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Introduction by the Organisers

The topic for the current Mini–Workshop organized by Karl Kunisch (Univ.
Graz), Angela Kunoth (Univ. Bonn) and Rolf Rannacher (Univ. Heidelberg) emer-
ged from the Oberwolfach Workshop “Numerical Techniques for Optimization
Problems with PDE Constraints” which was held February 16–22, 2003. It was
realized that numerically solving control problems which are constrained by time–
dependent nonlinear PDEs (Partial Differential Equations) are particularly chal-
lenging with respect to the complexity of the problem.

Mathematically one has to minimize a functional under PDE constraints and
possibly additional constraints on the state and the control. Standard discretiza-
tions on uniform grids in space and time will only yield solutions where the inherent
structures of the problem (nonlinearity, constraints) are not sufficiently captured.
Certain optimization problems for large coupled systems of partial differential
equations are currently not yet numerically treatable or do not satisfy the time
constraints required in practice. Overcoming this barrier can only be achieved
by designing new mathematically founded algorithmic approaches. The road to-
wards this goal leads to many interesting problems in optimization, linear algebra,
numerics, analysis, and approximation theory.

The conference had 21 participants which represented continuous optimization,
numerical analysis and scientific computing. 18 talks were given. The 10 longer,
overview–style talks were on optimization with PDEs, focussing on

• Modelling and Global Optimization
• Snapshot Selection
• Treatment of State Constraints
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• ODE Techniques for PDEs
• Automatic Differentiation
• Adaptive Finite Elements
• Parameter Estimation
• Adaptive Wavelets.

These talks were intended to bridge the gap between the different research fields
Optimization and Numerics. They were complemented by 8 shorter talks on more
specialized research topics, ranging from efficiency indices for optimization over
iterative methods for the coupled systems and multigrid acceleration to modelling
issues in optimization, and data compression by means of proper orthogonal de-
compositions and central Voronoi tesselations.

Different modern approaches to overcome the complexity issues in numerical
simulations for PDE–constrained optimization have been presented and discussed.
One of the approaches is to employ fast iterative solvers like multigrid on uniform
grids. The methodology which conceptually provides the largest potential is to
introduce adaptivity. This drastically reduces complexity but depending on the
context may require solving an additional problem. Wavelet approaches particu-
larly allow to resolve each of the variables separately and in addition provide a
built–in preconditioning. Yet another approach uses compressed information in
order to efficiently solve the primal–dual system.

All these issues are currently very active research areas. The extensive dis-
cussions held during this workshop have produced a number of new ideas and
connections. It was agreed upon that a mere black–box–style matching of efficient
PDE codes with optimization tool boxes would on one hand remain much below its
potential and on the other hand not help overcoming complexity barriers. Some
concepts from automatic differentiation seem to carry over to adaptive methods.
Even combining adaptivity with proper orthogonal decompositions may be a very
promising direction. The many new ideas discussed during this workshop will have
to be further elaborated in future.
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Abstracts

Adaptivity for Optimization of Time-dependent Partial Differential
Equations

Roland Becker

In this talk, we derive a posteriori error estimators for optimal control problems.
The error estimates are general and apply to Galerkin discretizations of optimiza-
tion problems governed by partial differential equations. In the first part of the
talk we describe some algorithmic aspects of a resulting adaptive algorithm. We
focus on the case of time-dependent partial differential equations, where we want
to adapt the step size and the dynamically varying meshes for space discretiza-
tion. This estimate can be used to derive automatic adaptation of (h, p) × (k, r)
method where h denotes the spatial mesh, p the distribution of polynomial de-
gree in the spatial mesh h, k the temporal mesh, and r the polynomial degree in
time. In order to simplify the situation we focus on the case where only the mesh
h is to be adapted dynamically and the control is frozen, since this seems to be
the difficult part. The goal of our adaptive algorithm is to find a method which
has computing time linear with respect to the overall number of unknowns and
storage requirements proportional to the temporal mean of the employed meshes.
In order to achieve this goal, we have to use a divide-and-conquer algorithm as
the checkpointing/windowing algorithm known from automatic differentiation and
optimal control. The essential additional difficulty in our context is the fact that
we need information about the co-state (solving a backwards-in-time equation)
when computing forward. This is due to the structure of the error estimator.

The second part of the talk describes a posteriori error estimates for optimiza-
tion problems. We consider the following general case: we are interest in com-
puting an interest function I(q, u) which depends on both control q and state
variable u. The interest functional is independent of the optimization problem
which determines q and u. By specialization we obtain estimators for:

• error in the cost functional [2, 3]
• error in a functional of the controls [4]
• error in an independent functional of the state [5]
• norm of the error of controls [1]

Beside the first estimator, the others require the solution of an additional problem
involving the adjoint of the linearized state operator. The right-hand side of this
problem depends on the special context.

In the last part of the talk, we show that the information given by the additional
adjoint problem might be used for further purposes. We employ the well-known
concept of condition numbers in order to produce answers to the following ques-
tions: which parameters have been most important, which measurements have
been most important in computing the solution?
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Fast Integral Equation Solvers and Applications to Problems with
Dynamic Interfaces

George Biros
(joint work with L. Ying and D. Zorin (New York University))

Boundary integral formulations have been extensively used for the analysis and
numerical solution of elliptic partial differential equations. However, with the ex-
ception of problems in inverse scattering, there has been limited work in boundary
integral equation formulations for optimal control and optimal design problems.
There are several reasons for that: prohibitive complexity of efficient implemen-
tations for non-Laplacian kernels, difficulty with distributed force terms, and re-
striction to problems with piecewise constant coefficients.

