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Introduction by the Organisers

The workshop continued the longstanding biannual series at Oberwolfach on
Calculus of Variations. This Oberwolfach series provides an imporant service to the
mathematics community, being currently the only periodic international meeting
in this very active area.

The main themes of the workshop were variational methods in differential ge-
ometry and in nonlinear partial differential equations theory, where exciting top-
ics included geometric flows, condensation and singularity formation in geometric
problems, and mass transportation phenomena in partial differential equations.

Among the many traditional and non-traditional application areas of the calcu-
lus of variations, the talks covered aspects of general relativity, discrete systems,
phase transitions and microstructure, fluid dynamics, quantum chemistry, and
approximation theory for rough function spaces.
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Abstracts

Constant mean curvature hypersurfaces condensing along a
submanifold

Rafe Mazzeo

There has been substantial progress in the last two decades in the theory of con-
stant mean curvature hypersurfaces in Riemannian manifolds. Roughly speaking,
there are two predominant methods for studying the existence and deformation
theory: the first draws on techniques from integrable systems, but is effective only
when the ambient manifold symmetric, e.g. Euclidean or constant curvature, and
is most effective only in low dimensions; the second, relying on various PDE tech-
niques and analytic gluing methods, is more general and flexible. A recent survey
of developments in this latter context is contained in the paper [6].

Closely connected to the basic existence problems are questions about the mod-
uli space of all such surfaces, and as part of this it is natural to study the limiting
behaviour of sequences of CMC surfaces. As a guide for what to expect, recall that
in the closely related study of area minimizing (or stationary) hypersurfaces one
has general results from geometric measure theory which ensure compactness in
a weak sense, ensuring the existence of possibly singular limits of such sequences.
Perhaps a better guide is the the study of sequences of (two dimensional) minimal
surfaces in three manifolds. Here one has very good compactness theorems if one
makes assumptions on the curvature of the ambient space and imposes uniform
area bounds on the sequence; without these assumptions, however, as follows from
the important work of Colding and Minicozzi, the sequence always limits on a
minimal foliation or minimal lamination.

One expects a somewhat similar story for sequences of CMC surfaces, that
under favorable conditions and with various strong geometric assumptions, one can
extract smooth or nearly smooth limits, and that in general one gets convergence
of a subsequence to more complicated object. As an example of a theorem of the
first sort, see [2]. The subject of my talk in this Oberwohlfach session was a report
on some progress in understanding what can happen for more general sequences.
This is contained in two recent papers, [7] with Frank Pacard and [8] with Pacard
and Fethi Mahmoudi. We consider sequences of CMC hypersurfaces with mean
curvature tending to infinity. The easiest example is a family of concentric spheres
in Rn or somewhat more generally, a family of tubes around a linear subspace,
in each case with radius tending to zero. Our goal was to understand when such
sequences can exist in more general manifolds. More specifically, suppose that Σ
is a compact embedded submanifold of arbitrary codimension in the Riemannian
manifold (X, g). The geodesic tubes of radius ρ around Σ are approximately CMC,
and we study whether it is possible to perturb this family into a family of exactly
CMC hypersurfaces which ‘collapse’ onto Σ.

The case where Σ is a point was studied in the early ’90’s by Rugang Ye [9],
[10], [11]. He proved the following result
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Theorem 0.1 (Ye). Let p ∈ X be a nondegenerate critical point for the scalar
curvature function Rg on X. Then the family of geodesic spheres Sρ, which form
a local foliation around p, can be perturbed to a local foliation where each leaf is a
small perturbation of one of these geodesic spheres. Conversely, if Mj is a sequence
of CMC surfaces which are diffeomorphically spheres, then subject to some mild
extra conditions, Mj collapses to a point p which is a critical point of the scalar
curvature function.

Ye adapted the proof of this result to show the existence of a CMC foliation near
infinity in any asymptotically Euclidean manifold. This foliation was obtained by
other methods by Huisken and Yau [1], and is important in general relativity.

We generalize this in the

Theorem 0.2. Suppose that Σ is a nondegenerate compact minimal surface of
dimension k > 0 in Xn+1. Then there is a sequence of disjoint intervals Ij =
[ρ−j , ρ

+
j ] with ρ±j → 0 such that for ρ ∈ Ij the geodesic tube of radius ρ around Σ,

Tρ(Σ), may be perturbed to a CMC hypersurface with mean curvature proportional
to 1/ρ. Moreover, the union of the intervals Ij has density 1 near 0.

There are two significant differences between the statement of this theorem
and Ye’s. First, we need no hypotheses concerning the curvature of the ambient
manifold at or near Σ; the minimality of Σ is essentially the replacement for this.
Secondly, we can only perturb ‘most’ geodesic tubes, but do not seem to be able
to find CMC tubes at every radius. The fact that there are gaps reflects a genuine
bifurcation phenomenon.

The overall idea of the proof is to solve the CMC equation amongst a family of
perturbations of these geodesic tubes. These perturbations are obtained by first
translating Σ slightly in the normal direction and then taking a normal graph over
the resulting surface; thus these perturbations are parametrized by a section Φ
of the normal bundle NΣ, and a function w on Tρ(Σ). The first main step is to
compute the precise asymptotics of the metric and second fundamental form on
these perturbed surfaces as a function of ρ, Φ and w. Then one must analyze
the linearized mean curvature operator and study its mapping properties in the
singular limit as ρ → 0. There is an infinite sequence of radii ρj → 0 where this
linearization becomes degenerate, and the aforementioned gaps are caused by the
existence of these degenerate radii. However, avoiding small neighbourhoods of
the ρj , we are able to carry through the analysis so as to find CMC hypersurfaces
in this family of perturbations.

As noted above, the existence of ‘degenerate radii’ ρi is related to a bifurcation
phenomenon. This can be seen clearly in the case where Σ is a geodesic circle and
X a flat torus. Then the tubes Tρ are already CMC, but one also has for each
(small) radius ρ other CMC hypersurfaces, namely rescalings of Delaunay surfaces;
these are periodic surfaces of revolution and the period of the rescaled surface must
match the length of the geodesic. These new families intersect the basic cylindrical
family Tρ(Σ) precisely at the radii ρi. In current work of Mahmoudi it is shown



Calculus of Variations 1543

that such Delaunay-type surfaces exist whenever Σ is a nondegenerate geodesic in
any manifold X .

Similar bifurcations have been observed in a different context in the work of
Malchiodi and Montenegro, cf. [3], [4], [5].

Let Sρ denote the cylindrical CMC hypersurface obtained by perturbing the
geodesic tubes Tρ(Σ). It follows from our construction that suitable rescalings of
the area and curvature densities on Sρ limit to constant multiples of the standard
density on Σ, i.e.

ρk−m Hm
xSρ ⇀ a1 Hk

x Σ,

and, for all q ≥ 1,

ρk−m+q |Aρ|q Hm
xSρ ⇀ a2 Hk

xΣ,

as ρ ց 0. Here |Aρ|2 is the norm squared of the second fundamental form on Sρ,
k = dim Σ, m = dimSρ and a1 and a2 are dimensional constants (a2 also depends
on q).

These equations do not hold for arbitrary families of CMC hypersurfaces con-
densing on Σ, as illustrated by sequences of collapsing rescaled Delaunay surfaces.
In another direction, one should (though this has not been done yet) be able to
construct families of CMC hypersurfaces which condense along lower dimensional
sets which are still minimal in an appropriate sense, but with singularities, for
example a Steiner tree with geodesic edges. A simple example of this is when Sρ

is obtained by homothetically rescaling a fixed Delaunay trinoid in R3. The limit
then is a union of three rays meeting at a common vertex, each ray having an
associated density coming from the limiting Delaunay necksize on that end; each
ray is minimal, of course, and the entire configuration is ‘balanced’ in the sense
that the weighted sum of the vectors along the rays vanishes.

Keeping these various phenomena in mind, we make the

Conjecture: Let Sj be a family of constant mean curvature hypersurfaces with

mean curvature Hj ր ∞; then for j sufficiently large, Sj is homologically trivial.

Thus if the Sj were indeed condensing on a lower dimensional (possibly sin-
gular) manifold Σ, then Sj should bound a tubular neighbourhood around this
condensation set.
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Approximation of SBD functions

Antonin Chambolle

Special Bounded Deformation displacements have been introduced by Ambro-
sio, Bellettini, Dal Maso, Coscia [3, 7] to represent displacements in linearized
elasticity problems with discontinuities (that may model cracks in the material).
Given u ∈ Ω, where Ω is an open subset of RN , one says that a displacement
u : Ω → RN has bounded deformation whenever the symmetric part of the distri-
butional derivative E(u) = (Du + DuT )/2 is a bounded Radon measure. In this
case, it is proven in [3] that the measure E(u) can be decomposed into three parts,
one absolutely continuous with respect to the Lebesgue measure dx, denoted by
e(u) dx, and two other that are singular: a jump part, carried by the rectifiable
(N−1)–dimensional set Ju of points where the function u as two different approx-
imate limits u+ and u−, together with a normal vector νu, and a “Cantor part”,
which vanishes on Borel sets of finite HN−1 measure.

