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Introduction by the Organisers

This workshop, as an established intention, brings together different groups
working on phase transitions. Mathematicians working in statistical mechanics,
and others working in PDE and continuum mechanics met with physicists with a
strong experimental background.

There were many younger participants, and they specifically stated that this
workshop gave them an excellent opportunity for contact with the fields different
from their own.

There was a wide range of subjects presented in the talks and also in the dis-
cussion groups, with an emphasis on free energies, scalings and microstructures.
The modelling aspect was very important always with the aim to get rigorous re-
sults, describe qualitative behaviour and the relationship between different classes
of models in precise terms, e.g. via singular perturbation theory. This meant that
the discussion of mathematical technical tools, many inspired by phase transition
problems, played a large role in the workshop.
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Abstracts

Large deviations for the random field of gradients and their
thermodynamic properties

Stefan Adams

It is a common phenomenon that at low temperature two pure thermodynamic
phases spatially coexist and are separated by an interface, which is very sharp
with a width of a few atomistic distances. An appropriate statistical mechanics
model for the interface is the unbounded spin model; one assumes that transverse
deviations from the perfectly flat interface are given through a scalar field φ,
i.e., φ : R

2 → R with φ ≡ 0 corresponding to the flat interface. To have a
mathematically well defined model we discretise and also generalise to arbitrary
dimensions. Then φ : Zd → R, and φx := φ(x) is the height of the interface

at site x ∈ Zd and (φx)x∈Zd ∈ Ω := RZ
d

is called the random field of heights.
Neighboring sites are connected through an elastic potential V , where we later
have to restrict V to be strictly convex. In this talk we restrict to quadratic V .
To each configuration φ we associate the formal (elastic) energy

(1) H(φ) =
1

2

∑

|x−y|=1

V (φx − φy),

which is a massless model due to the fact that there are no self interaction terms
for single heights. The formal equilibrium measure is given by

(2) Z−1 exp (−H(φ))
∏

x

dφx.

In the non compact setting even the existence of thermodynamics of these interface
models becomes nontrivial. These existence problems can be solved by making
strong assumptions on the interactions such as superstability ([1]). Connections
between equilibrium statistical mechanics and the theory of large deviations have
been know for a long time ([2]). Large deviations results for the empirical field
were recently given in [3, 4], where one has to consider dimensions d ≥ 3 for the
existence of limit Gibbs measures. If we fix in (2) the heights to be zero at the
boundary of a box Λ, then the fluctuations grow like the volume in dimension one,
respectively like the logarithmic volume in dimension two, whereas for dimensions
greater equal than three they are bounded ([5]). Thus in dimension d = 1, 2 the
infinite Gibbs measure does not exist as it is the case for d ≥ 3.

A glance at the massless model (1) leads us to consider the so-called random
field of gradients η(x,y) = φx − φy, |x − y| = 1 for all x, y ∈ Z

d. The random field
of gradients can be seen as the image of the random field of heights under the
discrete gradient mapping, i.e., as such it is a rotation free vector field. Although
the scalar random field of heights is more intuitive, the random field of gradients
seems to be more fundamental. Notice here that in dimension d = 1 this random
field of gradients is an independent random walk with a linear constraint (e.g. see
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[6]); this is no longer true in dimensions d ≥ 2. In particular, we have existence
of the random field of gradients even when the random field of heights does not
exist (see [7, 8, 9]). Moreover there is a complete classification of the extremal
ergodic gradient Gibbs measures in the sense that for any tilt/slope u ∈ Rd there
is a unique ergodic gradient Gibbs measure, also called the Funaki-Spohn state for
the given tilt/slope ([7]).

The random field of gradients is our central object of study. A full level-3 large
deviations results will enable us to consider bounded continuous perturbations
of the strictly convex elastic interaction potential V and thus to go beyond this
restriction in choosing an interaction potential. Our approach will turn out to be
a first step in this outlined program.

Although the random field of gradients turns out to be the more fundamental
object of study and guarantees the existence for Gibbs measures in any dimension
in the thermodynamic limit, the price one has to pay is to tackle the difficulties
that the reference measure as the image measure of the product Lebesgue measure
under the gradient mapping has no product structure, and that the boundary
conditions do have a great influence on the Gibbs distributions in finite boxes.

As a first step we propose to consider the random field of heights but now with
the so-called gradient events, i.e., we measure only events which are functions of
the gradients. In this way we construct for any finite box Λ ⊂ Zd the corresponding
gradient σ-algebra and reference measure, denoted by FΛ and λΛ respectively, in
the following way. Via a linear mapping to a random field of height in the box
Λ \ {x0} we can show the independence of the reference vertex {x0}, and are able
to derive some kind of sub-additivity to get the existence of the specific entropy as
follows, where HΛ(µ) denotes the relative entropy of the measure µ with respect
to the reference measure λ in the box Λ.

Theorem A. For each translation invariant probability measure µ ∈ PΘ(Ω,F)
and every sequence (ΛN )N≥1 of cubes with |ΛN | → ∞ as N → ∞, the limit

s(µ) := − lim
N→∞

1

|ΛN |HΛN
(µ),

exists and satisfies the equation

s(µ) = inf
∆∈S�

|∆|−1H∆(µ).

