functions f1, f2, . . . fm of n Boolean variables x1, x2, . . . xn,
where each fi is a function of only r of the n variables. The answer Max(F ) is the
maximum number of functions which can be simultaneously set to 1 by a truth
assignment to the variables. For a subset Q of the variables, we let FQ denote the
subset of F which are functions of only the variables in Q (and their negations).

Theorem 16 (Main Theorem). Let r, n be positive integers, with r fixed. Suppose
ǫ is a positive real. There exists a positive integer q ∈ O(log(1/ǫ)/ǫ4) such that for
any F (as above), if Q is a random subset of {x1, x2, . . . xn} of cardinality q, then
with probability at least 9/10, we have

|n
r

qr
Max(FQ) − Max(F )| ≤ ǫnr.

It is worth noting that one half of the Theorem - namely the assertion that

nr

qr
Max(FQ) − Max(F ) ≥ −ǫnr
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is relatively easy to prove. Indeed, if, the assignment of truth values to x1, x2, . . . xn

achieving Max(F ) sets to 1 a set S of functions among f1, f2, . . . fm, one can show
that a sufficient number of functions in S are in FQ just from the fact that Q
is random. This then says that the same assignment restricted to Q sets to 1 a
sufficient number of functions. So, a good solution to the whole problem provides
also good solutions to random induced sub-problems. The other half -

nr

qr
Max(FQ) − Max(F ) ≤ ǫnr

is much harder. Intuitively, for proving this part, we have to show that if there is
no good solution to the whole problem, then also, there are no good solutions to
random induced sub-problems.

The MAX-rSAT and other MAX-rCSP problems all admit fixed factor relative
approximation algorithms which run in polynomial time. For some MAX-SNP
problems, there have been major breakthroughs in achieving better factors using
semi-definite programming and other techniques. More relevant to our paper is
the line of work started with the paper of Arora, Karger and Karpinski [2] which
introduced the technique of smooth programs, and designed the first polynomial
time algorithms for solving MAX-SNP problems (of arity r) to within additive
error guarantee ǫnr, for each fixed ǫ > 0. Frieze and Kannan [4] proved an efficient
version of Szémeredi’s Regularity Lemma and used it to get a uniform framework
to solve all MAX-SNP and some other problems in polynomial time with the same
additive error. In [5], they introduced a new way of approximating matrices and
more generally r-dimensional arrays, called the “cut-decomposition” and using
those, proved a result somewhat similar to the main result here (for each fixed r),
but with two important differences - (i) the sample complexity was exponential
in 1/ǫ and (ii) their result did not relate the optimal solution value of the whole
problem to the optimal solution of the random sub-problems in their original
setting; instead it related it to a complicated computational quantity associated
with the random sub-problem. We will make central use of cut-decompositions in
this paper.

For the special case of r = 2, Goldreich, Goldwasser and Ron [6] designed
algorithms, where the sample complexity was polynomial in 1/ǫ; indeed, by ex-
ploiting the special structure of individual problems like the MAX-CUT problem
they improved the polynomial dependence. See also [4], for higher dimensional
cases, or for cases in which our only objective is to decide if we can satisfy almost
all constraints. Our new method here is more uniform and general.

Our result is derived by general Linear Algebra based arguments about ap-
proximating multi- (and 2-) dimensional arrays by some simple arrays and then
using Linear Programming arguments. Unlike previous papers, we do not use
problem-specific arguments which dwell into the special structure of individual
problems. The MAX-CUT problem (a special MAX-2CSP problem) has received
much attention in this context. Indeed, independently of the papers so far cited,
Fernandez de la Vega [3] developed a different algorithm for this problem which
within polynomial time, produced a solution with additive error ǫn2. [6] used the
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special structure of the problem to derive an algorithm with sample complexity
O(1/ǫ5) (best known upto now).

Independently of our work, Anderson and Engebretsen [1] have obtained a con-
stant time approximation algorithm for MAX-rCSP. They state their results within
the query model of [6] and their algorithm makes O(log2(1/ǫ)/ǫ7) queries for ac-
curacy ǫnr.
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Approximation Hardness of Short Symmetric Instances of MAX-3SAT

Marek Karpinski

(joint work with Piotr Berman and Alex D. Scott)

Abstract. We prove approximation hardness of short symmetric
instances of MAX-3SAT in which each literal occurs exactly twice, and
each clause is exactly of size 3. We display also an explicit
approximation lower bound for that problem. The bound two on the
number of occurrences of literals in symmetric MAX-3SAT is thus the
smallest possible bound for the MAX-3SAT hardness gap property to
exist and making the instances hard to approximate.

We define a symmetric (balanced) MAX-(3,Bk)-SAT instance of the maximizing
MAX-3SAT problem as a set of clauses of size exactly 3, in which every literal
occurs exactly k times. MAX-(3,k)-SAT stands for the set of relaxed (possibly
unbalanced) instances of MAX-3SAT in which every variable occurs exactly k
times and each clause is of size exactly 3. We will also denote by (3,Bk)-SAT and
(3,k)-SAT the corresponding sets of formulas.

It was proven in [BKS03] that MAX-(3,4)-SAT is hard to approximate to within
a certain constant. It was also shown that the balanced MAX-(3,B3)-SAT is hard
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to approximate [F98], [FLT02]. It remained an open question on whether, in
fact, the balanced class MAX-(3,B2)-SAT remains hard to approximate. Because
MAX-(3,4)-SAT is the smallest, with respect to the occurrence number, class of
instances which are still inapproximable, the balanced bound 2 (B2), would be then
the best possible.

In this paper we answer this question, and prove somewhat surprisingly that
MAX-(3,B2)-SAT is, in fact, hard to approximate to within a certain constant.
We display also an explicit factor for the approximation hardness of that problem.
The bound 2 for the number of occurrences of literals is thus the smallest bound for
symmetric MAX-3SAT for which the approximation gap property is still NP-hard
(see for the applications of regular and symmetric 3SAT gap properties towards
other lower approximation bounds in [ALMSS98], [F98], and [FLT02]).

We note also, that, interestingly, a dual version of this balanced satisfiability
problem leads to a certain natural problem studied in graph theory. Let C be
the set of clauses and V = {v1, . . . , vn} the set of boolean variables. For each
vi ∈ V , let ei be the pair of clauses in which vi occurs without negation, and let
fi be the pair of clauses in which v occurs negated. Thus if we set vi true then we
satisfy both clauses in ei and if we set vi false we satisfy both clauses in fi. Now
consider the graph GV,C with vertex set C and edges e1, f1, . . . , en, fn. Finding
a satisfying assignment for (V, C) is equivalent to choosing one edge from each
pair {ei, fi} such that the resulting subgraph of GV,C has no isolated vertices (or,
equivalently, finding a spanning forest of GV,C with no isolated vertices and at
most one edge from each pair). We remark that a problem of similar type, where
the edges come in pairs but we instead attempt to choose one edge from each pair
without creating a giant component, has been considered by Bohman, Frieze and
Wormald [BFW03] (see also [BF01]).

We follow in this paper a line of [BKS03] of constructing efficient enforcers for
the boolean variables; however, in our present setting we have to produce resulting
balanced unsatisfiable (3,B2)-SAT formulas. In fact, at that time the existence of
such balanced and unsatisfiable formulas was an open question in the area.