The space SBD(Ω) is defined as the space of the bounded deformation functions
u such that the Cantor part of E(u) vanishes, so that this measure can be written

E(u) = e(u)(x) dx + (u+(x) − u−(x)) ⊙ νu(x)HN−1 Ju(x)

where HN−1 Ju is the (N − 1)–dimensional Hausdorff measure restricted to Ju

and a⊙ b denotes the symmetrized tensor product (a⊗ b+ b⊗ a)/2. It is to BD
displacements the analogous of the space SBV functions to BV functions. The
space SBV has been introduced by Ambrosio and De Giorgi in order to study
“free discontinuity” problems arising in image processing [4].

These SBD displacements are useful in the theory of brittle crack evolution,
following a model proposed by Francfort and Marigo [18, 19]. One can define
a “Mumford-Shah”–like potential energy of the form E(u) =

∫

Ω
W (e(u)) dx +

HN−1(Ju), with W some linearized elasticity bulk energy, and roughly define a
discrete evolution with timestep δt > 0 by letting, for every n ∈ N, un be a
minimizer of E(u) among all u with u = g(nδt) and Jun

⊃ Jun−1 , where g(t) is a
given boundary displacement and the second condition expresses the fact that the
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fracture, represented by the jump Ju, is irreversible and can only grow. At this
point, several problems arise. Does each minimization problem have a solution?
Does there exist some limit evolution as δt ↓ 0? Some of these issues are addressed
in [2, 15, 11, 17, 13], for variants of this problem (scalar versions, topological
restrictions on the cracks, nonlinear elasticity). However, in the case of linearized
elasticity, a study of this problem is still out of reach for many technical reasons.

Interesting also would be to find a way to numerically minimize energy E, in
order to simulate crack growth. In [8], such experiments have been conducted, that
are based on a Ambrosio and Tortorelli [5, 6] approximation of energy E, in the
case where W is a positive definite quadratic form of the deformation e(u). But
the Γ–convergence of this approximation to E is not known. A major issue is in
the proof of the Γ–limsup: in Ambrosio and Tortorelli’s works, it relies strongly on
the fact that any function in SBV (Ω) with finite Mumford-Shah energy

∫

|∇u|2 +

HN−1(Su) can be approximated by functions un such that the jump set Sun
is

closed. No such result exists up to now for SBD functions.
In our talk, we have exposed the results of a recent paper [12] (an extension to

the N -dimensional case is in preparation) in which we prove such a property. We
show that, for W with quadratic growth, provided Ω is bounded and ∂Ω is locally
a subgraph, any u ∈ SBD(Ω) ∩ L2(RN ) with E(u) < +∞ can be approximated
(in L2) by a sequence un such that lim supn→∞

∫

Ω
W (e(un)) dx + HN−1(Jun

) ≤
∫

ΩW (e(u)) dx + HN−1(Ju). It turns out that the jump set Jun
that we build

is included in a finite union of closed connected C1 hypersurfaces, whose total
(N − 1)–dimensional Hausdorff measure goes to HN−1(Ju) as n→ ∞.

Using a SBD semicontinuity result proven in [7], our results yields the con-
vergence of e(un) to e(u) in L2–strong, and the convergence of HN−1(Jun

) to
HN−1(Ju). On the other hand, we do not know whether the sequence (un)n≥1

we build can be uniformly bounded in BD. As a consequence we deduce the
Γ–convergence of an Ambrosio and Tortorelli [5, 6] approximation of the elastic-
ity Mumford Shah functional, with an L∞ constraint. This justifies in part the
numerical computations presented in [8].

In the talk, we have exposed mainly the simpler “SBV ” (scalar) case, for which
the result is already well-known. However, all previous proofs in that case relied on
a deep theorem of De Giorgi, Carriero and Leaci [16] (see also [14]) on the regularity
of minimizers of the Mumford-Shah functional. Our proof is constructive, and can
be adapted without great technical difficulties to the SBD case (or other situations
with geometrical constraints as in a forthcoming paper with Margherita Solci the
from University of Alghero (Sassari, Italy)). It relies first on a discretization
argument which is inspired from a work by Gobbino [20] and relies on slicing.
A first approximation result is found, but with an approximating sequence (un)
which is defined on a discrete set of the form εZ ∩ Ω. Similar approaches have
been used in [10, 1].
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Then, the approximate discrete sequence is re-interpolated in Ω using classical
linear interpolation, and taking into account the jumps, into a sequence of piece-
wise continuous functions. This follows an approach introduced in [9] in a similar
setting.

A classical difficulty is that in the interpolation process the discontinuity is nec-
essarily approximated in an anisotropic way, hence its measure cannot be correctly
reconstructed. This is bypassed by first covering the jump set with finitely many
pieces of smooth hypersurfaces, up to a small error of total surface ε, and then
performing the above described approximation process. The error in the recon-
struction is this time of order C × ε, and a diagonalization argument yields the
final result—with an error that goes to zero.
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A rigidity estimate for two incompatible wells

Stefan Müller

(joint work with Nirmalendu Chauduri)

A classical result in geometry and continuum mechanics states that if a Lipschitz
maps satisfies ∇u ∈ SO(n) almost everywhere then the gradient is in fact (locally)
constant. The following quantitative version has been established recently and has
lead to a rigorous derivation of a hierarchy of plate theories from three-dimensional
nonlinear elasticity.

Theorem 1 ([8]) Let Ω ⊂ Rn be a bounded Lipschitz domain, n ≥ 2. There exists
a constant C(Ω) with the property that for each u ∈ W 1,2(Ω,Rn), there exists an
associated rotation R ∈ SO(n), such that

(0.1) ‖∇u−R‖L2(Ω) ≤ C(Ω)‖dist(∇u, SO(n))‖L2(Ω) .

This generalizes a classical result of F. John [9] who derived an estimate of ‖∇u−
R‖L2 in terms of ‖dist(∇u, SO(n)‖L∞ for locally Bilipschitz maps u.

In connection with mathematical models for materials undergoing solid-solid
phase transformations [1, 4, 7] one is interested in deformations u whose gradient
is close to a set K := ∪m

i=1SO(n)Ui, which consists of several copies of SO(n)
(so-called energy wells). Here we consider the two-well problem for two strongly
incompatible wells. For further information on the two-well problem see [6, 10, 12].
Rigidity for a linearized version of the two-well problem is discussed in [5]. We
prove an estimate of the type (0.1) for two strongly incompatible wells.

Theorem 2 ([3] Let Ω ⊂ Rn be a bounded Lipschitz domain, n ≥ 2 and
K := SO(n) ∪ SO(n)H, where H = diag (λ1, · · ·λn), λi > 0 such that

∑n
i=1(1−

λi) (1 − detH/λi) > 0. There exists a positive constant C(Ω, H) with the follow-
ing property. For each u ∈ W 1,2(Ω,Rn) there is an associated R := R(u,Ω) ∈ K
such that

(0.2) ‖∇u−R‖L2(Ω) ≤ C(Ω, H) ‖dist(∇u ,K )‖L2(Ω) .

Theorem 2 has interesting consequences for the scaling of the energy in thin
martensitic films [2, 11]. There are examples such that the two-wells are strongly
incompatible in three dimensions (in the sense above) but compatible in two di-
mensions. Using Theorem 2 one can show that in this case the optimal energy
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per unit film thickness of the order of the film thickness h (provided that the two-
dimensional limit uses both wells). This is a nonstandard scaling which lies in be-
tween the usual membrane theory (scaling of order 1) and the bending (Kirchhoff-
Love) theory (scaling of order h2).

The above condition on H is related to the following result of Matos.
Lemma 3 ([10]) Let K := SO(n) ∪ SO(n)H, H = diag (λ1, · · ·λn), λi > 0.
Then there exits a smooth function W : Rn×n → R, which is uniformly convex
and has quadratic growth and satisfies ∇W = ∇det = cof in K, if and only if
∑n

i=1(1 − λi) (1 − detH/λi) > 0.

Using Matos’ result and elliptic regularity theory one sees easily that every map
whose gradient lies exactly in K must be in W 2,2. Hence the gradient must lie in
one of the connected components SO(3) or SO(3)H and is therefore constant by
the classical rigidity result.

To prove Theorem 2 one needs a quantitative version of this. To this end
one uses a result of Luckhaus, which states that a function which is close to
characteristic function in L1 and which has controlled W 1,2 norm must be close
to 0 or 1. Finally one uses a covering argument to improve the exponent in the
Luckhaus estimate to the optimal scaling in Theorem 2.
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Discrete membranes with defects

Andrea Braides

We are interested in describing the overall properties of a membrane in which a
distribution of ‘defects’ is taken into account. We find it convenient to introduce
a discrete model, whose properties are then described by a suitable continuous
counterpart.