Recent developments however, indicate integral equation formulations might
have impact to a larger class of problems. We present two new algorithms and two
examples that illustrate the efficiency of the new methods: (1) A fast solver for
Stokes and Navier-Stokes equations, (2) a new kernel-independent fast-multipole
method for kernels related to constant coefficient elliptic PDEs, (3) a three-dimen-
sional rigid body-fluid interaction problem, and (4) a prototypical shape optimiza-
tion problem of a Dirichlet interior Stokes problem.
1. Fast Solvers for Stokes and Navier-Stokes Equations. Our motiva-
tion in designing this method is the design of efficient algorithms for flows with
dynamic interfaces. Solvers for such problems should be built on algorithms that
do not require expensive preprocessing, like unstructured mesh generation, since
the interface is moved to a new location at each time step. The main features of
the method are: It can be applied to arbitrary piecewise smooth geometries; It
does not require mesh generation; It can solve problems with distributed forces;
It is second-order accurate and readily generalizes to arbitrary order of accuracy.
If an optimal boundary integral equation solver is used, the method has O(N)
complexity.

Our method is based on potential theory for linear second-order elliptic oper-
ators. Using an indirect integral formulation, the solution of a Dirichlet problem
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can be written as the sum of a double layer potential and a Newton potential (the
domain convolution of the Green’s function with the distributed force). Under
such a scheme the evaluation of the solution must consist of three steps: (1) com-
putation of the Newton potential, (2) solution of a boundary integral equation
to compute a double layer potential that satisfies the boundary conditions, and
(3) evaluation of a double layer potential everywhere in the domain. Details can
be found in [2] for the Stokes equations and [1] for the unsteady Navier-Stokes
problem.
2. Kernel-independent Fast Multipole Method. The main feature of the
new method is its black-box application to several different non-oscillatory elliptic
kernels. Our algorithm has the structure of the adaptive FMM algorithm [3] but re-
quires only kernel evaluations without sacrificing accuracy and efficiency compared
to the original algorithm. The crucial element of our approach is to replace the an-
alytic expansions and translations with equivalent density representations. These
representations are computed by solving local exterior and interior problems on
circles (2D), spheres or cubes (3D) using integral equation formulations. We have
demonstrated the efficiency of our method in both 2D and 3D for many kernels:
the single and double layer potentials of the Laplacian, the modified Laplacian,
the Navier, the Stokes, and their modified variants. Our method has O(N log N)
asymptotic complexity, whereas for reasonable assumptions on the initial particle
distribution the complexity becomes O(N). Like analytic FMM, our method works
well for nonuniform particle distributions. Details can be found in [4]. We have
also developed an MPI-based parallel version of the method, and have performed
systematic scalability tests. Overall we have achieved very good iso-granular and
fixed-size scalability on up to 3000 processors. A detailed discussion can be found
in [5].
3. Fluid-structure Interaction Formulation. We have developed algo-
rithms to simulate the interaction of rigid bodies of arbitrary geometry with Stoke-
sian fluids, ignoring inertial terms in the fluid and using an integral formulation
for the equations which describe the motion of the dynamics. These equations
are a set of integrodifferential equations the interaction between the fluid and a
rigid object and consist of the linear and angular momentum conservation for the
rigid body and the Stokes equations for the fluid. The coupling is induced by the
requirement of non-slip condition and force balance across the interface. These re-
sults are work in progress. For the fluid-structure interaction runs we are currently
working on convergence studies, and we have not performed systematic scalability
analysis. However, the main cost in these simulations is the solution of the under-
lying integral equations. To this end we are working on efficient preconditioning
schemes.
4. Shape Optimization for Stokes-constrained Systems. We present a
2D shape optimization problem for the interior Dirichlet problem of a Stokesian
fluid. The flow is represented using a second kind integral equation formulation.
The objective function is of tracking type. The boundary is represented using a
periodic B-spline and the optimization variables are the control points. Adjoints
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are used to compute shape sensitivities and the problem is solved using a reduced
space quasi-Newton method globalized by trust-region. The first derivatives of the
adjoint and forward problem involve hypersingular kernels (Hilbert transforms)
which are approximated using an odd-even Nyström integration scheme. The
results, although very preliminary, are very encouraging since only a small number
of quasi-Newton iterations are sufficient for convergence.
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On Space-time Multigrid Solution of Unsteady Optimal Control
Problems
Alfio Borz̀ı

(joint work with K. Kunisch and R. Griesse)

The development and investigation of space-time multigrid schemes for un-
steady reaction diffusion optimal control problems are reported. We focus on the
control of the time evolution of chemical and biological processes characterized by
non-monotone nonlinearities. For benchmarking our algorithms, we propose two
models:

The solid fuel ignition model

−∂ty + δey + ∆y = u, δ > 0,

results in a singular optimal control problem which cannot be solved by any method
based on a free evolution of the state variable.