We give here the first construction of balanced enforces, and a resulting balanced
unsatifiable (3,B2)-SAT formula. Later we show how to transform the existence
of balanced enforcers and unsatisfiable (3,B2)-SAT formulas into the NP-hardness
result in exact setting. Finally, we prove our main result on approximation hard-
ness of MAX-(3,2B)-SAT and give an explicit approximation lower bound and a
gap property.
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On Multicuts and Related Problems

Michael Langberg

(joint work with Adi Avidor)

Abstract

In this work, we define and study a natural generalization of the multicut and
multiway cut problems: the minimum multi-multiway cut problem. The input to
the problem is a weighted undirected graph G = (V, E) and k sets S1, S2, . . . , Sk

of vertices. The goal is to find a subset of edges of minimum total weight whose
removal completely disconnects each one of the sets S1, S2, . . . , Sk, i.e., disconnects
every pair of vertices u and v such that u, v ∈ Si, for some i. This problem
generalizes both the multicut problem, when |Si| = 2, for 1 ≤ i ≤ k, and the
multiway cut problem, when k = 1.

We present an approximation algorithm for the multi-multiway cut problem
with an approximation ratio which matches that obtained by Garg, Vazirani, and
Yannakakis [GVY96] on the standard multicut problem. Namely, our algorithm
has an O(log 2k) approximation ratio. Moreover, we consider instances of the min-
imum multi-multiway cut problem which are known to have an optimal solution
of light weight. We show that our algorithm has an approximation ratio substan-
tially better than O(log 2k) when restricted to such “light” instances. Specifically,
we obtain an O(log LP )-approximation algorithm for the problem, when all edge
weights are at least 1, where LP is the value of a natural LP-relaxation of the
problem. The latter improves the O(log LP log log LP ) approximation ratio for
the minimum multicut problem (implied by the work of Seymour [Sey95] and
Even et al. [ENSS98]).
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Introduction

The input to the minimum multicut problem is an undirected graph G = (V, E)
with a weight (or cost) function w : E → R+ defined on its edges, and a collection
(s1, t1), . . . , (sk, tk) of vertex pairs. The objective is to find a subset of edges of min-
imum total weight whose removal disconnects si from ti, for every 1 ≤ i ≤ k. The
problem is known to be APX-hard ([DJP+94]). An O(log k)-approximation algo-
rithm for the problem was obtained by Garg, Vazirani and Yannakakis [GVY96].

The minimum multiway cut problem is a subproblem of the minimum multicut
problem. The input consists of a weighted undirected graph G = (V, E), as in the
multicut problem, and a set {t1, t2, . . . , tk} of vertices. The goal is to find a subset
of edges of minimum total weight whose removal disconnects ti from tj , for every
1 ≤ i < j ≤ k. The problem is also known to be APX-hard ([DJP+94]). A (3

2− 1
k )-

approximation algorithm for the problem was obtained by Calinescu, Karloff and
Rabani [CKR98]. An improved (1.3438 − εk)-approximation algorithm for the
problem was obtained by Karger et al. [KKS+99]. In particular, for k = 3 the
algorithm of Karger et al. [KKS+99] achieves an approximation ratio of 12/11,
which matches the integrality gap of the linear programming relaxation. This
result was also obtained independently by Cunningham and Tang [CT99].

In this work, we define and study a natural generalization of both the multicut
and multiway cut problems: the minimum multi-multiway cut problem. The input
of the minimum multi-multiway cut problem consists of an undirected graph G =
(V, E) with a weight function w : E → R+ defined on its edges, and k sets of
vertices S1, S2, . . . , Sk (also referred to as groups). The goal is to find a subset of
edges of minimum total weight whose removal disconnects, for every 1 ≤ i ≤ k,
every two vertices u, v ∈ Si. When |Si| = 2, for all 1 ≤ i ≤ k, the minimum
multi-multiway cut problem is exactly the minimum multicut problem, and when
k = 1, the minimum multi-multiway cut problem is the minimum multiway cut
problem.

The minimum multicut problem

The minimum multicut problem (and its relation to multicommodity flow) have
been extensively studied during the last few decades. The problem in which k = 1
is the standard s− t cut problem, and is known to be solved exactly in polynomial
time [FF56]. The case in which k = 2 was also shown to be polynomially solvable
by Yannakakis et al. [YKCP83] using multiple applications of the max-flow algo-
rithm. For any k ≥ 3 the problem was proven to be APX-hard by Dahlhaus et al.
[DJP+94] and thus cannot permit a PTAS (unless P=NP).

The currently best known approximation ratio for the minimum multicut prob-
lem is obtained in the work of Garg, Vazirani, and Yannakakis [GVY96]. They
present a polynomial algorithm that, given a graph G and a set of k pairs of ver-
tices, finds a multicut of weight at most O(log k) times the optimal multicut in G.
Their algorithm is based on a natural linear programming relaxation of the min-
imum multicut problem and has the following outline. By solving the relaxation,
a fractional multicut of the given graph G is obtained. It can be seen that this
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fractional solution implies a semi-metric on the vertices of G. This semi-metric is
now used to round the fractional multicut into an integral one. Namely, the so
called region growing scheme (introduced by Leighton and Rao [LR99] and used
also by Klein et al. [KRAR95]) is applied to define for each pair (si, ti) a region,
i.e. a subset of vertices, which are in this case a ball of a specific radius centered
at si. The multicut obtained by the algorithm is now defined as all edges in E
with are cut by one of the defined regions.

Several results in the field of approximation algorithms have been inspired by
the region growing technique for rounding the solution of linear programs. These
include applications of the divide and conquer paradigm (see for example a survey
by Shmoys [Shm96]), the design of approximation algorithms for the minimum
multicut problem on directed graphs [KPRT93, ENSS98, CKR01, Gup03], and the
results recently obtained for the minimum correlation clustering problem [DI03,
CGW03].

In this work we study the region growing rounding technique when applied to
the multi-multiway cut problem.

Our results

In this work we present two main results. First, we present an approximation
algorithm for the multi-multiway cut problem with an approximation ratio which
matches that obtained by [GVY96] on the standard multicut problem. Namely,
our algorithm has an O(log k) approximation ratio. Our algorithm solves a natural
linear programming relaxation of the multi-multiway cut problem, and rounds the
fractional solution obtained using an enhanced region growing technique. Roughly
speaking, the region growing technique used in this work differs from that used in
previous works as in our case multiple regions are grown in a simultaneous manner
rather than one by one.

Secondly, we consider instances to the minimum multi-multiway cut problem
which are known to have an optimal solution of light weight. Denote such instances
as light instances. We show that our algorithm has an approximation ratio sub-
stantially better than O(log k) when restricted to such light instances. Considering
the connection between the multi-multiway cut problem and the closely related
minimum uncut problem, we show that our result on light instances of minimum
multi-multiway cut imply a result of independent interest on the minimum uncut
problem. Our results can be summarized as follows.

Theorem 17 (General multi-multiway cuts). There exists a polynomial time al-
gorithm which approximates the minimum multi-multiway cut problem within an
approximation ratio of 4 ln(k + 1).

Theorem 18 (Light multi-multiway cuts). Let I be an instance to the minimum
multi-multiway cut problem. Let OptI be the weight of the optimal multi-multiway
cut of instance I. If w(e) ≥ 1 for all e ∈ E, then one can approximate the minimum
multi-multiway cut problem on I within an approximation ratio of 4 ln(2OptI).
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Corollary 3 (Light minimum uncut). If an undirected graph G = (V, E) can be
made bipartite by the deletion of k edges, then a set of O(k log k) edges whose
deletion makes the graph bipartite can be found in polynomial time.
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A PTAS for the minimization of polynomials of fixed degree over the

simplex

Monique Laurent

(joint work with Etienne de Klerk and Pablo Parrilo)

Polynomial optimization over the simplex

We consider the problem of minimizing a polynomial p(x) of degree d over the
standard simplex ∆ := {x ∈ R

n
+ |∑n

i=1 xi = 1}; that is, the problem of computing

(0.1) pmin := min
x∈∆

p(x).