The free energy of a two-dimensional discrete membrane with a bounded open
set Ω ⊂ R2 as reference configuration is modelled by a functional

(0.1) Eε(u) =
1

2

∑

|i−j|=ε

φε
ij(ui − uj),

where u : εZ2 ∩ Ω → R represents the vertical displacement of the membrane and
ui = u(i). If we think of this as a mass-spring system then φε

ij represents the
energy density of the interactions between the two point masses parameterised
by i and j in the reference configuration (note that we only take into account
nearest neighbours). The small positive parameter ε is introduced so that averaged
properties of Eε are described by its Γ-limit F (see e.g. [3, 10]). Note that this
problem can be framed within the recent applications of Γ-convergence to the
description of the passage from discrete systems to continuous variational problems
(see e.g [5, 7])

We suppose that the functions φε
ij may take two forms:

(1) (strong springs) φε
ij(z) = z2. If only strong springs are presentEε is nothing but

a finite-difference approximation of the Dirichlet integral, and F (u) =
∫

Ω |∇u|2 dx
is defined on H1(Ω);
(1) (weak springs) φε

ij(z) = min{z2, ε}. In terms of the difference quotient we may
write

(0.2) φε
ij(u

i − uj) = εf
(

ε
(ui − uj

ε

)2)

=

{

(ui − uj)
2, if

ui−uj

ε ≤ 1√
ε

1, otherwise,

where f(w) = min{|w|, 1}. We may interpret the energy φε
ij as describing an

elastic spring until the gradient reaches the threshold 1/
√
ε, after which the spring

is broken. Note that this value gives the only interesting scaling for the fracture
threshold. If only weak springs are present then the Γ-limit is finite on the space
SBV(Ω) (see [2]) and is the weak membrane energy

(0.3) F (u) =

∫

Ω

|∇u|2 dx+

∫

S(u)

‖ν‖1dH1,

where ‖ν‖1 = |ν1|+|ν2| (see Chambolle [9]). F may be interpreted as an anisotropic
Griffith fracture energy (see [11]), the anisotropy clearly deriving from the square
lattice symmetries.

We consider the case when

(0.4) φε
ij(z) =

{

εf(εz2), with probability p

z2 with probability 1 − p .
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This can be done by introducing suitable i.i.d. random variables (see [8]) corre-
sponding to a bond-percolation model (see e.g. [12]). With fixed a realisation ω
we will write Eω

ε to highlight the fixed choice of φε
ij in terms of ω, and Fω the

corresponding Γ-limit. The following theorem holds [8].

Theorem (Braides and Piatnitsky).
(i) (subcritical regime) If p < 1/2 then almost surely the limit is finite only

on H1(Ω) and

(0.5) Fω(u) =

∫

Ω

|∇u|2 dx

independently of ω;
(ii) (supercritical regime) If p > 1/2 then there exists gp ≤ c < +∞ such

that almost surely

(0.6) Fω(u) ≤
∫

Ω

|∇u|2 dx+

∫

S(u)

gp(ν) dH1.

Remark. (i) the threshold 1/2 corresponds to the bond-percolation threshold in di-
mension 2. Other choices of percolation models (e.g. site percolation) are possible;
the results are exactly the same but with the corresponding percolation threshold
in place of 1/2;

(ii) even if no assumptions on the distribution of weak and strong springs are
made, by using the localisation methods of Γ-convergence (see e.g. [3] Chapter 16)
applied to the passage from discrete to continuous energies (as in [1] in the case of
Sobolev-type groth conditions; see also [4]) it is possible to show that F always has
an integral representation on SBV(Ω). By comparison with the Dirichlet integral
and with the weak membrane energy the bulk energy density is bound to be |∇u|2,
and we have that

(0.7) Fω(u) =

∫

Ω

|∇u|2 dx+

∫

S(u)

g(x, u+ − u−, ν) dH1;

(iii) note that it is not possible to obtain meaningful bounds on g in terms of
the local limit density of weak/strong connections as those obtained in [6] when
considering mixtures of strong springs with two possible choices of elastic mod-
uli. In fact, it can be shown that the only bound we may obtain is the trivial
one: g(x,w, ν) ≥ ‖ν‖1 If we are in a homogenization setting, i.e. a periodicity
assumption is made, then homogenization formulas for g can be proved.

Remark. The proof uses the Γ-convergence techniques for free-discontinuity prob-
lems combined with percolation theory. In particular in the subcritical regime one
uses the properties of the ‘strong cluster’ to obtain the coerciveness in H1(Ω),
while in the supercritical regime one constructs recovery sequences using connec-
tions on the ‘weak cluster’ to approximate discontinuity sets. It seems likely that
this is almost surely the optimal way to approximate jump sets. We are then led
to the following conjecture.
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Conjecture: The upper bound in (0.6) is optimal; i.e. the Γ-limit is independent
of ω and is given by the right-hand side of (0.6), with gp suitably defined by a
least-path problem on the weak cluster (see [8]).
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Solutions of the Multiconfiguration Equations in Quantum Chemistry

Mathieu Lewin

The multiconfiguration methods are the natural generalization of the well-
known Hartree-Fock theory for the description of non-relativistic electrons in atoms
and molecules. We present here our latest results regarding the existence of mini-
mizers and of saddle points [9, 5].

Let us consider a molecule which contains

• M nuclei treated as pointwise classical particles of charges Z1, ..., ZM which

are clamped at positions R1, ..., RM ∈ R3, and with total charge Z :=
∑M

m=1 Zm.

They create the electrostatic potential V (x) = −∑M
m=1

Zm

|x−Rm| .

• N non-relativistic electrons described by a normalized wavefunction

Ψ(x1, ..., xN ) ∈ L2
a((R

3)N ,R) .
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The subscript a indicates that, due to the Pauli principle, we solely consider wave-
functions which are antisymmetric under permutations of variables, i.e.

Ψ(x1, ..., xN ) = ǫ(σ)Ψ(xσ(1), ..., xσ(N))

a.e. for all σ ∈ SN .
The energy of the electrons in the quantum state Ψ is E(Ψ) = 〈Ψ, HNΨ〉 where

HN is the purely Coulombic N -body Hamiltonian

HN =

N
∑

i=1

(

−1

2
∆xi

+ V (xi)

)

+
∑

16i<j6N

1

|xi − xj |
.

When Z > N − 1, the spectrum of HN has the form σ(HN ) = {λd} ∪ [Σ; +∞)
where the λd’s are eigenvalues of finite multiplicity, converging to Σ as d → ∞,
and where Σ < 0 when N ≥ 2. A normalized eigenfunction associated with
λ1 is called a ground state. Higher eigenfunctions are called excited states. In
practice, this model is out of reach due to the excessive dimension of the space
R3N on which the wavefunctions are defined. Therefore, the multiconfiguration
(MC) approximation is often used by chemists. In this case, one restricts the set
of admissible wavefunctions Ψ to those which are a finite combination of Slater
determinants. They take the form

(0.1) Ψ =
∑

1≤i1<···<iN≤K

ci1...iN
φi1 ∧ · · · ∧ φiN

where φ1 ∧ · · · ∧φN (x1, ..., xN ) := (N !)−1/2 det(φi(xj)). Due to the normalization
constraint on Ψ, we introduce the following manifold

MK
N =

{

(c,Φ) ∈ R(K
N ) × (H1(R3))K ,

∑

(ci1...iN
)2 = 1,

∫

R3

φiφj = δij

}

.

The energy is simply defined onMK
N by EK

N (c,Φ) = 〈Ψ, HNΨ〉, where Ψ is given by
formula (0.1). We refer the reader to [5] for an explicit expression of EK

N in terms
of c and Φ. EK

N is non-quadratic and the associated Euler-Lagrange equations
form a complicated system of coupled non-linear PDEs.

When K = N , we recover the celebrated Hartree-Fock approximation for which
it is known that a minimizer exists [7, 8]. In [8], a sequence (Φn)n∈N of critical
points of EN

N (1, ·) has been constructed, but these solutions cannot be interpreted
as approximate excited states since they satisfy EN

N (1,Φn) →n→∞ 0, whereas
λd → Σ < 0 as d→ ∞. The first result on a MC method is due to Le Bris [4] who

proved the existence of a minimizer on a subset of MN+2
N . Finally, the existence of

a minimizer of EK
N on MK

N for any K ≥ N has been recently proved by Friesecke
[2]. However his geometrical method is not adapted to obtain critical points.

In [9, 5], we propose a new method of proof which can be also used to obtain
critical points. It is inspired by [8] (we prove the compactness of Palais-Smale
sequences with a Morse information).

Theorem 1 (Existence of minimizers and of infinitely many critical points for
each K, [5]). Assume that Z > N − 1 and K ≥ N . Then,
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(1) there exists a minimizer of EK
N on MK

N ;

(2) there exists a sequence (c̃n, Φ̃n) of critical points of EK
N on MK

N such that

limn→+∞EK
N (c̃n, Φ̃n) = 0.

This result can be extended to more practical methods in which only some
well-chosen Slater determinants are selected (see [5] for details).

Like for [8], the (c̃n, Φ̃n) cannot be interpreted as excited states. Numerically,
it is observed that EK

N possesses a lot of critical points on MK
N (due to the non-

linearity) and it seems very difficult to identify the ones that can be interpreted as
approximate excited states of the molecule. In [5], we have constructed for each
K a finite number of critical points that have this property.

Theorem 2 (Existence of approximate excited states, [5]). Assume that Z > N−1
and K ≥ N . Then, there exists a sequence (cd,Φd) ∈ MK

N for d = 1, ...,
(

K
N

)

of

critical points of EK
N on MK

N , with a Morse index at most d − 1, which fulfills,
denoting λK

d = EK
N (cd,Φd),

λd ≤ λK
d and lim

K→+∞
λK

d = λd.