The lambda-omega system is given by

∂

∂t

(
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y2

)
=

[
λ(y1, y2) −ω(y1, y2)
ω(y1, y2) λ(y1, y2)

] (
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)
+ σ ∆

(
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y2

)
+

(
u1

u2

)

where
λ(y1, y2) = 1 − (y2

1 + y2
2) and ω(y1, y2) = −β(y2

1 + y2
2).

The functional form of λ and ω was proposed in [4] to model chemical turbu-
lence. The evolution into a chaotic state of the λ−ω system can also be observed
from a principal component analysis via proper orthogonal decomposition of its
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snapshots. As the system becomes less ordered, the energy content becomes more
and more evenly distributed among the eigenmodes.

In the first model case, the control, represented by u, is applied to avoid blow-
up or to optimize the combustion process [1]. In the second case the control
(u1, u2) is applied to drive the system from a turbulent to a regular state [2].
The optimality systems characterizing the optimal control solution are solved by
space-time multigrid schemes with typical multigrid efficiency and robustness with
respect to the choice of the optimization parameters. These features are obtained
by developing appropriate collective smoothing schemes.

Using two-grid Fourier analysis, sharp estimates of convergence factors are ob-
tained for linear model problems [3]. Results of numerical experiments demon-
strate that these estimates remain sharp also for the nonlinear cases considered
here.
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Algorithms for Optimization of Time-dependent PDE Systems: Can
We Realize the Same Efficiencies as in the Steady Case?

Omar Ghattas
(joint work with G. Biros (University of Pennsylvania), V. Akcelik, J.

Bielak, and I. Epanomeritakis(Carnegie Mellon University))

The answer to the question posed in the title depends of course on the type of
problem being solved. We begin by recalling some of our earlier work on fast solvers
for optimization problems that are governed by PDEs [1,2,3,4,5]. The method we
developed, which we refer to as Lagrange-Newton-Krylov-Schur (LNKS), solves
the full optimality system consisting of state, adjoint, and control equations using
an inexact preconditioned Newton-QMR method. The preconditioner is a block
factorization that emulates a reduced quasi-Newton SQP method: it approximates
the reduced Hessian via suitably-initialized limited memory BFGS updates while
discarding other second derivative terms, and replaces the exact state and adjoint
solves with application of appropriate preconditioners, e.g. additive Schwarz or
multigrid. If sufficient descent cannot be obtained with a line search, then we drop
down to the reduced space and take a quasi-Newton step. Experiments with this
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method on some problems of optimal control of three-dimensional steady Navier-
Stokes flows via boundary suction/injection demonstrate high parallel scalability,
mesh-independence of Newton iterations, mesh-independence of Krylov iterations
(provided an optimal state preconditioner is available), and solution to optimality
in four times the cost of a flow solution, for a problem with over 600,000 state
and 9000 control variables. This small constant multiple of the state solve cost is
due to iterating in the full space, which folds the iterations (linear and nonlinear)
needed to converge the flow into those required for optimization. LNKS is most
effective when the state equations are difficult to solve, requiring many iterations.

We next discuss an inverse parameter estimation problem governed by earth-
quake modeling via the elastic wave equation. The problem is to find the dis-
tribution of elastic parameters of large sedimentary basins such as Los Angeles,
from surface observations of past earthquakes [6,7]. The forward problem alone
requires terascale computing: our typical earthquake simulations resolve up to 1
Hz ground motion frequencies, involve 100 million grid points and 40,000 times
steps, and require several hours of run time on the 3000 processor AlphaCluster
supercomputer in Pittsburgh. The inverse problem is formulated via output least
squares, regularized by a total variation (TV) functional. TV eliminates oscillatory
components of the material properties, while preserving discontinuities at material
interfaces. The solver is an inexact Newton-CG method in the reduced space, with
the same preconditioning as in LNKS. However, because we iterate in the reduced
space, an exact forward and adjoint solve are required at each CG iteration. Mesh
independence of Newton and CG iterations is observed, and the number of inner
and outer iterations required for convergence is similar to those observed for the
flow control problem. However, the difference here is the requirement for exact
solution of the forward and adjoint wave equation. For the largest inverse prob-
lem we solved, involving 17 million inversion parameters, the product of inner and
outer iterations is such that 800 total forward and adjoint wave propagations are
required. The essentially renders the inverse problem intractable for our goal of
reconstructing the structure of the LA Basin to a 1 Hz frequency resolution.

We conclude the talk with a somewhat pessimistic discussion of several op-
portunities for speeding up the convergence of the earthquake inversion problem.
Additional processors won’t help, since the granularity of the computation is low
to begin with. We could switch from a reduced space solver to a full space LNKS
method, but there is nothing to be gained since the explicit forward solver offers
little opportunity for approximation with a simpler solve. A coarser mesh misses
the finest wavelengths, and a longer time step loses the shorter periods, both of
which contribute importantly to the surface response. Implicit methods are not
useful for wave propagation problems in which the system is responding in all of
its resolvable scales. Adding processors in the time direction is not helpful, since
information propagates at finite speed. Reduced order modeling in the state space
is likely unproductive, since the system is responding at all scales (indeed the mesh
was designed to just resolve the finest scales of interest). Similarly, reduced order
modeling in the parameter space faces the problem of trying to construct a response
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surface in a very high dimensional (e.g. 10 million) space. Some improvements in
the linear preconditioner can probably be made by exploiting the compact and
differential structure of the reduced Hessian, but since we have typically just 20
CG iterations per Newton iteration, the reduction in iterations must be balanced
against the cost of construction of the preconditioners. Similar statements can be
made about improvements in the nonlinear solver, e.g. through nonlinear precondi-
tioning. We conclude that the inverse earthquake modeling problem to frequencies
of engineering interest remains a major challenge, when measured against the cost
of the forward simulation.
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From Algorithmic Differentiation to Automated Design
Andreas Griewank