For each µ ∈ PΘ(Ω,F) the quantity s(µ) is called the specific entropy per site (or
mean entropy) of µ relative to the reference measure λ.

From this we get also the existence of the specific free energy f(µ) of a trans-
lation invariant measure µ. The surface tension σ(u) for a given vector u ∈ Rd

is given as the infimum of the specific free energy over all translation invariant
measures joining the tilt/slope u. Due to the measurability of the gradient events
we are not able to consider boundary conditions in the Hamiltonian, thus we focus
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on the Gibbs distribution with so-called free boundary condition, i.e.

γΛ =
1

ZΛ
e−HΛdλΛ with HΛ(φ) =

1

2

∑

x,y∈Λ

|x−y|=1

(φx − φy)2.

The empirical field is defined as RN (φ) = 1/|ΛN | ∑
k∈ΛN

δθkφ for the centred box ΛN

with volume Nd and shift operator θk modulo modification with respect to the
free boundary condition. Under the free boundary Gibbs distributions γΛN

with
strictly convex V we derive the following large deviations result for the empirical
field.

Theorem B. The measures γΛN
◦ R−1

N satisfy a large deviation principle at the
volume order with rate function

I(µ) :=

{
f(µ) − inf

u∈Rd
σ(u) ; if µ ∈ PΘ(Ω,F)

∞ ; otherwise
;

i.e. for any Γ ⊂ P(Ω,F)

lim sup
N→∞

1

|ΛN | log γΛN
(RN ∈ Γ) ≤ − inf

µ∈Γ
I(µ),

lim inf
N→∞

1

|ΛN | log γΛN
(RN ∈ Γ) ≥ − inf

µ∈
◦
Γ

I(µ),

where Γ and
◦
Γ denote the closure and the interior with respect to the topology of

local convergence.

Extensions of these results are also discussed, where attention is made to the
Green function representation of the Gaussian measures. For the considered free
boundary measure the Green function belongs to the simple random walk in the
graph Λ killed in the reference vertex {x0}.

Acknowledgment: I thank the organisers for this invitation and the nice conference.
Thanks goes also to DIAS-Dublin and the German Science Foundation, grant DE
663/1-3, for supporting my research work.
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On gradient flows of some non-convex functionals of Perona-Malik
type

Giovanni Bellettini

(joint work with Giorgio Fusco)

We have discussed some problems related to the gradient flow of the nonconvex
functional of the gradient

(1)
1

2

∫

(0,1)

φ(ux) dx,

where φ(p) = log(1 + p2) is the function considered by Perona-Malik in [6] in the
context of image restoration. Due to the nonconvex character of the energy density
φ, the gradient dynamic

(2) ut = φ′′(ux)uxx

associated with (1) has a forward-backward character depending on the sign of
φ′′(ux). Defining a reasonable notion of weak solution to (2) (possibly in agreement
with the numerical simulations) seems to be a difficult problem. Following [5] we
regularize (2) by adding to F a small higher order term and consider for 0 < ǫ < 1
the family of functionals

(3) F ǫ(u) :=
1

2

∫

(0,1)

(
ǫ2(uxx)2 + φ(ux)

)
dx.

Numerical experiments [3] indicate the existence of three distinct time scales for the
gradient dynamics associated with F ǫ, when ǫ > 0 is extremely small. In the first
time scale one observes the formation of microstructures (of smoothed staircase
type) where the initial datum has derivative in the nonconvex region of φ (unstable
region). This is an interesting phenomenon which requires further theoretical
investigation; at the present moment, its evidence remains an experimental fact.
After the formation of microstructures, the evolution seems to be dictated by (2)
in the stable region (where the initial datum has derivative in the convex region of
φ), while the unstable region seems to remain still, at least far from its boundary
points (we do not enter in the discussion on what may happen at the boundary
points). In the last time scale the solution assumes a kind of staircase structure,
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and one can observe a sort of evolution of the vertical heights of the steps of the
stairs.

Energetical considerations lead to introduce the small parameter ν, related to
ǫ by

(4) ǫ2 = ν4φ(1/ν)

and to define the rescaled energy

(5) Fν(u) :=
F ǫ(u)

νφ(1/ν)
=

1

2

∫

(0,1)

[
ν3(uxx)2 +

1

νφ(1/ν)
φ(ux)

]
dx.

Our first result is the characterization of the Γ − L1(0, 1)-limit F of the family
{Fν} as ν → 0+. The domain of F consists of those SBV (0, 1) functions with
vanishing absolutely continuous part of the distributional derivative, and

(6) F(u) := σ
∑

x∈Ju

|u+(x) − u−(x)| 12

where Ju is the jump set of u and σ > 0 is a suitable constant.
Heuristic arguments (that deserve further investigation) suggest that the evo-

lution of F should be strictly related to the solutions to the gradient flow of the
functionals Fǫ, in the third time scale. This is one of the motivations of our study
of the gradient flow of (the non-convex non smooth) functional F , and relates our
results with the previous discussion on the behaviour of the ǫ-solutions approxi-
mating (2). The weak (global in time) notion we employ to define the evolution
of F is the so-called minimizing movement [4]. Assume that the initial datum
(in the domain of F) has a finite number of jumps. It turns out that the subse-
quent minimizing movement u(τ) (which is piecewise constant) has the following
properties. Its jump positions do not change with time. The number of jumps is
nonincreasing with time: there exist M ≤ N singular times 0 < τ1 < · · · < τM at
which there is a dropping of the number of jumps and for τ ≥ τM , u(τ) coincides
with the average of the initial datum. In the interval between two subsequent
singular times, the vector of the survived jumps is determined by the ODE which
expresses the gradient of F restricted to the finite dimensional subspace defined
by the survived jumps.