These points are constructed by inf − sup type methods on homotopic families
of dimension d, which are invariant under a certain action of the group Z2, in the
spirit of [8, 3]. For d = 2 (first excited state), we have

λK
2 = inf

(c,Φ)∈MK
N

{

inf
γ∈Γ(c,Φ)

max
t∈[0;1]

EK
N (γ(t))

}

Γ(c,Φ) =
{

γ ∈ C0([0; 1],MK
N ), γ(0) = (c,Φ), γ(1) = (−c,Φ)

}

.

Numerically, the first inf can be simplified by simply taking (c̄, Φ̄), a global mini-
mizer of EK

N on MK
N . The procedure in brackets in then simply a mountain-pass

method between (c̄, Φ̄) and (−c̄, Φ̄). This method mimics the classical formula
which allows to obtain λ2 in the linear setting as a mountain pass between Ψ1

and −Ψ1 where HNΨ1 = λ1Ψ1. This totally new definition gives rise to a novel
algorithm for the computation of the first excited state of molecules, described
and tested in [1, 6].
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Variational problems in general relativity

Gerhard Huisken

Let (M3, g,K) be an initial data set, ie (M3, g) is a complete Riemannian
manifold and K is an additional symmetric tensorfield on M3. The data g and K
are motivated by the induced metric and second fundamental form of a spacelike
hypersurface in a Lorentzian 4-manifold modelling an isolated gravitating system
such as for example a star, a binary or a black hole. For an isolated system the data
are assumed to be asymptotically flat, ie the noncompact part(s) of (M3, g,K) is
(are) assumed to be diffeomorphic to R3 −B1(0) with data g,K approaching the
standard data of a plane in Minkowski space at a certain rate.

The lecture explains how geometric variational principles can be used to con-
struct special 2-spheres near infinity in (M3, g,K) if a certain geometric invariant
of M3, g, called the mass of the system is positive. The special 2-spheres typically
are surfaces of constant mean curvature H , solutions to inverse mean curavture
flow or Willmore surfaces of given area. One part of the lecture explains recent
results of Jan Metzger, (Tübingen) [M], on the existence of 2-spheres satisfying
H + trSigma = const and H − trSigma = const. assuming much milder decay con-
ditions on g and K than previous work by Huisken and Yau [HY] on cmc-surfaces.
The relation of this work to recent quantitative rigidity estimates of Müller and
DeLellis [LM] and to results on the behaviour of solutions to the inverse mean
curvature flow by Huisken and Ilmanen [HI1],[HI2] is also explained.
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Vortex lattices in Bose-Einstein condensates

Amandine Aftalion

Vortices in Bose Einstein condensates: One of the key issues related to super-
fluidity is the existence of quantized vortices. We present very recent experiments
on Bose-Einstein condensates exhibiting vortices, which consist in rotating the
trap holding the atoms. We investigate the behavior of the wave function which
minimizes the Gross Pitaevskii energy. This energy takes into account the special
shape of the trapping potential. In a regime with a small parameter, we give a
simplified expression of the energy which only depends on the number and shape
of vortex lines. This allows us to study in detail the structure of the lines which
have either a U or S shape and compare with experiments. We also present results
where the type of trapping potential can be at the origin of multiply quatnized
vortices. Finally, we describe the regime of rapid rotation where a dense vortex
lattice is observed. The particularity of this lattice is to be distorted towards the
edges. Using double scale convergence, we show why the distorted lattice has a
lower energy than a regular lattice.
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layer of a Bose Einstein condensate. JMPA (2004).

Equilibria in foams: a phase field model

Irena Fonseca

(joint work with Massimiliano Morini, Robert Sekerta, and Valeriy Slastikov)

The role of surfactants in stabilizing, and possibly encouraging, the formation
of bubbles in foams, is studied using a phase-field model. Ultimately, the goal
is to treat solid (metallic) foams, such as AL2O3, with important applications in
industry such as the manufacturing of lightweight sandwich structures in automo-
tive industry, and in biotechnology, for example in the making of highly porous
scaffolds for bone tissue engineering. Most research has focused on aqueous foams
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(shampoo, dishwasher detergent, beer, soap froth, etc.), with some incursions into
polymeric foams, but the realm of solid foams has been virtually untouched by a
rigorous mathematical treatment. In solid foams anisotropy plays a very important
role in determining the polyhedral shapes in cellular packing, and an important
analytical and geometrical challenge is to explain the different sizes of clusters in
cellular packing (see [3], [18], [16], [20], [19]).

Here we address solid foams, but our initial quest as outlined above is one
where an isotropic framework is justifiable. It is commonly agreed that formation
of bubbles is intrinsically related to phase transitions phenomena, and that solid
foams and liquid foams share many topological and geometrical properties, due in
part to the fact that solid foams typically evolve in the fluid state as gas bubbles,
expanding and deforming under the influence of viscous forces, surface tension,
surfactants, etc. For this reason, the model adopted in this paper is a modification
of van der Waals-Cahn-Hilliard’s model for fluid-fluid phase transitions (see [1],
[5], [6], [7], [8], [9], [12], [13], [14], [15], [21], [22], [23], [24], [25]; for related issues
within the realm of the Eikonal equation we refer to [2], [4], [17]), with an added
term that accounts for the influence of the surfactant in preventing coalescence of
bubbled and in encouraging the formation of interfaces.

With Ω ⊂ RN a bounded, open set, denoting the ambiance space, u : Ω → R the
phase-field that takes values 1 in the gas, 0 in the air then the transition between
phases occurs across a thin fluid layer penalized by a (surface) gradient term,
and we consider a double-well potential f : R → [0,+∞) with {f = 0} = {0, 1}
that drives the system to the two phases. The total energy of the system, after
rescaling, reads

Gǫ(u, ρ) :=
1

ǫ

∫

Ω

f(u) dx+ ǫ

∫

Ω

|∇u|2 dx+ α(ε)

∫

Ω

(ρ− |∇u|)2 dx,

where ρ : Ω → [0,+∞) stands for the surfactant, and α(ǫ) → 0+. The volume
of surfactant is given apriori and so is the total volume of gas bubbles. The
main analytical objective in this paper is to identify the asymptotic behavior of
equilibria. Precisely, if (uε, ρε) minimizes Gε then can we establish that {(uε, ρε)}
converges to some macroscopic state (u, ρ), and, if yes, what characterizes (u, ρ),
e.g. does (u, ρ) minimize a new, macroscopic (relaxed) energy? The analysis
shows that the regime of interest, both mathematically as well as when confronted
with experimentation, is that where α(ε) is of the same order of ε. In this case,
with α(ε) = ε, it is shown that Gε Γ-converges (with respect to L1×(weak-*)
convergence; see [10], [11]) to

F (u, µ) :=

{

∫

Su
φ

(

dµ
dHN−1⌊Su

(x)
)

dHN−1(x) if u ∈ BV (Ω; {0, 1}),
+∞ otherwise,

where φ is a non-increasing, convex, surface energy density such that

(0.1) φ(0) = 2
√

2

∫ 1

0

√

f(s) ds, φ(γ) = 2

∫ 1

0

√

f(s) ds for γ ≥ 1.

We observe that



Calculus of Variations 1557

• the macroscopic energy F is only sensitive to the restriction of µ to the
interface Su, and we interpret this fact by saying that the surfactant seg-
regates to the interface;

• F remains unchanged if the density of the surfactant density µ on the
interface Su, dµ

dHN−1 , exceeds 1. Indeed, in view of (0.1) the energy is
impervious to adding more surfactant and the system reaches saturation;

• looking at F now as having the location of the surfactant established from
the onset, by a direct inspection of F it is now clear that this determines
the locus of interface formation;

• the decreasing nature of ϕ leads us to believe (although this warrants a
future rigorous analytical verification) that it may be energetically more
favorable to spread a small amount of surfactant over a bigger number
of smaller bubbles that to spread an even smaller and thinner amount of
surfactant over fewer, bigger bubbles;

• the model adopted indeed explains why the presence of surfactant makes
it energetically more favorable to create bubbles. This is of the utmost
importance in applications as the usage of foams depends in a crucial way
on their wetness.
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11. De Giorgi, E. Sulla convergenza di alcune successioni di integrali del tipo dell’area, Rend.

Mat. (IV), 8 (1975) 277–294.
12. Fonseca, I. Phase transitions of elastic solid materials, Arch. Rat. Mech. Anal. 107 (1989)

195–223.



1558 Oberwolfach Report 29/2004

13. Fonseca, I. and C. Mantegazza. Second order singular perturbation models for phase transi-
tions, SIAM J. Math. Anal. 31 (2000) 1121–1143.

14. Fonseca, I. and L. Tartar. The gradient theory of phase transitions for systems with two
potential wells, Proc. Roy. Soc. Edin. Sect. A 111 (1989) 89–102.

15. Gurtin, M. E. Some results and conjectures in the gradient theory of phase transitions. IMA
Preprint 156, 1985.

16. Hilgenfeldt, S., A. Kraynik, S. A. Koehler and H. A. Stone. An accurate von Neumann’s law
for three-dimensional foams, Phys. Rev. Lett. 86 (2001), 2685–2688.