To facilitate the transition from simulation to optimization we suppose that
we are provided (only) with an iterative solver for some state equation and a
procedure for evaluating an objective function. This is a realistic scenario in
aerodynamics, where the state equation is some discretized variant of the Navier
Stokes equation governing the flow around a wing, and the objective may be the
drag, which is to be minimized by varying the design of the wing. Since the
state space may have very high dimensionality we prefer not to modify the given
solver but merely assume that it is contractive as an iterative map. However,
using algorithmic differentiation we may derive from it, in an automated fashion,
a fixed point solver for the corresponding adjoint equation and the computation
of an approximate reduced gradient. This methodology had been introduced by
Griewank and Faure under the name of piggy-back differentiation [1].
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In this talk we show first that while the two fixed point iterations converge with
the same asymptotic contractivity rate, the accuracy of succesive approximate
solutions to the adjoint equation lags behind that for the underlying state space
iterates. More specifically, the ratio between the residuals of the two equations at
the k-th, coupled iteration grows linearly with k [2].

Secondly, we examine the choice of a matrix for preconditioning the approximate
reduced gradient in a simultaneous update of the design variables. As it turns out
the seemingly natural choice of the reduced Hessian is not the best choice, but
may lead to divergence. Instead we find that local convergence can be assured
by projecting the Lagrangian Hessian onto another subspace, at least when the
full Hessian is positive definite [3]. These theoretical observation are confirmed
numerically on a 2D test problem provided by Volker Schulz. Either of the two
projected Hessians can also be evaluated by automatic differentiation, so that we
obtain a methodology for optimal design in a fairly automated fashion. Practical
validations on Euler and Navier Stokes codes for 3D and 2D flows are under way.

References

[1] A. Griewank, C. Faure, Reduced functions, gradients and hessians from fixed point
iteration for state equations, Numer. Algor., 30 (2002), no. 2, 113–139.

[2] A. Griewank, C. Faure, Linear and quadratic delay of reduced gradients and Hessians

obtained from fixed point iterations for state equations, in preparation.
[3] A. Griewank, The correct projected Hessian for preconditioning the approximate re-

duced gradient in piggy-back optimization, in preparation.

Design of Experiments and Snapshot Generation in Reduced-order
Modeling

Max Gunzburger

Reduced-order modeling strategies such as proper orthogonal decomposition
(POD) methods are developed from a set of snapshots. The reduced-order model
cannot contain more information than that contained in the snapshot set. Thus,
the generation of snapshots is crucial to the success of reduced-order models. The
generation of snapshots is an exercise in the design of experiments, i.e., how does
one choose the values of the parameters used to generate the snapshot simulations
or the time instants at which one evaluates the snapshots? We discuss the use of
design of experiment-based strategies for parameter selection for snapshot genera-
tion. Issues that arise in selecting a method for sampling points in parameter space
are considered, and the relative merits of different methods (e.g., quasi-Monte
Carlo sequences, Latin hypercube sampling, centroidal Voronoi tessellation, etc.)
are discussed. Several notions of uniformity for point sets are compared, as are
their effect on deciding which sampling methods are best for specific applications.
Also, the role of known information about the parameters and how to incorpo-
rate this information into the point sampling process for snapshot generation are
considered.
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A major consideration of the talk is a new point sampling strategy that we have
developed that is based on centroidal Voronoi tessellations (CVT’s). These are
special Voronoi tessellations for which the generators of the Voronoi tessellation are
also the centers of mass, with respect to a given density function, of the associated
Voronoi cells. CVT’s have many uses in many applications; in particular, CVT’s
can be used for generating very high-quality point sets in regions and on surfaces.
Using several volumetric measures of uniformity, CVT point samples are shown to
be more “uniform” that those obtained by existing strategies. On the other hand,
CVT point sets do not have good properties when projected onto lower dimensional
surfaces, e.g., the faces of a hypercube. Such a property is desirable in some
applications such as high-dimensional integration. For the latter application, one
can define “Latinized” CVT point sets that possess good projections. For design of
experiment applications relevant to snapshot generation, both CVT and Latinized
CVT point sets are superior to existing points sampling methods. Incidentally,
CVT strategies also offer an alternative to POD as a means for defining a reduced
basis from a set of snapshots.