Remark: The above results, obtained in collaboration with Giorgio Fusco (Univ.
of L’Aquila, Italy), were announced in [1], and will appear in [2].
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Large deviations of the current in stochastic systems

Lorenzo Bertini

(joint work with A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim)

The basic microscopic model is given by a stochastic lattice gas with a weak
external field and particle reservoirs at the boundary. More precisely, let Λ ⊂ Rd

be a smooth domain and set ΛN = NΛ ∩ Zd; we consider a Markov process on
the state space XΛN , where X is a subset of N. The number of particles at the
site x ∈ ΛN is denoted by ηx ∈ X and the whole configuration by η ∈ XΛN .
The dynamics of the particles is described by a continuous time Markov process
on the state space XΛN with transition rates cx,y(η) from a configuration η to
the configuration obtained from η by moving a particle from x to a neighbor site
y. Similar rates c±x describe the appearance or loss of a particle at the boundary
site x. We assume the rates satisfy the local detailed balance, see [4, II.2.6]. The
reservoirs are characterized by a chemical potential γ.

We introduce the empirical measure πN corresponding to the density as follows.
For each microscopic configuration η ∈ XΛN and each smooth function G : Λ → R,
we set πN (G) = N−d

∑
x∈ΛN

G(x/N)ηx Consider a sequence of initial configura-

tions ηN such that πN (ηN ) converges weakly to some density profile ρ0. Under
diffusive scaling, the empirical density at time t converges weakly, as N → ∞, to
ρ = ρ(t, u) which is the solution of the hydrodynamic equation [3, 4]

∂tρ = ∇ ·
[1

2
D(ρ)∇ρ− χ(ρ)∇V

]

with initial condition ρ0 and boundary condition fixed by the reservoirs. Here
D is the diffusion matrix, given by the Green–Kubo formula, see [4, II.2.2], χ is
the conductivity, obtained by linear response theory, see [4, II.2.5], and ∇V the
external field.

We now introduce the empirical current as follows. Denote by N x,y
t the number

of particles that jumped from x to y in the macroscopic time interval [0, t]. Here
we adopt the convention that N x,y

t represents the number of particles created
at y due to the reservoir at x if x 6∈ ΛN , y ∈ ΛN and that N x,y

t represents
the number of particles that left the system at x by jumping to y if x ∈ ΛN ,
y 6∈ ΛN . The difference Jx,y

t = N x,y
t − N y,x

t represents the total current across
the bond {x, y} in the time interval [0, t]. Fix a macroscopic time T and denote
by J N the empirical measure on [0, T ]× Λ associated to the current. For smooth
vector fields G = (G1, . . . , Gd), the integral of G with respect to JN is given
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by J N (G) = N−(d+1)
∑d

i=1

∑
x

∫ T

0 Gi(t, x/N) dJx,x+ei

t , where ei is the canonical
basis and we sum over all x such that either x ∈ ΛN or x + ei ∈ ΛN . We
normalized J N so that it is finite as N → ∞. Given a density profile ρ let us
denote by J(ρ) = − 1

2D(ρ)∇ρ+χ(ρ)∇V the current associated to ρ. If we consider

an initial configuration ηN such that the empirical density πN (ηN ) converges to
some density profile ρ0, then the empirical current JN (t) converges, as N → ∞,
to J(ρ(t)), the current associated to the solution of the hydrodynamic equation.

We next discuss the large deviation properties of the empirical current. Fix a
smooth vector field j : [0, T ]×Λ → Rd and a sequence of configurations ηN whose
empirical density converges to some profile ρ0. Then, by the methods in [3, Ch.
10], it is possible to show that

P
N
ηN

(
JN (t, u) ≈ j(t, u)

)
∼ exp

{
−Nd I[0,T ](j)

}

where the rate function is given by

I[0,T ](j) =
1

2

∫ T

0

dt
〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉

in which ρ = ρ(t, u) is obtained by solving the continuity equation ∂tρ+ ∇ · j = 0
with initial condition ρ(0) = ρ0 and 〈·, 〉 is the inner product in L2(Λ, du). Of
course there are compatibility conditions to be satisfied, for instance if we have
chosen a j such that ρ(t) becomes negative for some t ∈ [0, T ] then I[0,T ](j) = +∞.

We next discuss how, from the time dependent large deviation principle stated
above, we obtain an extension of the results of [2] for the time average of the
empirical current. Given time independent profiles ρ = ρ(u) and J = J(u), let us
introduce the functionals

U(ρ, J) =
1

2
〈J − J(ρ), χ(ρ)−1[J − J(ρ)]〉

U(J) = inf
ρ

U(ρ, J)

where the infimum is carried over all profiles ρ satisfying the boundary conditions
and J(ρ) has been defined above. When J is constant, the functional U is the one
introduced in [2].