One may assume w.l.o.g. that p(x) is a homogeneous polynomial (form). Indeed,

as observed in [2], if p(x) =
∑d

ℓ=0 pℓ(x), where pℓ(x) is homogeneous of degree
ℓ, then minimizing p(x) over ∆ is equivalent to minimizing the degree d form

p′(x) :=
∑d

ℓ=0 pℓ(x)(
∑n

i=1 xi)
d−ℓ. Problem (0.1) is an NP-hard problem, already

for forms of degree d = 2, as it contains the maximum stable set problem. Indeed,
for a graph G with adjacency matrix A, the maximum size α(G) of a stable set in
G can be expressed as

1

α(G)
= min

x∈∆
xT (I + A)x

by the theorem of Motzkin and Straus [3]. In this paper we show that problem
(0.1) has a polynomial approximation scheme (PTAS) when restricted to the class
of polynomials having a fixed degree d ≥ 2.

Given an integer k ≥ 1, let ∆(k) := {x ∈ ∆ | kx ∈ Z
n} denote the set of

rational points in ∆ with denominator k and define

p∆(k) := min p(x) s.t. x ∈ ∆(k).

Thus, pmin ≤ p∆(k) for any k ≥ 1. As |∆(k)| =
(

n+k−1
k

)

, one can compute the
bound p∆(k) in polynomial time for any fixed k. We can prove some estimates on
the quality of the approximation p∆(k). We need some notation. For a polynomial
p(x) =

∑

α pαxα, set

pmax := max
x∈∆

p(x), p(0)
max := max

α
pα

α1! · · ·αn!

|α|! .

One can verify that p
(0)
max is equal to the smallest scalar λ for which the polynomial

λ(
∑n

i=1 xi)
d−p(x) has nonnegative coefficients. Therefore, pmax ≤ p

(0)
max. We show

the inequalities:

(0.2) p∆(k) − pmin ≤ d(d − 1)

2k
(p(0)

max − pmin),

(0.3) p(0)
max − pmin ≤

(

2d − 1

d

)

dd(pmax − pmin),
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which together imply:

(0.4) p∆(k) − pmin ≤ dd

k

(

d

2

)(

2d − 1

d

)

(pmax − pmin).

The last inequality (0.4) shows that the bounds p∆(k) provide a PTAS for the
optimization problem (0.1) on the class of polynomials with fixed degree d.

A more detailed analysis permits to show sharper estimates in some cases. For
instance, when d = 2,

p∆(k) − pmin ≤ 1

k
(maxi=1,...,np(ei) − pmin)

shown earlier by Bomze and de Klerk [1] and, when d = 3, we can show that

p∆(k) − pmin ≤ 4

k
(pmax − pmin).

Sketch of proof

Our argument for (0.2) follows closely the proof given by Powers and Reznick
[6] for the following theorem of Pólya. (The bound on r comes essentially from
[6].)

Theorem 19. Let p be a form of degree d which is positive on the simplex ∆, i.e.,
pmin > 0. Then, the polynomial (

∑n
i=1 xi)

r
p(x) has nonnegative coefficients for

all r ≥
(

d
2

)p(0)
max

pmin
− d.

Pólya’s result can be used for constructing an asymptotically converging hier-
archy of lower bounds for pmin. As pmin is equal to the largest scalar λ for which

the polynomial p(x) − λ (
∑n

i=1 xi)
d

is nonnegative over R
n
+, the parameter:

p
(r)
min := max λ s.t. the polynomial (

∑n
i=1 xi)

r
(

p(x) − λ (
∑n

i=1 xi)
d
)

has nonnegative coefficients

is a lower bound for pmin for any integer r ≥ 0. Moreover, limr→∞ p
(r)
min = pmin

by Pólya’s theorem. It turns out that the quality of the two hierarchies of bounds

p∆(r+d) and p
(r)
min can be simultaneously analyzed via the proof of Pólya’s theorem.

Our proof for (0.3) uses some tools of Reznick [7] about powers of linear forms.
It can be sketched as follows.

As p
(0)
max − pmin ≤ p

(0)
max − p

(0)
min, it suffices to bound p

(0)
max − p

(0)
min in terms of

pmax − pmin. Define the vectors y := (p(α))α∈Z
n
+,|α|=d and z := (pα

α!
d! )α∈Z

n
+,|α|=d.

Thus, p
(0)
max − p

(0)
min = zmax − zmin, where zmax (resp., zmin) denotes the maximum

(resp., minimum) coordinate of z, and ymax − ymin ≤ pmax − pmin. The key is now
to observe that y, z are related by a linear equation: z = Ay, for some matrix
A satisfying Ae = d−de (e is the all ones vector). (Such matrix A can be found
by considering an alternative basis for the space of degree d forms in n variables;
A being then the matrix permitting to express the new basis in the terms of the
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original basis {xα d!
α! | α ∈ Z

n
+, |α| = d}.) Define ‖A‖∞ := maxi

∑

j |A(i, j)|. As
z = Ay and A has constant row sums, it follows that

zmax − zmin ≤ ‖A‖∞(ymax − ymin).

The final step consists in bounding ‖A‖∞ in terms of the constant
(

2d−1
d

)

.

Conclusions

As observed by Nesterov [4], results for the simplex can be extended to optimiza-
tion over an arbitrary polytope P := conv(u1, . . . , uN), where u1, . . . , uN ∈ R

n.
For an integer k ≥ 1, one can define the grid approximation:

pP (k) := min
x∈∆(k)

p

(

N
∑

i=1

xiui

)

where the simplex ∆ now lies in the N -space (N is the number of vertices of P ).
The bounds obtained earlier translate into bounds for pP (k). For instance, when
p(x) has degree 2,

pP (k) − pmin ≤ 1

k

(

max
i=1,...,N

p(ui) − pmin

)

.

However, the complexity of computing the parameter pP (k) depends on the num-
ber N of vertices, which can be exponentially large in terms of the number n of
variables.

Note that maximizing a quadratic form over the cube [−1, 1]n is NP-hard and
no PTAS can exist, since it contains the max-cut problem.

The complexity of approximating a polynomial over the unit sphere is not
known. Of course, minimizing a quadratic form over the unit sphere is an easy
problem, as it amounts to computing the minimum eigenvalue of a matrix. More-
over, minimizing an even form on the unit sphere has a PTAS, since it can be
reformulated as the problem of minimizing an associated form on the simplex. On
the other hand, Nesterov [4] shows that maximizing a cubic form on the unit sphere
is a NP-hard problem, using a reduction from the maximum stable set problem.
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Boosted Sampling: Approximation Algorithms for Stochastic

Optimization

R. Ravi

(joint work with Anupam Gupta and Amitabh Sinha)

Infrastructure planning problems involve making decisions under uncertainty about
future requirements; while more effective decisions can be made after the actual
set of clients have materialized, the decision-making costs are inflated if deferred
until then. The following simple two-stage model captures this tradeoff effectively.
Future requirements are uncertain, but are assumed to be drawn from a known
probability distribution (e.g., from demand forecasts, industry outlooks). In light
of this information, an anticipatory part of the solution may be constructed in a
first-stage at the current costs. Subsequently, the requirements facing the plan-
ner materialize in the form of a client set (drawn from the distribution), and the
first-stage solution must be augmented to satisfy the revealed requirements. The
elements chosen in this second stage are costlier than when chosen earlier, re-
flecting the need for careful (first-stage) planning. Given the uncertainty of the
requirements, the traditional minimum-cost goal may be adapted to minimize the
total expected cost of the solution.