17. Jin, W. and R. V. Kohn. Singular perturbation and the energy of folds, J. Nonlinear Sci.
10 (2000) 355–390.

18. Koehler, S. A., S. Hilgenfeldt and H. A. Stone. Flow along two dimensions of liquid pulses
in foams: Experiment and theory, Europhys. Lett. 54 (2001), 335–341.

19. Koehler, S. A., S. Hilgenfeldt, E. R. Weeks and H. A. Stone. Drainage of single Plateau
borders: Direct observation of rigid mobile interfaces, Phys. Rev. E 66 (2002), 040601-1–
040601-4.

20. Koehler, S. A., H. A. Stone, M. P. Brenner and J. Eggers. Dynamics of foam drainage, Phys.
Rev. E 58 (1998) 2097–2106.

21. Kohn, R. V. and P. Sternberg. Local minimisers and singular perturbations, Proc. Roy. Soc.
Edin. Sect. A 111 (1989) 69–84.

22. Modica, L. The gradient theory of phase transitions and the minimal interface criterion,
Arch. Rat. Mech. Anal. 98 (1987) 123–142.

23. Modica, L. and S. Mortola. Un esempio di Γ-convergenza, Boll. Un. Mat. Ital. B 14 (1977)
285–299.

24. Owen, N. and P. Sternberg. Nonconvex variational problems with anisotropic perturbations,
Nonlinear Anal. 16 (1991) 705–719.

25. Sternberg, P. Vector-valued local minimizers of nonconvex variational problems, Rocky
Mountain J. Math., 21 (1991) 799–807.

Exact semi-geostrophic flows in an elliptical ocean basin

Robert McCann

(joint work with Adam Oberman and Maxim Trokhimtchouk)

A new family of exact solutions is analyzed, which model 2D circulations of an
ideal fluid in a uniformly rotating elliptical tank, under the semi-geostrophic ap-
proximation from meteorology and oceanography. The fluid pressure and stream
function remain quadratic functions of space at each instant in time, whose fluctu-
ations are described by a single degree of freedom Hamiltonian system depending
on two conserved parameters: domain eccentricity and the constant value of po-
tential vorticity. These parameters determine the presence or absence of periodic
orbits with arbitrarily long periods, fixed points of the dynamics, and aperiodic
homoclinic orbits linking hyperbolic saddle points. The energy relative to these
parameters selects the frequency and direction in which isobars nutate or precess,
as well as the steady circulation direction of the fluctuating flow. The canoni-
cally conjugate variables are the moment of inertia and angle of inclination of an
elliptical inverse-potential-vorticity patch evolving in dual coordinates.
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Asymptotic profiles of travelling waves in the Fermi-Pasta-Ulam model

Karsten Matthies

(joint work with Gero Friesecke)

In joint work with Gero Friesecke, we analyse the behaviour of travelling waves in
the Fermi-Pasta-Ulam system described by the energy

(0.1) H =
∑

n∈Z

(1

2
p2

n + V (qn+1 − qn)
)

which gives the dynamics as

(0.2) q̇n = pn, q̈n = ṗn = V ′(qn+1 − qn) − V ′(qn − qn−1).

This describes a one-dimensional monatomic chain (with pn, qn denoting the mo-
mentum and displacement of the nth atom)

A key physical requirement of the interaction potential V is that it is minimized
when neighbouring particles are placed at some equilibrium distance d > 0, and
that it tends to infinity as the neighbour distance tends to zero. Since the particle
positions xn corresponding to displacements qn are xn = nd + qn (n ∈ Z), this
means that V (r) must have a minimum at r = 0 and that V (r) → ∞ as r → −d.
More precisely we assume:

(H1) (Minimum at zero) V ∈ C3(−d,∞), V ≥ 0, V (0) = 0, V ′′(0) > 0
(H2) (Growth) V (r) ≥ c0(r + d)−1 for some c0 > 0 and all r close to −d

and V (r) = ∞ for r ≤ −d .
(H3) (Hardening) V ′′′(r) < 0 in (−d, 0], V (r) < V (−r) in (0, d).

We are interested in travelling waves qn(t) = q(n− ct), the equations of motion
reduce to the scalar second-order differential-difference equation

(0.3) c2q′′(x) = V ′(q(x + 1) − q(x)) − V ′(q(x) − q(x− 1)).

such waves have been rigorously proven to exist for generic nonlinear potentials
V . The construction in [FW94] is based on the variational principle

Minimize T (q) :=
1

2

∫

R

q′(x)2dx among q ∈W 1,2
loc (R) satisfying

q′ ∈ L2(R), U(q) :=

∫

R

V (q(x + 1) − q(x))dx = K.(0.4)

The goal is to determine the Γ-limit of the variational problem and the limiting
profile in the high-energy regime, for Lennard-Jones type interactions. Since this
regime is highly discrete and involves strong forces, neither classical continuum
approximations nor weak coupling approximations are possible.

Prototypical are the standard Lennard-Jones potentials

V (r) = a
(

(r + d)−m − d−m
)2

for r > −d, a > 0, m ∈ N.
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The limiting profile for K → ∞ was derived in [FM02]. Here we recover this as
a corollary of the following Γ-convergence result. We let

W0 := {q ∈W 1,2
loc (R)|q(0) = 0, q′ ∈ L2(R)},

for every displacement profile q, we denote the relative displacement profile as
r(.) = q(.+ 1) − q(.). As in (0.4) we will consider the functional T on

XK = {q ∈W0|U(q) = K}
X∞ = {q ∈W0|r(x) ≥ −d ∀x ∈ R;

∃ compact nonempty set Sq ⊂ R with r|Sq
= −d}}

Theorem 1. (Γ-convergence) Assume that the interaction potential satisfies
(H1), (H2). Then the problem

(0.5) Minimize T (q) for q ∈ XK

Γ-converges to the problem

(0.6) Minimize T (q) for q ∈ X∞,

in the following sense

(1) (lim-inf-inequality) If q(K) ⇀ q in W0 with q(K) ∈ XK , q(K) translation
normalized (i.e. r(K)(0) = minx∈R r

(K)(x), then q ∈ X∞ and T (q) ≤
lim infK→∞ T (q(K)),

(2) (Existence of recovery sequence) For all q ∈ X∞ there exists a sequence
q(K) ∈ XK with q(K) ⇀ q in W0 and T (q(K)) → T (q).

A consequence is the asymptotic profile

Corollary 1. (Asymptotic shape of minimizers) Every translation normalized se-
quence q(K) of minimizers of T on XK converges in W0 weakly to the up to trans-
lation unique minimizer of the limit problem

q∞(x) :=







0, x ≤ 0
−dx, x ∈ [0, 1]
−d, x ≥ 1.
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Surface energies in discrete systems

Marco Cicalese

(joint work with Andrea Braides)

Non-convex interactions in lattice systems lead to a number of interesting phenom-
ena that can be translated into a variety of energies within their limit continuum
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description as the lattice size tends to zero. These effects may be due to different
superposed causes.
The simplest case is when only nearest-neighbour interactions are present, in which
case the bulk energy density of the limit problem is computed via a convexifica-
tion formula ([1]). When not only nearest-neighbour interactions are taken into
account, in contrast, the description of the limit problem turns out more complex
involving in general some ‘homogenization’ process ([4], [1]).

In a joint work with Andrea Braides, we provide a higher-order description of
next-to-nearest-neighbour systems, using the terminology of developments by Γ-
convergence (introduced in Azellotti Baldo [2]) and equivalence of variational the-
ories (developed by Braides Truskinovsky [5]). We deal with the one-dimensional
case in which the limit bulk energy density is described by a formula of ‘convolu-
tion type’ that highlights a non-trivial balance between first and second neighbours
([6], [3]) and an easier description of the phenomena is possible. Besides the pos-
sibility of oscillatory solutions on the microscopic scale, we show some additional
features: first, the appearance of a boundary-layer contribution on the boundary
due to the asymmetry of the boundary interactions; second, the appearance of a
phase-transition surface energy, that is due to the non convexity of the bulk energy
density that force the production of phase transitions and the appearance of inter-
nal boundary layers due to the presence of next-to-nearest neighbour interactions.
By showing an equivalent family of continuum energies we highlight that second
neighbours play the same role as the higher-order gradients in the gradient theory
of phase transitions.
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Existence of a continous transport for the Monge problem in R2

Aldo Pratelli

(joint work with I. Fragal and M.S. Gelli)

The transport problem, first proposed by G. Monge in 1781, consists in mini-
mizing the cost of some transports. The data are two given probability measures
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f+ and f− on R2, and the transports are the Borel maps t : R2 → R2 such that
t#f

+ = f−. To each transport one associates the cost

C(t) :=

∫

R2

|t(x) − x| df+(x),

and the goal of the transport problem is to find a transport t minimizing the cost
C. Much more general versions of the problem are often considered, replacing R2

by RN or some general metric space X , and the Euclidean norm | · | by the square
| · |2 or some general l.s.c. function c

(

x, t(x)
)

. Even though the setting of the
problem is so simple, it has not been easy to understand hypotheses under which
the existence of an optimal transport is ensured –in general, there may easily be
no optimal transports or even no transports at all. The first existence result (valid
in any RN with the Euclidean norm) has been found by Evans and Gangbo [3],
and later sharpened by Caffarelli, Feldmann and McCann [2], by Trudinger and
Wang [5] and by Ambrosio [1]. The more general version we have now states the
existence of an optimal transport if f+ is absolutely continuous with respect to
the Lebesgue measure and if the first order moments of f± are finite.