Various aspects of the talk represent joint work with John Burkardt, Hoa
Nguyen, Janet Peterson, and Yuki Saka (Florida State University) and Hyung-
Chun Lee (Ajou University, Korea).
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Adjoint-based Adaptive Time-stepping for Partial Differential
Equations using Proper Orthogonal Decomposition

Vincent Heuveline
(joint work with M. Hinze (TU Dresden))

We present an effective adjoint-based a-posteriori goal-oriented error control
mechanism [1] for time integration of partial differential equations. The sensitivity
information is obtained from the adjoint of a reduced order model of the full partial
differential equations [2] while the reduced order model is adapted during the error
estimation process. Several numerical examples illustrate the performance of the
method.
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Model Reduction (and Spacetime Multigrid) in Control of
Time-dependent PDEs

Michael Hinze
(joint work with K. Afanasiev (ZIB Berlin) and G. Büttner (TU

Berlin))

We present an effective control method for mathematical models governed by
systems of nonlinear time-dependent partial differential equations. It takes account
of the fact that control inputs may alter the regime of the underlying physical
process. The method in an adaptive manner constructs a hierarchy of appropri-
ate low dimensional approximations to the mathematical model which then are
used as subsidiary condition in the related optimization problem. We discuss dif-
ferent possibilities to construct low dimensional systems and the related modes
(eigenfunctions of stationary problem, eigenfunctions of the linearized model and
snapshot form of proper orthogonal decomposition).

As numerical example we present tracking-type control of the incompressible
Navier-Stokes system as mathematical model for periodic flow around a cylinder.
The numerical results of the adaptive approaches for different modes are compared.
Furthermore they are compared to the result of the optimal control approach
applied to the full Navier-Stokes system. It turns out that the quality of the
controls obtained from the suboptimal approaches compares to that obtained by
optimal control, and the computational costs for the optimal approach are at
least one order of magnitude larger. More specifically, for the numerical example
considered we obtain

Runtime(Optimization) = (6-8) x Runtime(pdesolve),
see [1].

In the second part of the talk we present preliminary results for multigrid in
spacetime following the integral equation approach of Hackbusch. It turns out
that for the numerical solution of linear-quadratic control problems we achieve

Runtime(Optimization) = (7-8) x Runtime(pdesolve),
for the numerical solution of a nonlinear problem with inexact Newton methods
and spacetime multigrid for the Newton defect system we achieve

Runtime(Optimization) = 20 x Runtime(pdesolve),
see [2].
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Adaptive Finite Elements for Inverse Scattering
Claes Johnson

(joint work with L. Beilina)

We apply an adaptive hybrid FEM/FDM method for an inverse scattering prob-
lem for the time-dependent acoustic wave equation in 2D and 3D where we seek to
reconstruct an unknown sound velocity c(x) from measured wave-reflection data.
Typically this corresponds to identifying an unknown object [scatterer] in a sur-
rounding homogeneous medium.

We use an optimal control approach where we seek a sound velocity c[x] which
minimizes the difference between computed and measured output data in a discrete
L2 norm. We solve the optimization problem by a quasi-Newton method where in
each step we compute the gradient by solving a forward [direct] and an backward
[adjoint] wave propagation problem.

To compute the backward and forward wave propagation problems we use an
adaptive hybrid finite element/finite difference method where we exploit the flex-
ibility of mesh refinement and adaption of the finite element method in a domain
covering the object and the efficiency of a structured mesh finite difference method
in the surrounding homogeneous domain. The hybrid scheme can be viewed as
a finite element scheme on a partially unstructured mesh which gives a stable
coupling of the two methods.

We use an adaptive mesh refinement algorithm to improve the accuracy of the
reconstruction and speed up the convergence of the quasi-Newton method.
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Structural Aspects for Numerical Methods in Optimal Control of
Evolution Equations

Karl Kunisch

Motivated by optimal control problems in fluid dynamics describing vortex or
drag reduction I remark in this survey talk on some aspects in open as well as
closed loop numerical optimal control.

In the first part the difference between the optimization based approach and
methods focused on solving the optimality system is explained. Sequential qua-
dratic programming methods are compared to Newtons method. In the former
the linearized state equation in the latter the nonlinear state equations are solved,
resulting in primal feasibility in case of Newtons method [HK2]. In view of time-
stepping techniques which are typically used to integrate the dynamical system,
the numerical cost between the solution of the linearized equation and inexact
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solutions to the nonlinear equation can be low. This suggests to favor the New-
ton over the SQP method for optimal control of evolution problems. — Finally a
new cost functional for vortex suppression relying on local phase plane analysis is
proposed [SK].

The second part is devoted to feedback control. For linear quadratic problems
feedback control is completely characterized by means of an operator Riccati equa-
tion. In the nonlinear case the feedback control relies on the viscosity solution of a
Hamilton-Jacobi-Bellman equation, which is numerically unfeasible unless the di-
mension of the (discretized) state-space is unreasonably small. For optimal control
of fluid flow this requires the use of approximation strategies (beyond state space
discretization). Here we explain techniques which rely on model reduction based
on proper orthogonal decomposition (POD) combined with numerical solutions of
the HJB-equation for infinite as well as finite horizon problems for the reduced
problem [KV1, KV2, KX]. We also describe receding horizon techniques which
rely on a time domain splitting strategy. To analytically justify their use we con-
sider the stabilization problem of steady states. If a control Ljapunov functional
is used as terminal penalty then the receding horizon control successfully drives
the trajectory to the steady state [IK1, IK2].
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Adaptive Wavelets for Optimal Control Problems
Angela Kunoth

For the fast numerical solution of control problems governed by partial dif-
ferential equations, an adaptive algorithm based on wavelets is proposed. The
framework allows for linear elliptic and parabolic PDEs in full weak space–time
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formulation as constraints as well as for problems with distributed or with Neu-
mann or Dirichlet boundary control.