As an example, consider the Stochastic Steiner tree problem that specifies

an inflation parameter σ and a probability distribution p
(r)
min on the set of terminal

nodes (which are clients) that have to be connected to the root in a given rooted
discrete metric space. A subset of edges E0 may be bought by paying the original
lengths in the first stage. Once the actual set of terminals S is revealed, we must
then buy the recourse edges ES at σ times their lengths so that S is connected to
the root by edges in E0 ∪ ES . The objective is to minimize c(E0) + E[σ c(ES)].

Here the expectation is over p
(r)
min, the randomness in the set of terminals revealed.

The framework is that of two-stage stochastic optimization with recourse [7, 6, 9]
which may be paraphrased as “On Monday, we only know the input distribution
on the clients, and we can buy some resources. On Tuesday, the client set is now
completely specified, but things are now more expensive (in our case, by a factor
σ); we must buy any additional resources needed to get a feasible solution to the
instance.”

Following this framework, in Stochastic Vertex Cover, the clients are edges
to be covered, and we are given a probability distribution over sets of edges that will
arrive; vertices become σ times more expensive after these edges are revealed. The
Stochastic Facility Location problem on a metric space containing clients
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Problem Non-Stoc. Approx. Strictness Stoch. Approximation

Ratio α β General Distrib. Indep. decisions

Steiner 1.55 2 3.55 3.55
Tree (Robins & Zelikovsky)

Vertex 2 6 8 3
Cover (Primal-dual)

Facility 3 5.45 8.45 6
Location (Mettu-Plaxton)

Steiner 4 4‡ - 8
Network (Gupta et al.)

Figure 0.1. Result Summary

and facilities with opening costs defines a probability distribution over the set of
clients that will require connection to open facilities. Opening facilities becomes σ
times costlier in the second stage. The objective, in addition to expected cost of
opening facilities, also includes expected connection costs of the revealed clients
to their closest open facilities.
Our Results: In the paper [3] on which the talk is based, we give a simple yet gen-
eral framework to translate approximation algorithms for deterministic optimiza-
tion problems into approximation algorithms for corresponding stochastic versions
with second-stage inflation parameter σ. Given an α-approximation algorithm for
the classical problem, one can use it in the following framework:

(1) Boosted Sampling: Sample σ times from the distribution p
(r)
min to get sets

of clients D1, . . . , Dσ.
(2) Building First Stage Solution: Build an α-approximate solution for the

clients D = ∪iDi.
(3) Building Recourse: When actual future in the form of a set S of clients

appears (with probability p
(r)
min(S)), augment the solution of Step 2 to a

feasible solution for S.
Note that we do not need to know the distribution p

(r)
min explicitly; it could be a

black-box from which we can draw samples. (In practice, these samples could be
drawn from market predictions, or from Monte-Carlo simulations.) Thus we can
sidestep the often-lethal problem of handling an exponential number of scenarios.

Informal Main Result If the α-approximation algorithm A satisfies some
technical properties (the problem is sub-additive, and A admits a β-strict cost-
sharing function, then the above framework yields an α+β approximation for the
stochastic version of the problem.

Using our framework, we show that stochastic variants of Steiner Tree, Fa-
cility Location, and Vertex Cover have constant-factor approximation algo-
rithms. The approximation ratios α and strictness of the corresponding cost-shares
β, and the resulting guarantees for the stochastic variants are summarized in Fig-
ure 0.1.
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We also consider the special case of independent decisions; in this, each client j
has a probability πj of arrival independent of other clients, and the probability π(S)
of the set S materializing is given by

∏

j∈S πj

∏

j /∈S(1 − πj). For this model, we
can also give a 8-approximation for the stochastic version of the Steiner Forest
problem and improve the approximation ratios of the corresponding versions of
Vertex Cover and Facility location to 3 and 6 respectively.

While a natural approach to utilizing an approximation algorithm for a deter-
ministic problem is to set the client requirements at their expected value according

to p
(r)
min, we note that this approach cannot yield bounded approximation ratios

even in simple examples. Rather, using the full power of sampling in building the
first stage solution gives a provably good solution as we demonstrate.
Related Work: Very recently, there has been a surge of interest in stochastic ver-
sions of NP-hard problems, with papers on the topic by Ravi and Sinha [8], and
independently, by Immorlica et al. [4]. Both these works look at versions of our

model with some restrictions on the distribution p
(r)
min, while we consider arbitrary

distributions p
(r)
min. In particular, they consider the following cases.

• the scenario model, where the distribution p
(r)
min has its support on a family

F of possible subsets explicitly given as part of the input (and hence the
algorithms are allowed to take time poly(|F|, n)), and

• the independent decisions model, where each element j has an associated
probability πj , and the probability of a set π(S) =

∏

j∈S πj

∏

j /∈S(1− πj).

(I.e., the sets are chosen by flipping a coin independently for each element.)

Since our algorithms work for arbitrary distributions, our theorems hold in both
the above models as well. In particular, our 3.55- and 3-approximations for sto-
chastic Steiner Tree and Vertex Cover in the independent model improve
upon the O(log n)- and 6.3-approximations in [4] respectively.

One can define (as in [8]) other stochastic variants of the problems we define
here: e.g., one can imagine that there are multiple inflation parameters, and that
instead of all things getting dearer by σ, different parts of the problem change in
different ways. This work leaves open the question of whether our framework can
be extended to handle such multiple-parameter stochastic problems.

Stochastic Steiner Tree appears similar to the maybecast problem of Karger and
Minkoff [5]; however, the latter is a single-stage optimization problem. Finally,
though some of our techniques, including strict cost-shares come from the work
of [2, 1], the problems considered there are deterministic optimization problems.
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Robust Inference of Relevant Attributes

R. Reischuk

(joint work with Jan Arpe)

Given n Boolean input variables representing a set of attributes, consider Boolean
functions that actually depend only on a small but unknown subset of these vari-
ables/attributes, in the following called relevant. The goal is to determine the
relevant attributes given a sequence of examples - input vectors X with their val-
ues f(X). Determining the number of relevant attributes is NP-hard. It has been
known that this problem can be approximated within a logarithmic factor with a
reduction to set cover problem. This ratio is best possible under the assumption
that NP is not contained in subexponential deterministic time.To find the relevant
attributes we analyze two simple greedy strategies and prove that they are able
to achieve this goal for various kind of Boolean functions and input distributions
according to which the examples are drawn at random. The analysis also provides
explicit upper bounds on the number of examples required which grow only log-
arithmically in the total number of attributes, but exponentially in the number
of relevant attributes. They further depend on the distribution and combinatorial
properties of the function to be inferred. Then we extend these results to a situa-
tion in which the examples contain errors, that means a certain number of input
bits may be wrong. We show that even in such an error-prove situation, reliable
inference is still possible.
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Average Case Analysis: Two Seemingly Simple Problems

Angelika Steger

(joint work with Jan Remy and Alexander Souza)

Closely related to the development of algorithms is the analysis of algorithms. Here
one distinguishes between worst case analysis, where the behavior of the algorithm
on the worst possible input is considered, and average case analysis, where the
expected or average behavior of the algorithm is of interest. From a practical
point of view the latter is of particular importance if the worst case analysis does
not provide bounds that are meaningful in practice: there are algorithms that
provide empirically very good results, even though their worst case behavior is
not very promising. The sorting algorithm QuickSort is a well known example
for this phenomenon as there are algorithms that have a much better worst-case
behavior, but on average over all possible inputs QuickSort performs very well,
and that explains why it is one of the most used sorting algorithms in practice.
However, at the current state of art, QuickSort is also one of the few examples
where good bounds on the average performance can be proven. It seems that one
needs to develop new methods and tools for a successful average case analysis in a
broader context. In this view we consider two very simple deterministic problems,
one in the area of scheduling and one in graph theory, and study their average
case behavior.