Fix some divergence free vector field J = J(u) constant in time and denote by

AT,J the set of all currents j such that T−1
∫ T

0
dt j(t, u) = J(u). The condition of

vanishing divergence on J is required by the local conservation of the number of
particles. From the large deviations principle for the current we get

P
N
ηN

( 1

T

∫ T

0

dt J N (t, u) ≈ J(u)
)
∼ exp

{
−Nd inf

j∈AT,J

I[0,T ](j)
}

Let U∗∗ be the convex envelope of U , in [1] it is shown that

lim
T→∞

1

T
inf

j∈AT,J

I[0,T ](j) = U∗∗(J)
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we therefore have

P
N
ηN

( 1

T

∫ T

0

dt JN (t, u) ≈ J(u)
)
∼ exp

{
−Nd T U∗∗(J)

}

where the logarithmic equivalence is understood by sending first N → ∞ and then
T → ∞. This result extends [2] to d ≥ 1, allows divergence free J , and shows
that, in general, U has to replaced by its convex envelope U∗∗. An example where
U is not convex is discussed in [1].
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Simulations of Diffusion Induced Segregation

Thomas Blesgen

Diffusion Induced Segregation (DIS) processes represent a particular class of
segregation phenomena where the formation of (two) phases only starts after the
concentration of a particular diffusor exceeds a certain threshold. The objective of
the present work is to develop suitable models for the so-called chalcopyrite disease
within sphalerite which is one example of DIS, compute at least approximately the
actual physical free energies and make simulations closer to reality.

Model A: For t ≥ 0 find c = (c1, c2, c3, c4), χ such that in Ω ⊂ R
D for t > 0

0 = div
( 4∑

j=1

L1j∇µj

)
+ k1/bχ(c22 − (κ)1/bχc1c3),(1)

∂tci = div
( 4∑

j=1

Lij∇µj

)
+ ri(c, χ), i = 2, 3, 4,(2)

µi =
∂f

∂ci
(c, χ), 1 ≤ i ≤ 4,(3)

τ∂tχ = γ△χ− ω(c, χ)(4)

together with initial values for c and χ and Dirichlet boundary conditions for c, µ
and χ. Here, c is a concentration vector, χ measures the volume fraction of the
chalcopyrite phase, µ is the chemical potential. Reaction terms: r = (r1, . . . , r4)

with r1 = r3 = − 1
2r2 = k1/bχ

(
c22 − κ1/bχc1c3

)
, r4 = 0. Let ΩT := Ω × (0, T0).
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Model B: Let c = (c2, c3, c4) and drop Equation (1) and reaction terms ri.
Choose χ ∈ BV (Ω, {0, 1}).

∂tci = div
( 4∑

j=2

Lij∇µj

)
, i = 2, 3, 4,(5)

µi = χ
∂f1

∂ci
(c) + (1 − χ)

∂f2

∂ci
(c), i = 2, 3, 4,(6)

F (c, χ) = min
χ̃
F (c, χ̃)(7)

where

F (c, χ) =

∫

Ω

γ|∇χ| +

∫

Ω

(χf1(c) + (1 − χ)f2(c))

and f l are the ab-initio approximations of the free energy density fl.

Model A is an analytic model, Model B is the basis for ab-initio computations.

Theorem (Global existence result). Under suitable growth conditions on fl

there exists a weak solution (c, µ, χ) of System (1)-(4) such that

(i) c ∈ C0, 1
4 ([0, T0]; L2(Ω; R4)),

(ii) ∂tc ∈ L2(0, T0; (H1
0 (Ω; R4))′),

(iii) χ ∈ C0, 1
2 ([0, T0]; L2(Ω)),

(iv) ∂tχ ∈ L2(0, T0; (H1
0 (Ω))′),

(v) there exists a q > 1 such that ln cj ∈ Lq(ΩT ) for 1 ≤ j ≤ 4,
lnχ, ln(1 − χ) ∈ L2(ΩT ) and in particular 0 < cj , χ < 1 a.e.

The solutions to Model B are in general not unique because of a non-uniqueness
in χ. Uniqueness to Model A can be shown by an integration in time method.

The correct formula for the reaction terms ri as functions of χ and c as shown
above is derived by estimating the system enthalpy. This is deeply connected to
the validation of the second law of thermodynamics for the model(s).

For the computation of the physically correct fl, the harmonic approximation
is used. Before the start of finite element computations, huge data basis are
filled with values for f1(c) and f2(c). As in general many atomistic configurations
represent the same concentration vector, each entry in the data base is the average
over many atomistic computations.

For some configurations, the results of the harmonic approximation are com-
pared with molecular dynamics simulations and it is shown that the neglection of
the vibrational part of F can have a significant impact on the results.

For the computation of the elastic constants of chalcopyrite and for further
validation, some quantum mechanical computations are done.

The finite element computations show best results if a stochastic term is added
to the thermodynamical driving force.