Since nothing were known about the regularity of the optimal transports, we
decided to investigate how regularity assumptions on f± can provide regularity to
some optimal transport. We proved [4] a continuity assert for a particular optimal
transport (it is easy to see that there are many different optimal transports and
that many of them are no more regular than Borel maps):

Theorem 0.3. Assume that f± are absolutely continuous with respect to the
Lebesgue measure, that f± are two compact, convex and disjoint subsets of R2,
and that the densities of f± are continuous functions on f± and strictly positive

on
(

f±)0
. Then there exists a continuous optimal transport.

To show our result, we reduced to check a couple of geometrical properties,
and this reduction is true in any RN ; however, the hard part of the construction
is to show that these two properties are true, and we only proved this fact in
R2. Our work contains also a number of examples to understand the behaviour
of the optimal transports we have in mind, and to realize that the hypotheses,
which could seem too strong at first glance, are in fact quite reasonable and fairly
optimal.
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Flow approach to the Niremberg and prescribeded Q-curvature
problems

Michael Struwe

1. Introduction

A famous problem posed by Louis Nirenberg is the question which functions
f : S2 → R arise as the Gaussian curvature of a conformal metric g on S2. Neces-
sary conditions follow from the Gauss-Bonnet theorem

(1.1)

∫

S2

K dµg = 4π

and the Kazdan-Warner [13] identity

(1.2)

∫

S2

〈∇K,∇xi〉gS2 dµg = 0, 1 ≤ i ≤ 3,

where gS2 is the standard spherical metric on S2 = {x = (x1, x2, x3) ∈ R3; |x| = 1}
and where K is the Gauss curvature of g. Here we identify the restrictions of the
coordinate functions xi with the eigenfunctions ϕi(x) = xi of the Laplace operator
on (S2, gS2), satisfying ∆g

S2ϕi + 2ϕi = 0, i = 1, 2, 3. In particular, no function
f ≤ 0 and no function f = ψ ◦ xi, where ψ is a monotone function on [−1, 1], can
be realized as the Gauss curvature of a conformal metric g on S2.

On the other hand, numerous sufficient conditions are known, beginning with
the following result of Chang-Yang [7].

Theorem 1.1. Let f be a positive, smooth function with only non-degenerate
critical points. Suppose there are at least two local maxima of f , and at all saddle
points Q of f there holds ∆f(Q) > 0. Then f is the Gauss curvature of a conformal
metric g = e2ugS2 on S2.

More precise results in the spirit of Morse theory were obtained by Chang-
Yang in [8], and later by Han [11], Chang-Gursky-Yang [5], and Chang-Liu [6]. In
particular, these results extend Theorem 1.1 to the case of many local maxima. It
is hoped that there is a condition on f which is both necessary and sufficient for
the existence of a conformal metric having f as its Gauss curvature. However, in
spite of much effort, so far no such condition has been found.

In [18], we partially resolve this question by showing that to a certain extent
Theorem 1.1 is best possible; that is, we give examples of functions f having
exactly two local maxima and one saddle point Q where ∆f(Q) < 0 that cannot
be realized as curvature functions of conformal metrics on S2.
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We also give a new proof of Theorem 1.1 by analyzing the prescribed curvature
flow, which seems to be the most natural approach. In fact, in the context of this
flow many of the results in the references mentioned above and the analytic ideas
behind them appear clearly motivated by geometry. Moreover, the prescribed
curvature flow possesses a structure which is very similar to the Calabi and Ricci-
Hamilton flows on S2 that we studied in [17].

The key compactness result Lemma 3.1 may be of independent interest. In
particular, our construction of examples for non-existence heavily relies on this
result.

In the forthcoming paper [14] with Malchiodi, we carry over this approach to
the analogous higher-dimensional evolution problem for prescribed Q-curvature on
S4, giving rise to existence results analogous to Theroem 1.1, which improve the
ones previously obtained by Brendle [4] by other methods.

For the “subcritical” case when the underlying manifold is not conformally
equivalent to the sphere, a similar flow approach was introduced by Baird et al.
[2] and, in the higher-dimensional case, by Brendle [3].

2. The flow

For ease of exposition in the sequel we focus on Nirenberg’s problem on S2. Let
f ∈ C∞(S2) be given with f > 0. Any metric g on S2 conformal to the standard
metric gS2 may be represented as g = e2ugS2 for some function u on S2. Given a
metric g0 = e2u0gS2 satisfying the condition

(2.3) vol(S2, g0) =

∫

S2

dµg0 = 4π,

we evolve g0 towards a metric g∞ of Gauss curvature proportional to f through a
family of metrics g(t) = e2u(t)gS2 , t ≥ 0, by solving the flow equation

(2.4) ut =
du

dt
= αf −K,

with initial data g(0) = g0. Here K = Kg is the Gauss curvature of g = g(t);
moreover, we determine α = α(t) so that

(2.5) α

∫

S2

f dµ = 4π

for all t ≥ 0, where dµ = dµg = e2udµgS2 . The Gauss-Bonnet theorem (1.1) then
yields the equation

d

dt
(

∫

S2

dµ) = 2

∫

S2

utdµ = 2

∫

S2

(αf −K)dµ = 0,

and (2.3) implies the identity

(2.6) vol(S2, g) =

∫

S2

dµ = 4π

for all t ≥ 0. In view of the Gauss equation

(2.7) −∆gS2u+ 1 = Ke2u
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equation (2.4) defines a nonlinear parabolic evolution equation for u.
Denote as

ū =

∫

S2

u dµg
S2 =

1

4π

∫

S2

u dµg
S2 ,

the mean value of u, etc., and let

E(u) =

∫

S2

(|∇u|2gS2
+ 2u)dµgS2

be the Liouville energy of g. Also define the functional

Ef (u) = E(u) − log

(
∫

S2

fe2udµg
S2

)

.

The flow (2.4) may be interpreted as the (negative) gradient flow for Ef .

Lemma 2.1. For a smooth solution of (2.3) - (2.5) there holds

d

dt
Ef (u) = −2

∫

S2

|αf −K|2 dµ ≤ 0.

Since Ef is bounded from below, for a suitable sequence tl → ∞ (l → ∞) with
associated metrics gl = g(tl), and letting Kl = Kgl

, we then obtain convergence

(2.8)

∫

S2

|Kl − α(tl)f |2 dµgl
→ 0 (l → ∞).

Provided that we also can show convergence of the associated sequence of metrics
gl to a limit metric g∞ with Gauss curvature Kg∞

it follows that Kg∞
= αf for

some number α > 0 and the rescaled metric αg∞ will have curvature f .
Conversely, assuming that the given function f cannot be realized as the Gauss

curvature of any conformal metric, the metrics g(t) concentrate and become nearly
spherical, as described below.

3. Concentration-compactness

The following result is related to [7], Proposition A, [17], Theorem 3.1, or [9], but
goes beyond these results as it allows a precise characterization of the microscopic
concentration behavior of metrics.

Lemma 3.1. Let (ul) be a sequence of smooth functions on S2 with associated met-
rics gl = e2ulgS2 , l ∈ N. Suppose that vol(S2, gl) = 4π and ||Kgl

−K∞||L2(S2,gl) →
0 as l → ∞ for some smooth function K∞ > 0 on S2. Also let hl = Φ∗

l gl = e2vlgS2

be the associated sequence of normalized metrics as in Section 3.2. Then, either
i) for a subsequence l → ∞ we have ul → u∞ in H2(S2), where g∞ = e2u∞gS2

has Gauss curvature K∞, or
ii) the metrics gl become uniformly “round” and “concentrated” in the sense

that for every sequence l → ∞ there exist a subsequence, again denoted as (ul),
and a point Q ∈ S2 such that, as l → ∞,

(3.9) dµgl
→ 4πδQ
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weakly in the sense of measures, while

(3.10) hl → gS2 in H2(S2);

in particular, Khl
→ 1 in L2(S2). Moreover, in the latter case Φl weakly converges

in H1(S2) to the constant map Φ∞ ≡ Q.

As a consequence of Lemma 3.1, if the given function f cannot be realized as
the Gauss curvature of any conformal metric, the flow (2.4) degenerates to a finite-
dimensional pseudo-gradient flow for f on S2 in the sense that the metrics g(t)
become more and more spherical and concentrate more and more around points
P (t) ∈ S2 that move in direction of increasing values of f . The dynamics then
essentially is captured by the projection of the flow speed onto a three-dimensional
space of eigenfunctions ϕg

i of ∆g, i = 1, 2, 3, the generators of the group of con-
formal diffeomorphisms, governing the concentration scale of the evolving metrics
and the gradient-like motion of the concentration points P (t), respectively. Simi-
lar to Chang-Yang we show that this “shadow” flow may only accumulate at local
maximum points of f or at saddle points Q where ∆f(Q) ≤ 0. Theorem 1.1 then
follows.
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On the two-well problem with surface energy

Sergio Conti

In the theory of solid-solid phase transitions one minimizes functionals of the form

Iε[u] =

∫

Ω

1

ε
W (∇u) + ε|∇2u|2dx

where u : Ω ⊂ Rn → Rn and W : Rn×n → R behaves qualitatively as the
squared distance from the set K = SO(n)A ∪ SO(n)B. The matrices A and B
characterize the two admissible phases, and we are interested in the case where
they are compatible, in the sense that rank(A−B) = 1.