1. Completion Time Scheduling

Several deterministic completion time scheduling problems can be solved in poly-
nomial time. Smith [8] shows that scheduling jobs in order of non-decreasing
processing time and weight ratio (WSPT) is optimal for the single machine prob-
lem 1 | | ∑j wjCj . For the unweighted problem P | | ∑j Cj on identical parallel

machines, the optimality of the shortest processing time first (SPT) strategy is
shown by Conway, Maxwell, and Miller [3]. In contrast, Bruno and Sethi [1] es-
tablish that the problem Pm | | ∑j wjCj is NP-hard in the ordinary sense for
constant m ≥ 2 machines.

Turning to stochastic scheduling, the expected value of the objective function
to a deterministic problem is a natural choice as an objective for the probabilistic
counterpart. Thus, in that preformance measure, an algorithm ALG is considered
optimal if it minimises the value EALG =

∫

x ALG(x)f(x)dx, where ALG(x) de-
notes the value of the objective function achieved by ALG on an instance x with
density f(x).

Apparently, models that are NP-hard in a deterministic setting sometimes allow
a simple priority policy to be optimal for the probabilistic counterpart. For exam-
ple, scheduling jobs in order of non-decreasing expected processing time (SEPT)
is known to be optimal for many problems with the objective E∑j Cj . Moreover,

for the problem 1 |Pj ∼ Stoch (µj) | E∑j wjCj , scheduling jobs in non-decreasing

order of
µj

wj
ratio (WSEPT) is optimal in non-preemptive static and dynamic poli-

cies. By using LP relaxations, Möhring, Schulz, and Uetz [5] have recently shown
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that E [WSEPT] ≤ (2− 1
m)E [OPT], for several variants of the scheduling problem

P |Pj ∼ Stoch (µj) | E∑j wjCj , where OPT denotes an optimum policy.

One property of the performance measure E [ALG] is that instances x with
small value ALG(x) tend to be neglected since they contribute few to the overall
expected value. Hence, in this measure, algorithms are preferred that perform well
on instances x with large optimum value OPT(x). It depends on the application
if such behaviour is desireable, but if one is interested in algorithms that perform
well on “many” instances, this measure may seem inappropriate.

Regarding this problem, the expected competitive ratio E [ALG/OPT] seems
to be interesting, as the ratio ALG(x)/OPT(x) relates the value of the objective
function achieved by some algorithm ALG to the optimum OPT for all instances
x. However, it seems that in the context of stochastic scheduling, the measure
E [ALG/OPT] has only been considered by Coffman and Gilbert [2] and in the
recent work by Scharbrodt, Schickinger, and Steger [6].

In [9] we introduce the class of distributions that are new-better-than-used in
expectation relative to a function h (NBUEh), which generalises the new-better-
than-used in expectation (NBUE) class. The NBUEOPT class comprises the ex-
ponential, geometric, and uniform distribution. Allowing the adversary to choose
NBUEOPT processing time distributions, we derive bounds to online list sched-
uling algorithms. Our analysis depends on a quantity α which is an upper bound
to the probability for any pair of jobs being in the wrong order in a list of an
arbitrary online list algorithm ALG, compared to an optimum list.

In particular, we show that the expected competitive ratio is at most 1
1−α

for the single machine problem and at most 1
1−α + 1 − 1

m for m identical parallel
machines. These results reflect well the intuition that an algorithm should perform
the better, the lower its probability of sequencing jobs in a wrong order. As a

special case, we show that the WSEPT algorithm yields E

[

WSEPT
OPT

]

≤ 3 − 1
m

for m identical parallel machines and exponential distributed processing times.
Simulations empirically demonstrate tightness of this bound.

2. Minimum Spanning Tree

Let G = (V, E) be a complete graph on n vertices which is randomly weighted,
i.e. the edge weights are uniformly and independently chosen from [0, 1]. Let the
random variable OPT denote the weight of the minimum spanning tree in G. It
has been shown by Frieze [4] that E[OPT] is independent of n. In particular, he
proved that

lim
n→∞

E[OPT] =

∞
∑

j=1

1

j
= ζ(3).

Let N =
(

n
2

)

and assume that the edges are indexed by increasing weight. Frieze
bounds the indices of the edges Kruskal’s algorithm takes from above and below.
Since the expected weight of the i th smallest edge in G is i/(N + 1), the value
given above follows by linearity of expectation. Note that this argument heavily
relies on the fact that the whole graph is known.
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Consider the following online version of the minimum spanning tree problem,
described as a game between an algorithm and an adversary. Assume that some
adversary ADV administrates the set E and shows edge by edge to an online algo-
rithm A. Without any precise knowledge about the weights of unseen edges, the
algorithm has to decide immediately whether to include the edge into the span-
ning tree or not. Let ALG denote the weight of the spanning tree generated by the
algorithm. Of course, the goal of A is to minimize ALG, which means we seek an
online algorithm that competes well with the offline optimum. Analogously to the
deterministic definition of c-competitiveness the strict competitiveness coefficient
of A against ADV is defined as

CADV
A

def
=

E[ALG]

E[OPT]
.

It remains to specify how powerful the adversary is. In the standard literature,
two basic types of adversary models are used to analyze online algorithms in a
probabilistic context. Oblivious adversaries determine the edge order in advance,
as opposed to adaptive adversaries who choose the next edge based on the player’s
actions so far. An adversary ADV is said to be fair if he discovers the weight
of the edges at the same time as the algorithm. In contrast, ADV is unfair if
he knows the edge weights in advance and uses this information to determine the
edge order. We thus consider the following four adversaries: FO (fair, oblivious),
FA (fair, adaptive), UO (unfair, oblivious) and UA (unfair, adaptive). It follows
by inclusion that for every algorithm A,

(0.1) CFO
A ≤ CFA

A and CUO
A ≤ CUA

A .

In [7] we give an algorithm which is strictly O (1)-competitive against FA. In
addition, we show that there is an algorithm which is strictly O (log n)-competitive
against UA. Furthermore, we demonstrate that for every algorithm A, we have
lower bounds CUO

A = Ω(log n) and CFO
A ≥ c · ζ(3) for a fixed constant c > 1.