Remark: As the place in this short abstract is very limited, the interested reader
is referred to [1].
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Stability of interfaces and stochastic dynamics in the regime of partial
wetting

Thierry Bodineau

(joint work with Dmitry Ioffe)

The phenomenological theory of equilibrated crystals dates back at least to the
beginning of the century. Suppose that two different thermodynamic phases (say
a crystal and its vapor) coexist at a certain temperature T . Assuming that the
whole system is in equilibrium, in particular that the volume v of the crystalline
phase is well defined, what could be said about the region this phase occupies?
The phase regions are quantified by the value of the free energy of the crystal-
vapor interface, or by the total surface tension between the crystal and the vapor.
Equilibrium shapes correspond, in this way, to the regions of minimal interfacial
energy and therefore lead to an isoperimetric-type problem known as the Wulff
isoperimetric problem.

A lot of efforts have been devoted to the understanding of the phase coexistence
mechanisms starting from a particle system with microscopic interactions. In par-
ticular the Wulff construction for the two-dimensional Ising model is by now very
well understood (see for example [9, 16, 12, 13, 14, 17, 3]). In dimension three and
more, a different approach was devised which provides a weaker characterization of
phase segregation (see for example [1, 2, 18, 7, 8, 4, 5]). In particular the interface
structure in higher dimension is far from being understood.

There is also a strong interplay between the equilibrium and dynamical prop-
erties of particle systems. We refer to the lecture notes by Martinelli [15] and
Guionnet, Zegarlinski [11] for a survey on this issue. In the phase transition
regime, the slow relaxation of particle systems is due to the slow motion of the
interfaces. The slowdown of the dynamics can be related to the behavior of the
spectral gap of the dynamics as number of spins in the system increases. On the
other hand, the spectral gap can be obtained in terms of a variational formula
which involves only the equilibrium Gibbs measure.

The topic of this talk is to explain how the equilibrium results on phase coexis-
tence in dimension larger or equal to three can be used to derive some properties
of the Glauber dynamics. In particular, we show that the spectral gap of the Ising
model in the domain {−N, . . . , N}d with free boundary conditions vanishes like
exp(−cNd−1). This extends to higher dimensions previous results by Martinelli
[15] on the spectral gap of the two-dimensional Glauber dynamics. This result is
related to the stability property with respect to the Hausdorff distance of a coarse
grained representation of the interface between the two pure phases of the Ising
model. Thus, a key ingredient to characterize the spectral gap was to derive more
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precise controls on the interface structure. We also prove that the metastable be-
havior can be understood in terms of the wetting transition [10, 6]. This implies
that the metastability threshold depends only on equilibrium quantities.
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Nucleation in Kawasaki dynamics

Anton Bovier

(joint work with F.R. Nardi, W.Th.F. den Hollander)

We study the metastable behavior of the lattice gas in two and three dimensions
subject to Kawasaki dynamics at low temperature and low density. Particles live
on a finite box, hop between nearest-neighbor sites, have an attractive interaction
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when they sit next to each other, and are created, respectively, annihilated at
the boundary of the box in a way that reflects an infinite gas reservoir. We are
interested in how the system nucleates, i.e., how it reaches a full box when it starts
from an empty box. Our goal is to improve on earlier work by combining a detailed
analysis of the energy landscape for the dynamics with the potential theoretic
approach to metastability that was developed in Bovier, Eckhoff, Gayrard, and
Klein [3] and further exposed in Bovier [1].

Our main theorems sharpen those obtained by den Hollander, Olivieri, and
Scoppola [7] in two dimensions and by den Hollander, Nardi, Olivieri, and Scoppola
[6] in three dimensions. In particular, in two dimensions we identify the full
geometry of the set of critical droplets, compute the average nucleation time up
to a multiplicative factor that tends to one in the limit of low temperature and
low density, express the proportionality constant in terms of certain capacities
associated with simple random walk, and compute the asymptotic behavior of this
constant as the system size tends to infinity. In three dimensions, we obtain similar
results but with less control over the geometry and the constant.

Our results are comparable with those derived by Bovier and Manzo [5] for the
Ising model on a finite box in two and three dimensions with periodic boundary
conditions subject to Glauber dynamics at low temperature. This work sharpened
earlier results by Neves and Schonmann [9] in two dimensions and by Ben Arous
and Cerf [2] in three dimensions.

Kawasaki differs from Glauber in that it is a conservative dynamics : particles
are conserved in the interior of the box. This creates a complication in control-
ling the growing and the shrinking of droplets, because particles have to travel
between the droplet and the boundary of the box. Moreover, it turns out that in
the metastable regime particles move along the border of a droplet more rapidly
than they arrive from the boundary of the box. This leads to a shape of the crit-
ical droplet that is more complicated than the one for Ising spins under Glauber
dynamics. This complexity needs to be handled in order to obtain the sharp
asymptotics. For a critical comparison of Glauber and Kawasaki we refer to den
Hollander [8]. Nonetheless, the basic approach of [3] can be made to work rather
nicely and provides very satisfactory results. In particular, it allows to represent
the mean nucleation time up to multiplicative errors that tend to one as β ↑ ∞
as the usual Kramer exponential factor eβΓ times a volume dependent prefactor
of the form K ln | L|/|Λ| (in d = 2, resp., K/|Λ|, where the constants K can be
interpretated in terms of the local geometry of the critical droplets and a capacity
related to simple random walk. In d = 2, the constant can be computed explicitely
in the limit of volumes.