For small ε one expects Iε to reduce to a sharp-interface model. In this talk
several results in this direction have been presented, under various simplifying
assumptions on K and W . Precisely, it has been shown that Iε converges, in the
sense of Gamma convergence, to the functional

I0(u) =

{

∫

J∇u k(ν)dHn−1 if ∇u ∈ BV (Ω,K)

∞ else ,

where J∇u is the jump set of ∇u, in the following three cases:

(1) If K is replaced by K ′ = {A,B}, which is composed of only two matrices
(joint work with I. Fonseca and G. Leoni [?])

(2) If n = 2 and one linearizes the set of rotations SO(2), i.e. K is replaced
by K ′′ = {A + ω,B + ω : ω = −ωT}, and Ω is star-shaped (joint work
with B. Schweizer [?])

(3) If n = 2 and K is the full set K = SO(2)A ∪ SO(2)B, again with Ω
star-shaped (joint work with B. Schweizer [?]).

The third result is based on an optimal H1/2-rigidity estimate for low-energy
functions. The same rigidity argument permits to show that for functions with
small surface energy the two-well energy controls the one-well one, in L1 and upon
taking a subdomain. Precisely, if u : Ω → R2 satisfies

∫

|∇2u| ≤ c, then

min
J∈{A,B}

‖dist(∇u, SO(2)J)‖L1(Ω′) ≤ c‖dist(∇u,K)‖L1(Ω)

for any connected Ω′ ⊂⊂ Ω, with constants depending on A, B, Ω and Ω′ (joint
work with B. Schweizer, [?]). This improves a previous result by A. Lorent [?] who
obtained the first quantitative two-well rigidity estimate, for the case that u is bilip-
schitz and detA = detB. Precisely, he obtained minJ ‖dist(∇u, SO(2)J‖L1(Ω′) ≤
c‖dist(∇u,K)‖1/800

L1(Ω). The present result gives the optimal exponent.
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Crystallisation in two dimensions

Florian Theil

Why do many solids form crystals? In order to shed light on this classical question
we consider N ∈ N particles in Rd, d ∈ {1, 2, 3} and study the asymptotic behavior
of ground states of the following pair-interaction energy

E(y) =
∑

{x,x′}⊂X

V (|y(x) − y(x′)|)

as N tends to infinity. Here X is a finite set, #X = N , y : X → Rd encodes the
positions of N particles and V : [0,∞) → R is a fixed interaction potential.

Theorem A. (Asymptotic behaviour of the ground state energy per particle)
Let d = 2. There exists a constant a > 0 such that for all V ∈ C2(0,∞) with the
properties V (1) = −1, limr→∞ V (r) = 0 and

V (r) ≥ 1
a and for all r ∈ [0, 1 − a],

V ′′(r) ≥ 1 and for all r ∈ (1 − a, 1 + a),

V (r) ≥ − 1
2 and for all r ∈ [1 + a,

√
2],

V ′′(r) ≤ ar−5 and for all r <
√

2,

the ground state energy has the following asymptotic behavior

lim
N→∞

1
N min

y
E(y) = 3 min

r
VR(r) = 3VR(r∗) = 3E∗.

The renormalized potential VR, which is defined by

VR(r) =
1

6

∑

k∈Z2\{0}
V

(

r
√

k2
1 + k1k2 + k2

2

)

,

is the interaction energy between a single particle and a homogeneously stretched
copy of the hexagonal lattice

A2 =

{

1
2

(

2

0

1√
3

)

k

∣

∣

∣

∣

k ∈ Z
2

}

⊂ R
2.

In particular the result implies that the ground state energy is asymptotically
proportional to the number of particles, not the number of terms in E.

Theorem B. (Ground states)
Let the assumptions of Theorem A be satisfied, A ⊂ A2 be an arbitrary bounded
subset and ymin be a ground state of the modified energy

∑

x∈A

x′∈A2

V (|y(x) − y(x′)|)

subject to the constraint y(x) = r∗x for all x ∈ A2 \ A. Then {y(x) | x ∈ A2} =
r∗A2.
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Previously Radin obtained in [1] similar results for a specific choice of V .

References

1. C. Radin. The ground state for soft disks. J. Stat. Phys. 26, No 2, 367-372 (1981).

Compact constant Mean Curvature Surfaces revisited

Frank Pacard

The theory of constant mean curvature surfaces in Euclidean space has been
the object of intensive study in the past years. In the case of complete noncompact
constant mean curvature surfaces, the moduli space of such surfaces is now fairly
well understood (at least in the genus 0 case) [9], [7], [8] and many technics have
been developed to produce examples of such surfaces [6], [3], [10], [12].

By contrast, the set of compact constant mean curvature surfaces is not so well
understood. In the early 80’s, H. Wente has constructed the first examples of
genus 1 constant mean curvature surfaces [15]. These genus 1 surfaces have then
been thoughtfully studied by U. Pinkall and I. Sterling [13]. Examples of compact
constant mean curvature surface of higher genus are due to N. Kapouleas. In the
genus 2 case [5], these surfaces are obtained by ”fusing” Wente tori while in the
case where the genus is greater than or equal to 3, these surfaces are obtained by
connecting together large number of mutually tangent unit spheres, using small
catenoid necks [4].

In a joint work with M. Jleli, we explain how the current knowledge on the
set of complete noncompact constant mean curvature surfaces can be exploited
to produce new examples of compact constant mean curvature surfaces of genus
greater than or equal to 3.

Our construction is based on tools which have been developed for the under-
standing of complete noncompact constant mean curvature surfaces. This con-
struction can be described as follows :

(1) Since the first construction by N. Kapouleas [3], many constructions of
complete noncompact constant mean curvature surfaces have then been
developed [6], [3], [10], [11], [12]. These constructions provide an impor-
tant source of examples of complete noncompact constant mean curvature
surfaces the geometry of whose ends is prescribed.

(2) Most of the above mentioned constructions are quite flexible and one can
arrange so that the ends of these surfaces can be ”plugged” together to
produce sequences (indexed by a discreet parameter n ∈ N) of compact
surfaces which have mean curvature equal to 1 except in finitely many an-
nular regions where their mean curvature can be estimated by 1+O(e−γn)
for some γ > 0. This is essentially the ”end-to-end” construction which
was developed by J. Ratzkin [14] to connect (and produce) complete non-
compact constant mean curvature surfaces along their ends.
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(3) Next, one studies the mapping properties of the Jacobi operator about
this (almost) constant mean curvature surface. To perform this analysis,
we rely on the fact that parametrices for the Jacobi operators on each
complete noncompact summand have been obtained in the ”moduli space
theory” developed by R. Kusner, R. Mazzeo and D. Pollack [9]. We explain
how these can be glued together. This construction requires a precise
understanding of the set of Jacobi fields on each summand.

(4) Finally, it remains to use a standard perturbation argument to produce
sequences of compact constant mean curvature surfaces of arbitrary genus,
greater than or equal to 3.

We believe that the main advantage of our construction versus the one developed
by N. Kapouleas is that it is technically simple (once the above mentioned results
on complete noncompact surfaces are understood !), paralleling the fact that the
end-to-end construction of J. Ratzkin is simpler than the previous constructions
of complete noncompact surfaces. We obtain a very precise description of the sur-
faces we produce (the perturbation of the approximate surface is an exponentially
decreasing function of the diameter of the surface constructed). In particular, our
construction sheds light on the structure of the set of compact constant mean
curvature surfaces, showing that these surfaces are isolated (modulo the action of
rigid motions). Though this is probably a minor point, the example of compact
constant mean curvature surfaces we obtain are geometrically different from the
one obtained by N. Kapouleas (roughly speaking all the surfaces constructed by
N. Kapouleas have close to sequences of unit spheres linked by small catenoids
and hence have small injectivity radius while our examples do not necessarily have
small necks and hence have injectivity radius uniformly bonded from below).

Maybe a more important issue is the fact that our construction points out
interesting directions toward which the theory of complete noncompact constant
mean curvature surfaces should be developed to understand the set of compact
constant mean curvature surfaces. In the previous constructions some properties
of complete noncompact constant mean curvature surfaces have been neglected
and turn out to be extremely important. This is for example the case of the
notion of ”nondegeneracy” and the notion of ”regular end” (both turn out to be
also important in the construction of J. Ratzkin). Final remark, our construction
generalizes in any dimension [1].
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On solutions of the relative isoperimetric problem

Ernst Kuwert

A solution of the isoperimetric problem (or partitioning problem) relative to a
given set Ω ⊂ R3 is a subset E of Ω with prescribed volume |E| = V ∈ (0, |Ω|)
and minimal area

∫

Ω |DχE | = A(V ). If Ω is convex, then the function A(V )3/2 is
concave. At the beginning of the talk we prove this simple fact and observe some
geometric consequences; in particular, a convex set separates always better than
the halfspace. For related results see [5] and [2].