Then, the relation given in (0.1) assures that we have found for each of the four
adversaries the best (in order of magnitude) possible online algorithm.
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Typical Properties of Winners and Losers in Discrete Optimization

Berthold Vöcking

(joint work with Rene Beier)

Many combinatorial optimization problems have an objective function or con-
straints specified in terms of real numbers representing natural quantities like
time, weight, distance, or utility. This includes some well-studied optimization
problems like, e.g., traveling salesperson, shortest path, minimum spanning tree
as well as various scheduling and packing problems. When analyzing the com-
plexity of algorithms for such problems, we usually assume that these numbers
are integers or rational numbers with a finite length representation. The hope is
that it suffices to measure and compute with some bounded precision in order to
identify an optimal or close to optimal solution. In fact, if real numbers occur
only in the objective function and if this objective function is well-behaved (e.g.,
a linear function) then calculating with reasonable approximations of the input
numbers yields a feasible solution whose objective value is at least close to the
optimal objective value. More problematically, however, if the constraints are de-
fined by real numbers, then calculating with rounded input numbers might miss
all interesting solutions or might even produce infeasible solutions.

How can one solve optimization problems (efficiently) on a computer when not
even the input numbers can be specified exactly? – In practice, optimization prob-
lems in which real numbers occur in the input are solved by simply rounding the
real numbers more or less carefully. Fortunately, this approach seems to yield rea-
sonable results. We seek for a theoretically founded explanation why this rounding
approach usually works. Studying this issue under worst case assumptions does
not make very much sense as, in the worst case, the smallest inaccuracy might lead
to an infeasible or utterly sub-optimal solution. This question needs to be studied
in a stochastic model. In our probabilistic analysis, we show that, under some
reasonable and quite general stochastic assumptions, one can usually round real-
valued input numbers after only a logarithmic number of bits without changing
the optimal solution. In fact, our probabilistic analysis goes far beyond the point
of explaining phenomena occurring in practice. We are able to provide algorithms
with polynomial average-case complexity (more precisely, polynomial smoothed
complexity) for a quite general class of discrete optimization problems.

Our probabilistic analysis covers a large class of combinatorial optimization
problems containing, e.g., all binary optimization problems defined by linear con-
straints and a linear objective function over {0, 1}n. By parameterizing which
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constraints are of stochastic and which are of adversarial nature, we obtain a
semi-random input model that enables us to do a general average-case analysis for
a large class of optimization problems while at the same time taking care for the
combinatorial structure of individual problems. Our analysis covers various proba-
bility distributions for the choice of the stochastic numbers and includes smoothed
analysis with Gaussian and other kinds of perturbation models as a special case
(cf. [2, 3, 4, 5, 7, 8]). In fact, we can exactly characterize the smoothed complexity
of optimization problems in terms of their random worst-case complexity.

A binary optimization problem has a polynomial smoothed complex-
ity if and only if it has a pseudopolynomial complexity.

Our analysis is centered around structural properties of binary optimization prob-
lems, called winner, loser, and feasibility gaps. Using similar techniques as for the
well-known Isolating Lemma [6] we show, when the coefficients of the objective
function and/or some of the constraints are stochastic, then there usually exist a
polynomial n−Ω(1) gap between the best and the second best solution as well as
a polynomial slack to the boundary of the constraints. Similar to the condition
number for linear programming, these gaps describe the sensitivity of the opti-
mal solution to slight perturbations of the input and can be used to bound the
necessary accuracy as well as the complexity for solving an instance. We exploit
the gaps in form of an adaptive rounding scheme increasing the accuracy of cal-
culation until the optimal solution is found. The strength of our techniques is
illustrated by applications to various NP-hard optimization problems from math-
ematical programming, network design, and scheduling for which we obtain the
the first algorithms with polynomial average-case/smoothed complexity.
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Special Sessions

On three recent results by Subhash Khot

(Lars Engebretsen, Uriel Feige and Johan H
◦

astad)

Extended abstract

Given the unfortunate fact that Subhash Khot had visa problems we organized
a mini-session to discuss three results which has the common feature that Khot is
a (co)author. All three results have subsequently been accept to be presented at
FOCS 2004.

Theorem 20. (Presented by Engebretsen) For each p > 1 and assuming that
NP 6⊆ BPP it is hard to approximate Shortest Vector Problem in a lattice in ℓp-

norm within any constant. Assuming that NP 6⊆ BPTIME(2poly(log n)) the same

problem is hard to approximate within 2(log n)1/2−ǫ

for any ǫ > 0.

This improves the previous inapproximability factors 21/p − ǫ by Micciancio [6]
and p1−ǫ by Khot [3]. The key to this proof seems to be a new reduction from the
closest vector problem to shortest vector problem. The reduction by itself does
not give the result but the resulting lattice has the property that the length of the
shortest vector behaves nicely with respect to a certain augmented tensor product.
This makes it possible to get the increased bounds.

The second result requires slightly stronger assumptions. Let us state one of
the theorems of that paper.

Theorem 21. (Presented by H
◦

astad) For each ǫ > 0 there is a cǫ > 0 such that the
following is true. Assuming that NP 6⊆ BPTIME(2nǫ

) then Graph Min-Bisection
cannot be approximated in polynomial time within a factor 1 + cǫ.

In order to prove this Khot constructs a new probabilistically checkable proof
(PCP) that has some novel features. Only a constant number of questions is asked
and the query pattern looks random in the following sense. For each set containing
half of the locations in the proof the probability that all d questions belong to this
half is close to 2−d. An interesting fact is that this property is only required for
attempted proofs of incorrect NP-statements. The property does not hold for valid
proofs for correct statements.

The constructed PCP relies, as all known efficient PCPs, heavily on encodings
by polynomials. The “randomness” requirement mentioned above seems, however,
to make it difficult to apply recursion in the construction of the PCP. This, together
with the fact that we only want a constant number of questions, makes it difficult
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to have polynomials of non-constant degree and this gives the size 2nǫ

for the
constructed PCP.

Graph Min-Bisection has previously only been proved hard to approximate
under other types of assumptions such as the hardness of proving non-satisfiability
of random instances of 3SAT [1].

The paper also contains results for Densest Subgraph and Bipartite Clique.
These are established using the same underlying PCP and adding a combinatorial
construction at the end.

Let us turn to the last paper which is a joint result by Khot, Kindler, Mossel
and O’Donnell. The main result of this paper needs two assumptions. One is the
Unique Games conjecture proposed by Khot [4] and the other is a new conjecture
saying that among all functions not heavily dependent on a single coordinate,
majority is close to being the most stable under random perturbations of the
input.

Theorem 22. (Presented by Feige) Assume that the Unique Games conjecture and
the Majority is Stablest conjecture both are true. Then it is NP-hard to approximate
Max-Cut within a factor αGW + ǫ for any ǫ > 0. Here αGW is the approximability
constant achieved by the Goemans-Williamson [2] approximation algorithm.

A slightly weaker constant, still beating the best previous bound can be obtained
assuming only the Unique Games conjecture. This result is obtained through a,
given the assumptions, rather natural PCP. This gives additional evidence of the
strength of the unique games conjecture and thus increases the importance of
resolving this conjecture. It has already been established [5] that this conjecture
implies that 2 is the correct inapproximability constant for Vertex Cover.
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Special Session on Steiner Tree Problems

Mathias Hauptmann

Mathias Hauptmann gave a brief survey on dense instances of Steiner Tree Prob-
lems. He further mentioned the problem of obtaining lower bounds for approx-
imability of the Steiner Forest Problem. Currently the best known lower bound
is ≈ 1.01 due to Chlebik and Chlebikova, which is the same as for the Steiner
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Tree Problem. Janka Chlebikova gave a brief survey on these hardness results and
the methods used to achieve them. She points out that in order to obtain better
approximation hardness results far beyond this value, one seemingly needs some
fundamentally different approach, maybe based on a different kind of reduction.