Details can be found in [4].
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A superfluidity theory for the non-dilute Bose gas

Jean-Bernard Bru

(joint work with S. Adams)

1. Let a homogeneous gas of n spinless bosons with mass m be enclosed in a cubic
box Λ ⊂ R3 of volume V ≡ |Λ| = L3. The one-particle energy spectrum is then

εk ≡ ~2k2/2m and, using periodic boundary conditions, Λ∗ ≡
(

2π
L Z
)3 ⊂ R3 is the

set of wave vectors.
The considered system is non-dilute and with interactions defined via a (real)
two-body soft potential ϕ (x) = ϕ (‖x‖) ∈ L1

(
R

3
)
. Note that its (real) Fourier

transformation satisfies: λ0 > 0 and 0 ≤ λk = λ−k ≤ λ0 for k ∈ R3. These condi-
tions may be relaxed in our final model, see [1]. Let {a∗k, ak} be the usual boson

creation/annihilation operators in the one-particle state ψk (x) = V − 1
2 eikx, k ∈ Λ∗,

x ∈ Λ, acting on the usual boson Fock space.

2. It is clear that, in various respects, the Bogoliubov theory [2] is inappropriate
as the model of superfluidity for non-dilute systems as liquid Helium 4 [3, 4, 5]. To
get interesting results on non-dilute gases for any temperatures and densities, we
follow the method mainly explained in [5]. Indeed, the most important terms in
the corresponding Hamiltonian with the full interaction should be those in which
at least two operators a∗0, a0 appear, as Bogoliubov originally pointed it out [2].
Actually, this theory and the Bogoliubov one have behind them the fundamental
hypothesis originally given by Fritz London [6] about existence in the system of
a Bose condensation in the zero-mode. However, in contrast with the Bogoliubov
theory, the truncation is here partial, in the sense that we do not take into account
the Mean-Field interaction since it is a constant in the canonical ensemble.
Within the framework of the canonical ensemble, this procedure then implies the
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new Hamiltonian:

HΛ ≡
∑

k∈Λ∗

εka
∗
kak +

1

2V

∑

k∈Λ∗\{0}
λka

∗
0a0

(
a∗kak + a∗−ka−k

)

+
1

2V

∑

k∈Λ∗\{0}
λk

(
a∗ka

∗
−ka

2
0 + a∗

2

0 aka−k

)
.

This Bose gas is quartic, non-diagonal, and far from the ideal or dilute gas. It is
coherently solved in the canonical ensemble [1].

3. Actually, at any temperatures T ≥ 0 below a critical temperature Tc, the corre-
sponding Bose gas is a mixture of particles inside and outside the Bose condensate,
i.e., there is a depletion of the Bose condensate. Even at zero-temperature, our
interpretation is that two Bose subsystems coexist: the Bose condensate and a
second system, denoted here as the Bogoliubov system. This comes from a non-
diagonal interaction, which, in particular, implies an effective attraction between
bosons in the zero kinetic energy state, i.e. in the Bose condensate. In con-
trast with the (conventional) Bose-Einstein condensation, these bosons pair up
via the Bogoliubov system to form “Cooper-type pairs” or interacting (virtual)
pair of particles. This Bose condensation constituted by Cooper-type pairs is non-
conventional, i.e. turned on by the Bose distribution but completely transformed
by interaction phenomena.

The coherency due to the presence of the Bose condensation is not enough
to make the Perfect Bose Gas superfluid, see discussions in [2]. The spectrum of
elementary excitations has to be collective. In this theory, the particles outside the
Bose condensate (the Bogoliubov system) follow a new distribution, different from
the Bose distribution, which we call the Bogoliubov distribution. The Bogoliubov
system coming from the depletion of the Bose condensate is a model of “quasi-
particles” or linked pair of particles with the Landau-type excitation spectrum.
Therefore, following Landau’s criterion of superfluidity [7] it is a superfluid gas.
The corresponding “quasi-particles” are created from two particles respectively of
momenta p and −p (p 6= 0) through the Bose condensate (p = 0) combined with
phenomena of interaction.

Note that we can also distinguish a particle system I inside the Bogoliubov
system which density explicitly depends on the temperature T and the remaining
system II together with the Bose condensate. In fact, it is conjectured in [1] that
the system I is the normal liquid, which is the carrier of the total entropy of the
system. The system II is then the superfluid liquid (i.e. with no viscosity).

The theoretical critical temperature where the Landau-type excitation spec-
trum holds equals Tc ≈ 3.14 K. For the liquid 4He, the superfluid liquid already
disappears at Tλ = 2.17 K, but the Henshaw-Woods spectrum1[8] does not change

drastically when the temperature crosses Tλ: there is a temperature T̃λ where the

Landau-type excitation spectrum persists for Tλ < T < T̃λ.

1measure of the excitations spectrum in liquid 4He by a weak-inelastic neutron scattering
(1961).
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4. Before finishing this summary, we recall that this analysis is based on a trun-
cation of the full interacting Bose gas in the canonical ensemble. This unique
truncation hypothesis is still not proven, but it is shown [1] that the theory is, at
least, self-consistent. Note that the proofs are technically based on three papers
[9, 10]. We use the “superstabilization” method [9] to analyze the correspond-
ing model in the canonical ensemble from the grand-canonical one. This study is
possible since the exact solution of the (non-diagonal) AVZ-Hamiltonian [3], also
called the superstable Bogoliubov Hamiltonian, is found in the grand-canonical
ensemble by the paper [10].