A quadratic cost functional which may involve fractional Sobolev norms of the
state and the control is to be minimized subject to linear constraints in weak form.
Placing the problem into the framework of (biorthogonal) wavelets allows us to
represent the functional and the constraints in terms of �2–norms of wavelet ex-
pansion coefficients and constraints in form of an �2 automorphism. The resulting
first order necessary conditions are then derived as a (still infinite) system in �2.

Applying the machinery developed in [CDD], we propose an adaptive method
for the coupled system for the state, adjoint and control variables. An essential
ingredient is that the scheme can be interpreted as an inexact gradient descent
method, where in each iteration step the primal and the adjoint system needs to
be solved up to a prescribed accuracy. In particular, the method resolves each of
the involved variables separately, without having to resort to a common underlying
grid.

The convergence analysis of the algorithm is crucially based on the fact that
the wavelet framework allows us to step by step break down an ideal iteration
on the infinite system to computable quantities. Thus, the method captures all
relevant features from the original control problem with respect to infinite function
spaces and specifically resolves any type of singularity coming from the data or
the domain. Consequently, the approximate solutions generated by the adaptive
algorithm can be shown to converge (in the energy norm) to the exact solution
triple (state, adjoint state, control) for any prescribed accuracy.

Moreover, it is shown that the adaptive algorithm is asymptotically optimal,
that is, the convergence rate achieved for computing the solution up to a desired
target tolerance is asymptotically the same as the wavelet–best N–term approx-
imation of the solution, and the total computational work is proportional to the
number of computational unknowns.
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A Paradigm for Adaptivity and Optimal Control
Rolf Rannacher

We present a general approach to “goal-oriented” error estimation and mesh
adaptation in the context of optimal control problems of the abstract form

J(u, q) = min!, A(u, q)(·) = 0,

where the equation constraint is a PDE. The starting point is the first-order opti-
mality condition, the so-called KKT system,

∇u,q,zL(u, q, z) = 0, L(u, q, z) := J(u, q) − A(u, q)(z),

obtained by the classical Euler-Lagrange approach. This set of nonlinear and
strongly coupled PDEs for the primal variable (state) u , the control variable q
(control), and the dual variable z (adjoint) is approximated by a Galerkin finite
element method. The topic of this talk is a strategy for the a posterori construction
of finite element meshes which are most economical for the optimization process.
Exploiting the particular structure of the KKT system an error representation is
derived for the discretization with respect to the cost functional in terms of the
residuals of the computed solution and a remainder term which is cubic in the
approximation errors,

J(u, q)− J(uh, qh) = 1
2∇u,q,zL(uh, qh, zh)(z−ψh, qh−χh, u−φh) + R

(3)
h (eu, eq, ez).

The remainder term is usually neglected. The computational evaluation of the
residual term yields “weighted” a posteriori error estimates of the form

J(u, q) − J(uh, qh) ≈
∑

K∈Th

{
ρu

Kωz
K + ρq

Kωq
K + ρz

hωu
K

}
,

which can guide the mesh adaptation process. In these estimates “primal” resid-
uals and “dual” weights as well as “dual” residuals and “primal” weights are
crosswise multiplied, while in the traditional approach these quantities are added.
Therefore, this approach of mesh adaptation is called “Dual Weighted Residual
(DWR) Method”. The resulting meshes for discretizing the KKT system are most
economical since only that information is represented which is really needed for the
optimization process. When an optimal control qopt

h is determined for this sparse
model, using for instance a Newton-type iteration, a more accurate primal solu-
tion ũopt

h can be generated in a post-processing step by solving the state equation
once again on a finer mesh. The performance of the DWR method is demon-
strated for a simple diffusion-reaction problem with Neumann-boundary control.
The very same approach can also be used in the context of time discretization
and eigenvalue problems, e.g., in the control of the Navier-Stokes equations for
drag minimization and for the stability analysis of the resulting optimal states.
For further information and other classes of applications, we refer to the literature
listed below.
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Modelling and Globalizing Applied to Optimal Control Algorithms
Ekkehard W. Sachs

Various models in algorithms for optimization have led to different strategies of
globalizing optimization methods. The trust region concept is a general globaliza-
tion strategy which can be applied to various model functions.

For an unconstrained optimization problem the trust region strategy defines at
each iteration point uk a nonlinear model function mk(uk + ·) which is minimized
over a ball of radius ∆. The radius is updated according to the accuracy of the
value of the model function in comparison to the value of the true function at the
candidate at the next iteration point. The trust region is updated in a similar
fashion. These strategies together with a condition on a sufficient descent for a
function value yield a global convergence statement.

The linear model leads to the well known Armijo step size rule, whereas the
quadratic model yields a smooth transition from steepest descent to the Newton
step. It is less known that the trust region method can also be applied to nonlinear
models as pointed out by Toint [4].

The training of neural networks is one area where these techniques have been
applied successfully for large scale problems.

Another application is reduced order modelling, in particular, proper orthog-
onal decomposition for the optimal control of Navier-Stokes equation. Afanasiev
and Hinze [1] also use adaptive techniques to adjust the POD model during the it-
eration. In Arian, Fahl, Sachs [2, 3] the trust region approach is utilized to control
the adaption of the POD model. In this case the differential equation is replaced
by a reduced order model of smaller size. In this case the original function f(y(·))
is replaced by the model function mk(uk + ·) = f(yPOD,uk

(·)).
Numerical examples are given for an example of the control of a driven cavity

flow problem.
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ODE Concepts for PDE Optimization
Volker H. Schulz

(joint work with S. Hazra (U Trier))

In this talk, we exploit algorithmic concepts from the ODE world for the solution
of optimization problems with PDE constraints. In particular, methodological
results for two specific application problems are reported.