R. Ravi told us about the status of a fundamental and very interesting question
concerning the Steiner Forest Problem, namely the performance of greedy algo-
rithms for this problem. One variant is the shortest path heuristic, where in each
step two terminals of the same terminal set at minimum distance are connected by
a shortest path. According to what R. Ravi told us, for this variant it is still open
whether this yields a constant ratio approximation. The second variant he men-
tions is a shortest path heuristic between arbitrary active vertices, hence possibly
connecting terminals from different terminal sets as log as these sets still consist
of at least two terminals. For this variant, R. Ravi claims that it can be proved to
be 4-approximative, based on a mixed-component approach.

Stefan Hougardy mentions a very interesting aspect of approximation algo-
rithms for the Steiner Tree Problem: For most of the approximation algorithms
published so far, one does not know whether the analysis of the algorithm is tight.
Indeed Hougardy et al. gave were able to give explicit lower bounds on the perfor-
mance of the 1.86-approximation algorithm of Zelikovsky, the Berman-Ramaiyer
heuristic, the 1.69-approximation algorithm of Zelikovsky, the 1.66-approximation
algorithm of Prömel and Steger and the 1.59-approximation algorithm of Prömel
and Hougardy.

R. Ravi mentions some interesting variants of Steiner Tree and Steiner Forest
Problems: The Minimum Diameter Steiner Tree Problem, the Minimum Max.
Degree Steiner Tree Problem where in case the optimum value is ∆, one can always
find some tree with value ∆+1. In the Covering Steiner Tree Problem, we are given
an instance of the Group Steiner Problem with terminal sets (groups) S1, . . . , Sm,
and for each group a number ri ∈ {0, . . . , |Si|}. The task is to construct a minimum
cost tree containing at least ri vertices from group Si (1 ≤ i ≤ m). Ravi mentions
the following variant, called Group Connector Problem: Given some instance of
the group Steiner probelm with groups S1, . . . , Sm and additionally connection
requirements c1, . . . , cm, find a min cost subgraph F with connected components
F1, . . . , Fq such that for every i ∈ {1, . . . , m}, maxj |Fj ∩ Si| ≥ ci. This problem
turns out to be at least as hard as Set Cover, even when points are given on a line.

Special Session on Near Optimal Decentralized Routing in Long

Range Contact Networks

Nicolas Schabanel

In order to explain the ability of individuals to find short paths to route messages
to an unknown destination, based only on their own local view of a social network
(the small world phenomenon), Kleinberg (2000) proposed a network model based
on a d-dimensional lattice of size n augmented with k long range directed links per
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node. Individuals behavior is modeled by a greedy algorithm that, given a source
and a destination, forwards the message to the neighbor of the current ladder,
which is the closest to the destination according to the lattice distance. This
algorithm computes paths of expected length O(log2(n)/k) between any pair of
nodes. Other topologies have been proposed later as to improve greedy algorithm
performances. But Aspnes et al. (2002) show that for a wide class of long range
link distributions the expected length of the path computed by this algorithm is
always Ω(log2(n)/(k2 log log n)).

We design and analyze a new decentralized routing algorithm, in which nodes
consult their neighbors nearby, before deciding to whom forward the message. Our
algorithm uses similar amount of computational resources as Kleinberg’s greedy
algorithm: it is easy to implement, visits O(log2(n)/ log2(1 + k)) nodes on expec-

tation and requires only O(log2(n)/ log(1 + k)) bits of memory. Our algorithm
computes however a Θ(log(n) · (log log(n)/ log(1+k))2) - long path in expectation
between any pair of nodes. Our algorithm might fit better some human behavior
(such as web browsing) and may also have successful applications to peer - to -
peer networks where the length of the path along which the files are downloaded
is a critical parameter of the network performance.

Special Session on Approximating Combinatorial Auctions without

Randomized Routing

Berthold Vöcking

(joint work with Piotr Krysta)

Combinatorial auctions allocate a number of non-identical items to bidders that
express preferences about combinations of items. Such combinatorial auctions
have been suggested for selling spectrum licenses, pollution permits, loading slots,
network resources etc.

They essentially correspond to set packing problems or, more generally, to
packing integer programs. These packing problems are NP-hard and, hence,
polynomial-time algorithms can solve these problems only in an approximate sense.
However, there are more difficulties to solve than only these algorithmic questions.
The basic game-theoretic requirement is that auctions should be truthful (incen-
tive compatible). An auction is truthful if each bidder’s best strategy is always to
reveal her true valuation, regardless of the other bidders’ bids and valuations. In
other words, it is required that truthful bidding is the dominant strategy for each
bidder.

Unfortunately, approximation algorithms often destroy truthfulness. In par-
ticular, the most general tool for approximating unsplittable packing problems –
randomized rounding as introduced by Raghavan and Thompson [9, 10] does not
give a truthful mechanism. To circumvent this problem, Archer et al. [1] intro-
duce additional dropping probabilities for bidders, which makes their algorithm
monotone in the bids, i.e., the probability for a bidder to receive a bundle in-
creases with the bid. This approach yields a mechanism that is truthful but only
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in a probabilistic sense (and only for “known bidders”). In this paper, we present
a different approach to truthful mechanisms for combinatorial auctions that can
be represented in form of general packing integer programs. We devise Greedy
algorithms achieving the same approximation factors, up to constant factors, as
randomized rounding. These algorithms naturally satisfy certain monotonicity
properties, which immediately imply truthfulness.

At this point, let us remark that our Greedy algorithms are not only of interest
from the point of view of mechanism design. In fact, we believe that they yield
a very efficient alternative to randomized rounding on several standard packing
problems like set packing, admission control, unsplittable flow, and multicast rout-
ing. Our algorithms rely on the concept of so-called “opportunity cost” introduced
by Awerbuch et al. in [2] for the design of online algorithms. This concept has
since then widely been applied to various online and offline packing problems. The
analysis of these algorithms is usually based on potential function arguments. We
use opportunity cost in a similar fashion for the design of Greedy algorithms. Our
analysis, however, is based on the primal-dual method rather than potential func-
tion arguments. In fact, parts of our analysis are inspired by the work of Garg
and Könenmann [6] on fractional packing problems.

In particular, we consider the following class of packing integer programs (PIP):

max cx

s.t. Ax ≤ b

x ∈ {0, 1}n,

where A ∈ [0, 1]m×n, b ≥ 1, and c ≥ 0. Two important subcases are column
restricted PIPs and (0, 1)-PIPs. In a column restricted PIP all entries in each
column of A take the same positive value or 0. In a (0, 1)-PIP all entries of A
take either the value 0 or 1, and b is assumed to be a vector of positive integers.
Define B = mini{bi}. We describe approximation ratios in terms of m and B. B is
called the multiplicity parameter, and it has significant influence on the achievable
approximation ratios.

Already the most restrictive form of these three variants, namely (0, 1)-PIP, gen-
eralizes many weighted packing problems, including maximum clique, maximum
weighted independent sets, b-matching in hypergraphs, as well as k-dimensional
matching. In particular, (0, 1)-PIPs correspond to the weighted set packing problem
with multiple elements, the algorithmic problem underlying single-minded combi-
natorial auctions. Let us denote the universe of elements by U . The cardinality
of U is m. The parameter bi describes the number of copies that are available of
the i-th element. Furthermore, there is a collection S of n sets over the elements
in U . The j-th column of A specifies the elements in the j-th of these sets and
the parameter cj describes the profit of this set. The objective is to select a sub-
collection of sets from S maximizing the sum of the profits of the selected sets
such that, for each element e ∈ U , the number of selected sets containing e does
not exceed be.
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We prove that a Greedy algorithm achieves an approximation ratio of O(m
1

B+1 ).
The same approximation ratio is obtained by randomized rounding [9, 12]. In
fact, the constants hidden in the Oh-notation of our approximation bound are
even slightly better than the best constants known for randomized rounding [12].