Acknowledgment: For his participation on this Workshop the author wants to ex-
press his gratitude to E. Presutti.
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Graded cluster expansion for renormalized systems

Emilio N.M. Cirillo

(joint work with L. Bertini, E. Olivieri)

We have analyzed the Block Averaging Transformation applied to the two–
dimensional Ising model in the uniqueness region. We studied the Gibbs property
of the renormalized measure and the convergence of renormalized potential under
iteration of the map. It turns out that for any temperature T higher than the
critical one Tc the renormalized measure is strongly Gibbsian [1], whereas for
T < Tc we have only weak Gibbsianity [4]. We note that in this region it has been
proven that, for a peculiar choice of the parameters, the renormalized measure is
not gibbsian [5]. Accordingly, we have convergence of the renormalized potential in
a strong sense for T > Tc and in a weak sense for T < Tc. Since we are arbitrarily
close to the coexistence region we have a diverging characteristic length of the
system: the correlation length or the critical length for metastability, or both.
Thus, to perturbatively treat the problem we use a scale–adapted expansion [7, 8].
The more delicate case is T < Tc where we have a situation similar to that of a



1602 Oberwolfach Report 30/2004

disordered system in the presence of a Griffiths’ singularity namely, the lattice is
made of a good region, in which the system is weakly coupled, and a bad region
where it is not. In this case we use a graded cluster expansion whose minimal
scale length is diverging when approaching the coexistence line.

We study the problem in the context of systems with no random disorder in
the interactions; however, we suppose deterministically possible to analyze the
bad interactions on suitable increasing scale lenghts [3]. We treat iteratively the
regions of increasing badness and prove convergence of the expansion on the basis of
suitable assumptions on the potential in the good region and sufficient “sparseness”
of bad regions.

The assumption that the system is weakly coupled on the the good part of the
lattice is formalized as follows. Let ∆ be a finite subset of the good region and
Z∆(σ) be the partition function in ∆ with boundary condition σ. We assume

logZ∆(σ) =
∑

X∩∆ 6=∅
VX,∆(σ)

where the effective potential VX,∆ have a suitable decay property w.r.t. X uni-
formly in ∆ and σ.

The expression above can be obtained via cluster expansion in the weak coupling
(high temperature and/or small activity) region but it also holds in the more
general situation of the scale–adapted cluster expansion discussed before. In the
latter case it holds provided the volume ∆ is a disjoint union of cubes whose side
length equals the scale L of the expansion.

The main result of the graded cluster expansion [3], inspired by the techniques
in [6], concerns an expression, similar to the one above, of the logarithm of the
partition function on a generic finite subset of the whole lattice, possibly intersect-
ing its bad region. Its characteristic feature, with respect to a usual low activity
expansion, is that here polymers are geometrical objects living on arbitrarily large
scale. More precisely, for each finite subset of the lattice Λ and boundary condition
σ we have the following totally convergent expansion

logZΛ(σ) =
∑

X∩Λ6=∅
[ΨX,Λ(σ) + ΦX,Λ(σ)]

where ΨX,Λ and ΦX,Λ depend on σ inside X ∩ Λc. The Ψ’s are short range in
the sense that for each site x of the lattice there exists a positive rx such that
ΨX,Λ = 0 if the diameter of X exceeds rx. On the other hand the Φ’s are long
range but uniformly bounded in the sense that there exists a positive c such that

sup
x

∑

X∋x

sup
σ

|ΦX,Λ(σ)| ≤ c

As a final remark it is worth noting that by using the proven expansion and
results in [2] it is possible to deduce the exponential decay of correlations of local
functions.
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Two-dimensional structures in ferroelastic domain walls

Sergio Conti

The structure of ferroelastic materials can be studied within the framework of
continuum mechanics via models of the type

E[u] =

∫

Ω

Wb(∇u) + ε2|∇2u|2dx+

∫

∂Ω

Ws(∇u)dHn−1

where u : Ω ⊂ Rn → Rn, Wb : Rn×n → R is a double-well potential (bulk
energy), and Ws represents the surface energy, i.e., the correction to Wb which
is needed close to free boundaries. For small ε one expects E[u] to reduce to a
sharp-interface model, whose minimizers depend only on one variable (and this
can indeed be proven if n = 2, see [3]). We address deviations from the one-
dimensional minimizers of the limiting sharp-interface model which arise for small
but finite ε. We assume all over that n = 2 and use geometrically linear elasticity
for simplicity; most results can be extended to nonlinear elasticity and n = 3
without qualitative changes.

We start by studying the surface structure of a domain wall, namely, the modi-
fications that occur in the vicinity of a free boundary. For definiteness, we assume
that

W (∇u) =
1

2
C11

(
u2

x,x + u2
y,y

)
+ C12ux,xuy,y +

1

8
C44

(
e2 − 1

)2

where e = ux,y +uy,x is the ferroelastic order parameter. The surface energy term
takes the form

Ws(∇u) =
1

2
γεC44(ux,y + uy,x)2 .
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This expression, first used in [2], is heuristically motivated by the experimentally
known fact that the order parameter is typically reduced in the presence of free
boundaries.