In the main part of the talk which is joint work with W. Bürger (Freiburg), we
discuss an approach constructing minimizers within the class of disk-type surfaces.
This is motivated by an open conjecture by A. Ros [4] saying that, for Ω convex,
the boundary of the minimizer within the class of Cacciopoli sets should actually
be a disk. We work in the class of surfaces parametrized on the disk, possibly with
selfintersections, and do not treat ∂Ω as an obstacle. The volume is counted with
multiplicities. For general sets Ω with smooth boundary we construct a minimizer
within the class of surfaces which are unions of finitely many disks. For Ω convex,
we conjecture that this solution is a single disk.
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Quasistatic evolution of damage

Adriana Garroni

(joint work with C. Francfort)

We construct a quasi-static evolution for a variational model for damage pro-
posed by Francfort and Marigo, [3]. More precisely given an elastic body and an
external loading f(t) parametrized by time, we look for a function u(x, t) repre-
senting the deformation of the body Ω in the damaging process. Moreover, we
would also like to determine a time-parametrized family of increasing subsets of
Ω which represents the evolving damaged region. This is done through a time-
discretization procedure.

The two states, undamaged and damaged, are given by two elastic well-ordered
tensor, As and Aw, and the energy is given by

∫

Ω

W (e(u)) dx−
∫

Ω

f u dx ,

where e(u) = ∇u+∇uT

2 is the symmetrized gradient and

W (ε) = min

{

1

2
Asε ε ,

1

2
Awε ε+K

}

.

This energy density is not quasi-convex; thus in the minimization procedure we
expect microstructure, in other words we expect a relaxation phenomenon. The
quasi-convex envelope of W can be represented as follows

QW (ε) = min
θ∈[0,1]

min
A∈Gθ(As,Aw)

{

1

2
Asε ε+Kθ

}

,

where Gθ(As, Aw) is the G-closure of As and Aw mixed with volume fraction
θ and 1 − θ. Starting from this formula we construct a discrete time evolution
which accounts for the constraint of irreversibility of the damage region, prove
convergence and regularity of the limit.
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Refined Jacobian estimates

Robert J. Jerrard

A typical Jacobian estimate for Ginzburg Landau functionals has the form

(0.1) ‖Ju‖(C0,α
c (U))∗ ≤ C

(

εβ +
1

| ln ε|

∫

eε(u) dx

)

. for all u ∈ H1(U ; R2)

where U is a bounded open subset of Rn; Ju =
∑

i<j det (uxi
, uxj

) dxi ∧ dxj is

the pullback by u of the standard volume form on R2; and eε(u) is the Ginzburg-
Landau energy density

eε(u) =
1

2
|∇u|2 +

1

4ε2
(|u|2 − 1)2.

Here the constant C may depend on the domain U and on the parameter α in
the norm on the right-hand side, but is uniform for ε ∈ (0, 1/2]. Estimates in this
spirit have been established in [8], [1], [12] for example. Such estimates are useful
when ε≪ 1 due to the factor of | ln ε|−1 on the right-hand side.

Some applications of Jacobian estimates include the following:
1. A refinement of (0.1), taking into account boundary values of u, was proved

by Bethuel, Bourgain, Brezis, and Orlandi [2], who applied it to establish uniform
W 1,p estimates, p < n/n− 1, for solutions uε of the equation

(0.2) −∆uε +
1

ε2
(|uε|2 − 1)uε = 0

in a bounded, smooth domain U ⊂ Rn with the boundary condition

u = g ∈ H1/2(∂U ;S1) on ∂U

and satisfying the natural energy bound
∫

U
eε(uε) ≤ M0| ln ε|. Very crudely, the

argument rests on the fact that one can decompose ∇uε into a number of pieces,
one of which is essentially Juε, and with all the others controlled in some way by
the equation (0.2). This general approach has proved quite robust, and has yielded
good estimates for a number of related equations, including Ginzburg-Landau heat
flow [4] for example.

2. Jacobian-type estimates play a key role in results characterizing the Γ-
limit of Ginzburg-Landau functionals, see [1]. These results have been used in
[11] to prove the existence of certain solutions of (0.2). Similar results have been
established for related, more complicated equations describing superconductors [7]
and Bose-Einstein condensates [6].

3. An analysis of vortex dynamics in solutions of the equation

(0.3) i∂tuε − ∆uε +
1

e2
(|uε|2 − 1)uε = 0, uε ∈ C([0, T ];H1(U ; C))

in the limit ε → 0 was carried out by [5] and [10] for U ⊂ R2 with suitable
assumptions on the initial and boundary data. Jacobian-type estimates and re-
lated Γ-convergence results are used in these proofs. The relevance of Jacobians
for this problem stems from 2 facts. First, limits of Jacobians can be used to
identify asymptotic vortex locations. More precisely, Γ-limit type results show
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that, under hypotheses satisfied by sequences of solutions of (0.3), sequences
Juε(·, t) are precompact in certain weak norms, and any limit must have the
form

∑

πdiδai
dx1 ∧ dx2. These points ai are interpreted as being limiting vortex

positions.
Second, for a solution of (0.3), the Jacobian satisfies the identity

∂tJuε = Jij Re (uε,xj
ūε,xk

)xixk

where J is a 2×2 symplectic matrix and Re indicates the real part. (This is simply
the curl of the equation for conservation of momentum for (0.3).) This means that
one can control time evolution of the Jacobian, and hence of the vortex locations,
by controlling a single space derivative of uε.

The refined Jacobian estimates stated below are motivated in part by the goal
of establishing results about vortex dynamics for (0.3) that would be valid for fixed
0 < ε≪ 1, rather than only in the limit ε→ 0.

Theorem 0.1 ([9]). Let Ur denote the open ball {x ∈ R2 : |x| < r}. Assume that
u ∈ H1(Ur; C) and that

(0.4) ‖Ju− πδ0‖Ẇ−1,1(Ur) <
π

200
r

Then there exists ξ ∈ Ur/2 such that if we write

(0.5) K0 =

∫

Ur

eε(u)dx − π ln
r

ε
.

then

(0.6) ‖Ju− πδξ‖Ẇ−1,1(Ur) ≤ ε
√

ln(r/ε)C(1 +K0)
2eK0/π

C is independent of ε ∈ (0, r/2] and of K0.

The conclusion (0.6) asserts, heuristically, that the Jacobian Ju is localized

down to length scales of order ε
√

ln(r/ε), and thus that it can be used to determine
vortex locations to this order of precision. This estimate is close to sharp in that
for fixed K0, one can construct functions uε satisfying (0.4), (0.5) and ‖Ju −
πδξ‖Ẇ−1,1(Ur) > C−1ε

√

ln(r/ε) eK0/π. Theorem 0.1 can be used to show that,

under hypotheses that are preserved (at least for short times) by the evolution
equation (0.3), an estimate of the form

‖Ju− π
∑

i=1n

diδξi
‖Ẇ−1,1(Ur) ≤ Cε

√

ln(r/ε)

Thus one can hope to use the Jacobian to locate vortices in solutions of (0.3) for
0 < ε≪ 1 with great precision. This is a starting point for further work.
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Finite differential inclusion and elliptic regularity

Bernd Kirchheim

(joint work with A.Pratelli)

We discuss ongoing attempts extend the class of counterexamples to elliptic regu-
larity as it was introduced in [4]. In particular, in [2] the question was investigated
for which specific equations the corresponding first order partial differential in-
clusion allows solutions. It turned out, however that adding convex terms to an
elliptic system that originally allowed no irregular solutions constructed by con-
vex integration may lead to unexpected difficulties when one has to decide if such
solutions can still be excluded.

It could be shown that the original T4-configuration which could be embedded
into the differential inclusion

KF =

{(

X
DF (X)J

)

; X ∈ R
2×2

}

⊂ R
4×2,

corresponding to the Euler-Lagrange equation

div DF (∇u) = 0

for suitable quasiconvex F : R2×2 → R has now to be replaced by more complicated
configurations.

Indeed, whereas Székelyhidi (see [5]) managed to utilise a T5-configuration for
a basically randomly selected polyconvex energy F , in [2] we could show that for
the (above mentioned) energy

F (X) = ε|X |2/2 + det(X)2

there are no finitely supported laminates in KF whose first projection lives in the
diagonal matrices. Unfortunately, the existence of more diffuse laminates remains
open, but it is known that simple approximation arguments are not available.
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Here we present a result pointing in the opposite direction, we show that us-
ing and substantially refining an idea from [1] we can avoid even the “diffusive”
perturbation process used in [4] and [5]. It is indeed possible to obtain nowhere
C1-Lipschitz solutions u of ÷DF (∇u) = 0 where F is polyconvex but u has only
finitely many different gradients ([3]). Recent progress in combinatorial approaches
to the study of rank-one convexity supports the hope that the investigation of such
finite differential inclusions can lead to more conclusive existence results.
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