Furthermore, it follows from the work of H
◦

astad [7] and of Chekuri & Khanna [4]
that a better approximation ratio in terms of m and b cannot be achieved, unless
NP = ZPP . Let us remark that there are also other bounds on the approximation
ratio of randomized rounding using other terms [11]. For example, [11] proves an

upper bound of the form O(d
1
B ) with d denoting the maximum cardinality over

the sets in S. These results, however, are incomparable to ours.
For general PIPs, we show that a Greedy algorithm achieves an approximation

factor of O(m
1
B ). Again this matches the best bound for randomized rounding

[12], and this result cannot be improved unless NP = ZPP [4]. Finally, for column

restricted PIPs, we obtain an approximation factor of O(m
1

⌈B+1⌉ ). In fact, in this
case we need two calls to Greedy algorithms, one to the algorithm for (0,1)-PIPs
and one to the algorithm for general PIPs. Our approximation factor for column
restricted PIPs corresponds again to the best known approximation factor achieved
by using randomized LP rounding techniques [8].
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Open Problem Session

Open Problems on Random 3SAT

Wenceslas Fernandez de la Vega

The problem MAX R-3SAT is defined as follows: For parameters p, n, m an in-
stance with m clauses of length 3 is obtained by picking at random 3 literals from
the 2n literals in n variables. opt(F ) is the maximum number of clauses which
can be satisfied simultaneously. Karpinski and Fernandez de la Vega (2002) show:
For each fixed p there exists a polytime algorithm which on input F outputs an
assignment which satisfies A(F ) clauses such that

Pr

(

opt(F )

A(F )
≤ 9

8

)

−→ 1 as n → ∞

Problem 1: What is the maximum ratio r for which there is a polynomial time
algorithm with

Pr

(

A(F )

opt(F )
≥ r

)

−→ 1 as n → ∞ ?

Problem 2: Can we approximate opt(F ) ? Broder, Frieze and Upfal (1993)

have shown that opt(F )
n concentrates around its expectation E

(

opt(F )
n

)

. Can we

approximate E(opt(F )) ? Obtaining A(F )
opt(F ) ≥ 7/8 is trivial.

Steiner Tree Problems

Mathias Hauptmann

Given a graph G = (V, E) with edge costs c : E → R and pairwise disjoint sets
Si ⊆ V (1 ≤ i ≤ m) (called the groups), the Group Steiner Tree Problem asks
for a mincost tree T in G containing at least one vertex from every group. The
problem is well known to be at least as hard to approximate as Set Cover (Ihler
1992, Garg et al. 1998), hence using Feige’s hardness result we obtain logarithmic
lower bound for approximability. Recently, Krauthgamer et al. improved this to
obtain a polylog. lowerr bound. For the Steiner Tree Problem (the special case
when all groups are of cardinality 1) Arora (1996) gives a PTAS for geometric
instances (i.e. point sets in some R

d with d being constant.

Problem 1: What is the approximation complexity of the geometric Group
Steiner Tree Problem ?

The Steiner Forest Problem asks for a minimum cost forest F for a given set of
pairwise disjoint terminal sets S1, . . . , Sm in a graph G = (V, E) with edge costs
c : E → R+ such that each Si is inside a connected component of F . For the
Steiner Tree Problem (the special case when m = 1, Chlebik and Chlebikova give
a lower bound of ≈ 1.01 for approximability. Nothing better is known for the
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Steiner Forest Problem.

Problem 2: Give better lower bounds for the approximability of the Steiner For-
est Problem.

One way of looking at this problem is to consider fixed parameter complexity.
The Steiner Tree Problem is known to be in FPT for both the parameters |S|
(the number of terminals) and |V \ S| (the number of non-terminals in the graph.
When we take the number of Steiner points used in the tree as a parameter, the
problem becomes W [1]-hard.

Problem 2a: Can we characterize the Steiner Forest Problem in terms of fixed
parameter complexity if the parameter depends on m,
the number of terminal sets ?

Consider the ǫ-Dense Steiner Tree Problem where the instance consists of a graph
G = (V, E), terminal set S ⊆ V and such that for alll s ∈ S, the number of neigh-
bors of s in V \ S is at least ǫ · |V \ S|. Karpinski and Zelikovsky (1997) proved
that for every fixed ǫ > 0, the ǫ-Dense Steiner Tree Problem provides a PTAS.
Recently we could prove that also efficient approximation schemes exist for this
problem.

Problem 3: Give hardness results for the ǫ-Dense Steiner Tree Problem.

It is even not known whether the problem is NP-hard in the exact setting (i.e.
solving it to optimality in polynomial time).

The Group Connector Problem

R. Ravi

Consider the following generalization of the Steiner Forest Problem and call it the
Group Connector Problem: Given some graph G = (V, E) with edge costs c : E →
R+ and pairwise disjoint terminal sets S1, . . . , Sm with requirements ri ≤ |Si|, find
a min-cost forest F in G consisting of connected components F1, . . . , Fq such that
for every i, maxj |Si ∩ Fj | ≥ ri.

Problem: What is the approximation complexity of this problem ?

The Group Connector Problem is log-hard to approximate even on a line. This
can be seen by a reduction from the Set Cover Problem: For each element and
each set containing it draw two vertices at some small distance on a line such
that representatives of elements of the same set are close together and distances
between the sets are very large. Let Si consist of al representatives of element i in
sets and ri = 2.
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Planar Min-Bisection

Marek Karpinski

The problem of approximating the minimum bisection of a graph, i.e., the prob-
lem of partitioning a given graph into two halfs so as to minimize the number of
edges with exactly one end in each half, belongs to the most intriguing problems
currently in the area of combinatorial optimization and approximation algorithms.
The reason being that we are not able to cope efficiently at the moment with the
global conditions imposed on the vertices of a graph like the condition that the
two parts of the partition are of equal size. While the PLANAR MAX CUT prob-
lem is known to be in P (Hadlock 1975), for the PLANAR MAX-BISECTION
problem, the question at the time is whether it is NP-hard in the exact setting.
Jansen, Karpinski, Lingas and Seidel (2002) provide polynomial time approxima-
tion schemes for MAX-BISECTION on planar and geometric graphs, showing that
PLANAR MAX-BISECTION ∈ PTAS.
The problem of PLANAR MIN-BISECTION arises profoundly in contexts rang-
ing from partitioning functions in statistical physics to some combinatorial and
geometric optimization problems.

Problem 1: What is the status of the PLANAR MIN-BISECTION problem in
the exact setting ?

Problem 2: Does the PLANAR MIN-BISECTION problem admit a PTAS ?

Bicriteria Minimum Spanning Tree Problem

Berthold Vöcking

In the Bicriteria MST problem we are given weights and costs on the edges of a
graph. The task is to construct a spanning tree such as to optimize simultaneously
weight and cost of the tree.

In the constrained version of this problem there is a specified upper bound on
the cost of the spanning tree. The problem is to find a minimum weight spanning
tree obeying the budget constraint.

Problem 1: Does this problem have an FPAS ?

Problem 2: Enumerate all Pareto-optimal solutions (in time polynomial in the
number of solutions).

Having Problem 2 solved, one can also solve Problem 1.

Reporter: Mathias Hauptmann
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