In the first application problem, we solve parameter identification problems for
instationary multiphase flow in the subsurface. Multiple shooting in combination
with a reduced Gauss-Newton approach, due to Bock and Schloeder (1981-), yields
an efficient and robust algorithm with low storage requirements (cf. [1] and several
subsequent papers).

In the second application problem, we study shape optimization for the de-
sign of parts of the surface of airplanes under drag optimization. First results
regarding a new collaborative project together with DLR Braunschweig, Airbus
Germany, EADS and others, which has started recently, are reported. The al-
gorithmic workhorse is a generalization of reduced SQP techniques to continuous
reduced SQP techniques in a pseudo-timestepping framework.

Both applications show that one can profit from knowledge of ODE concepts
for optimization problems also in a PDE context.
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On Optimal Control Problems with Pointwise State Constraints
Fredi Tröltzsch

We consider the parabolic optimal control problem with pointwise constraints
on the control and the state,

min J(y, u) =
1
2
‖y(T ) − yd‖2

L2(ω) +
ν

2
‖u‖2

L2(Q)

subject to
yt − ∆y + d(y) = u in Q = Ω × (0, T )
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with homogeneous Neumann boundary condition and initial condition y(0) = y0.
Moreover, pointwise constraints are imposed on the control u ∈ L∞(Q) and the
state y ∈ Y := W (0, T ) ∩ C(Q̄),

0 ≤ u(x, t) ≤ b(x, t)
0 ≤ c(x, t) + γ y(x, t),

(x, t) ∈ Q. The following data are given: A bounded domain Ω ⊂ R
N with C1,1-

boundary Γ, functions yd, y0 ∈ C(Ω̄), b, c ∈ C(Q̄), d ∈ C2,1(R) with d′(y) ≥ 0,
and γ > 0, ν > 0. For all u ∈ L∞(Q), a unique state y = y(u) exists in Y .
Let ū be locally optimal in the sense of L∞(Q) and define ȳ = y(ū). Then the
associated first order necessary optimality conditions can be formulated on using
the Lagrange functional

L(y, u, p, µ) = J(y, u) −
∫
Q

[(yt + d(y) − u)p + ∇y · ∇p] dxdt −
∫
Q

(y + c) dµ(x, t),

where p stands for the adjoint state and µ ∈ C(Q̄)� is the Lagrange multiplier asso-
ciated with the state constraints. If a constraint-qualification is satisfied at (ȳ, ū),
then a non-negative Borel measure µ exists such that the first order necessary
optimality conditions

∂L
∂y (ȳ, ū, p, µ) y = 0 ∀ y ∈ W (0, T ) with y(0) = 0

∂L
∂u (ȳ, ū, p, µ)(u − ū) ≥ 0 ∀u ∈ L∞(Ω) with 0 ≤ u ≤ b∫

Q

(y + c) dµ = 0

are satisfied. This follows from results [2] and [5]. Assume conversely that a pair
(ȳ, ū) is given that satisfies all constraints and the first-order necessary conditions.
One might expect that the following standard condition is sufficient for local op-
timality of ū:
(SSC) There is δ > 0 such that

L′′(ȳ, ū, p, µ)(y, u)2 = ‖y(T )‖2
L2(Ω) + ν‖u‖2

L2(Q) −
∫
Q

d′′(ȳ)p y2 dxdt ≥ δ ‖u‖2
L2(Q)

holds for all pairs (y, u) ∈ Y × L∞(Q) satisfying the state equation linearized at
(ȳ, ū).

Then ū is expected to be locally optimal with respect to the L2-topology. This
holds true, if the mapping u 
→ y(u) is continuous from L2 to C(Q̄), i.e. for
N = 1 in our parabolic example with distributed control. For the case of Neumann
boundary control, this is not true.

If, however, the state-constraints are deleted, then (SSC) is sufficient for local
optimality in the L∞-topology for all N .

Unfortunately, we have not been able to prove the same result with pointwise
state constraints. Local optimality can still be shown in the sense of L∞ for N = 2.
For N > 2 we cannot prove that (SSC) is really sufficient for local optimality. The
obstacle is the need to estimate L′′(ȳ, ū, p, µ)(y, u)2 against the L2-norm of u. Due
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to the presence of the measure µ in the right-hand side of the adjoint equation, p
is not bounded in the case of state-constraints. Therefore, the estimation of the
third quantity in the expression for L′′ causes troubles.

The situation is even worse, if (SSC) is weakened by considering also strongly
active state-constraints. Then only for N = 1 the local optimality can be shown in
the case of distributed control, while boundary controls cannot be handled at all.
We refer to [6]. The results are slightly better for elliptic problems. L2-optimality
can be shown for N ≤ 3 and distributed control (since H2(Ω) ⊂ C(Ω̄)) and N = 2
for Neumann boundary control (H3/2−ε(Ω) ⊂ C(Ω̄)), [3]. To overcome these
difficulties, a Lavrentiev type regularization is suggested. Consider the mixed-
pointwise control-state constraints

−ε u(x, t) ≤ c(x, t) + γ y(x, t).

In this case, the existence of an associated regular Lagrange multiplier µ ∈ L∞(Q)
can be shown, [1]. Moreover, this concept is useful for numerical approximations.
For ε ↓ 0, the associated optimal control converges to ū. This is demonstrated for
linear-quadratic elliptic problems with N = 2, [4].
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Optimal Control of Nonlinear Parabolic Systems by Second Order
Methods

Stefan Volkwein

In the talk three different optimal control problems for nonlinear parabolic
systems are considered.

The first example is concerned with optimal boundary control of an instationary
reaction-diffusion system in three spatial dimensions. This problem involves a
coupled nonlinear system of parabolic differential equations with bilateral as well
as integral control constraints. We include the integral constraint in the cost by
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a penalty term whereas the bilateral control constraints are handled explicitly. A
primal-dual active set strategy is utilized to compute optimal solutions numerically.
The algorithm is compared to a semi-smooth Newton method.

As a second example an optimal control boundary problem for the Stefan prob-
lem is considered. Here, an inexact Newton method is applied with quasi-Newton
approximations for the Hessian. To ensure positivity of the Hessian, a line search
based on the Wolfe-Powell conditions is utilized.

Finally, laser surface hardening of steel is formulated in terms of an optimal
control problem, where the state equations are a semilinear heat equation and an
ordinary differential equation, which describes the evolution of the high tempera-
ture phase. To avoid the melting of the steel we have to impose state constraints
for the temperature. Including the state constraints into the cost functional by a
penalty term, a globalized SQP method with a reduced Hessian is applied to solve
the control problem numerically. To ensure the convergence of the algorithm a
numerically inexpensive globalization strategy is used.
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Interior–Point Methods for Optimization Problems with PDE
Constraints

Beate Winkelmann
(joint work with R.E. Bank and Ph.E. Gill)

Methods are proposed for the numerical solution of optimal control problems
with partial differential equation (PDE) constraints and inequality constraints on
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the control variable. The general form of the problem is:

minimize
y,u

ρ(y, u) =
∫

Ω

p1(y,∇y, u) dx +
∫

∂Ω

p2(y,∇y, u) ds

subject to 〈E(y, u), v〉 = 0, ∀v ∈ H,

u ≤ u(x) ≤ u,

where Ω ⊂ R
d, d ∈ {1, 2}, y is the state variable, u is the control variable, H is

an appropriate function space, and 〈E(y, u), v〉 = 0 is the weak form of a partial
differential equation in divergence form. State and control variables are discretized
using an adaptive finite-element approach. Algorithms for optimization and PDEs
are combined to solve a discretized optimization problem over a sequence of adap-
tive meshes.

An interior-point method is used for the optimization part of the algorithm.
The two main types of interior-point method are primal methods and primal-dual
methods. As the names suggest, primal methods iterate over the primal variables
only, while primal-dual methods iterate over the primal and dual variables simulta-
neously. However, both methods approach the solution by following a continuous
path that approaches the solution from the interior of the set of admissible solu-
tions. For a primal method the path is the trajectory of solutions of a sequence
of equality-constrained problems parameterized by a scalar µ. Primal-dual meth-
ods define the path as the trajectory of points satisfying the perturbed first-order
optimality conditions for the constrained problem.

Primal-dual methods are usually preferred for general constrained optimization
because of their rapid convergence near the solution. However, in the PDE context,
the use of a primal-dual method requires the adaptive discretization of both the
primal and dual variables, which can lead to serious numerical difficulties if the
dual variables are not sufficiently smooth. It is shown that these difficulties may
be avoided if the primal method is implemented using an extrapolation scheme for
the parameter µ.

Regardless of the particular choice of interior-point method, the linear sys-
tems to be solved at each iteration are large, symmetric and have PDE-like struc-
ture. These systems also become increasingly ill-conditioned as the solution is
approached. In order to handle the size and sparsity of these systems, a precon-
ditioned Krylov-space method is used. The choice of preconditioner is crucial for
the performance of the optimization since the cost of solving the linear system
dominates the overall cost of the computation. A good preconditioner lowers the
cost of solving the linear systems significantly. The aim is to incorporate as much
information as possible into the preconditioner without dramatically increasing the
cost of the computation. To this end, the preconditioner has the same block struc-
ture as the original system and existing multilevel PDE preconditioners are used
for some of the blocks. In particular, an algebraic multigrid preconditioner with
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ILU smoothing is used for the PDE constraint blocks, and a symmetric Gauss-
Seidel preconditioner is used for the control block and the full linear system. The
preconditioner is fully parallel.

The PDE part of the algorithm uses adaptive mesh refinement based on an
a posteriori hierarchical basis error estimator for the state variables. The path-
following parameter µ and the PDE parameters are chosen to allow the discretiza-
tion error and optimization error to go to zero at the same rate. An error estimator
based on the state variable allows the mesh to be adaptively refined and unrefined
without the additional cost of solving the adjoint equation.

These ideas are illustrated in the context of the elliptic finite-element PDE
package PLTMG. Numerical results are presented for a particular optimal control
problem involving an elliptic PDE constraint. The adaptive refinement algorithm
requires the solution of an optimization problem with up to 22.5M variables. This
problem was solved on a 256 processor Beowulf cluster in approximately 8 minutes.
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