In a first work in collaboration with E. Salje [2] a similar model was studied
by means of an expansion on a finite set of basis functions, which is feasible if the
phase distribution is a priori known. This is appropriate for example if the domain
wall is orthogonal to the free surface. Numerical results showed a double peak in
the surface structure of the order parameter, which is related to the chemical
reactivity of the system and hence can be compared to experiments on selective
doping. The numerical results turned out to be in good agreement with atomistic
computations by Novak and Salje [7, 8]

In subsequent work in collaboration with U. Weikard [4] the model above was
studied with adaptive finite elements, based on the visualization library GRAPE
developed in the SFB 256 in Bonn. This permits to study the general case, where
the wall is not orthogonal to the free surface and the phase distribution is a priori
unknown. Our results show a significant bending of the domain wall towards the
surface. We understand this by means of a simple one-dimensional approximate
model. The model is based on the interplay between the elastic energy generated
by the incompatibility and the line tension of the interface, and gives results in
good agreement with the finite element simulations.

In a second part of this talk possible complex structures in domain walls away
from interfaces have been presented. In particular, in joint work with B. Schweizer
[3] it was shown that for bulk energies of the form

Wb(∇u) =
(
1 − (ux,y + uy,x − 1)2 + αux,xuy,y

)2
+ u2

x,x + u2
y,y ,

depending on the values of the parameter α, the one-dimensional profile is not
optimal, and structures tangential to the interface necessarily develop. Finite-
element simulations based on the same code discussed above show that a periodic
structure develops tangential to the domain wall [5], which is reminiscent of cross-
tie walls in ferromagnetic thin films [6, 1].
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Tunnelling in non local evolution equations

Anna De Masi

(joint work with G. Bellettini and E. Presutti)

Tunnelling is a phenomenon which describes transitions between two stable
states of a system. The origin of the phenomenon is ascribed to stochastic fluctua-
tions which are either due to “intrinsic randomness” in the system, or to “random
external forces” or to both. In all cases, one is interested in the waiting time for
the tunnelling to take place, the nature of the forces which drive the tunnelling
and the specific pattern of the tunnelling event.

As a mathematical model of the phenomenon, we consider a non local evolution
equation which has been introduced in connection with the analysis of Ising sys-
tems with Kac potentials, [3]. Our setting is one dimensional, and the free energy
associated to this model in the interval [−L,L], L > 1, is:

(1) FL(m) =

∫ L

−L

φβ(m)dx +
1

4

∫ L

−L

∫ L

−L

Jneum(x, y)(m(x) −m(y))2dxdy,

where, given J(x, y), (x, y) ∈ R ×R, a smooth, symmetric, translational invariant
probability kernel supported by |y − x| ≤ 1, by Jneum we denote the kernel with
reflections at ±L. Furthermore

(2) φβ(m) = φ̃β(m) − min
|s|≤1

φ̃β(s), φ̃β(m) = −m
2

2
− 1

β
S(m)

(3) S(m) = −1 −m

2
log

1 −m

2
− 1 +m

2
log

1 +m

2

The evolution equation for u = u(x, t), |x| ≤ L, L > 1, t ≥ 0 is the gradient flow,
namely, (ut below is the t-derivative of u):

(4) ut = fL(u), fL(u) = −δFL(u)

δu

Neumann boundary conditions simplify the analysis, as, for instance, the station-
ary, space homogeneous solutions of (4) turn out to be independent of L. These
are denoted by ±mβ , with mβ > 0 solving the mean field equation

(5) mβ = tanh{βmβ}, (β > 1)

It can be seen that ±mβ are locally stable, so that they play here the role of
pure phases and the tunnelling events which occur within a time τ > 0 are then
represented by the set U±

τ of orbits u(·, t), t ∈ [0, τ ] such that u(·, 0) = −mβ ,
u(·, τ) = mβ . Due to the stationarity of ±mβ, no element in U±

τ can satisfy (4)
and therefore other forces must enter into the game. Their choice can be related
to a Lagrangian action in the following way. Call b = b(x, t), |x| ≤ L, 0 ≤ t ≤ τ ,
an “external force”, and consider the corresponding evolution equation

(6) ut = fL(u) + b
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We are of course only interested in forces b able to produce orbits in U±
τ . To select

among them we introduce an action functional

(7) Iτ (u) =
1

4

∫ τ

0

∫ L

−L

b2 dx dt ≡ 1

4

∫ τ

0

∫ L

−L

(
ut − fL(u(·, t))

)2
dx dt

which is interpreted as “the cost” of the force field b which produces the orbit u.
In other words, Iτ (u) is the penalty assigned to the orbit u; thinking of b as an
electric field, (7) is the dissipation due to a constant resistivity, whose value in (7)
is set equal to 1/4.

In the above setting, it looks natural to ascribe the actual tunnelling event to
the force field which has the minimal cost: this leads to the variational problem

(8) P± := inf
τ>0

inf
u∈U±

τ

Iτ (u)

The variational problem with τ > 0 fixed, is exactly the Euler Lagrange variational
problem with Lagrangian L(u, ut) = (ut − fL(u))2/4. The corresponding Euler
Lagrange equations are,

(9) bt = −bf ′
L(u)

which we may regard as an equation on b with u determined by b through the
equation (6). (9) is then the equation for the optimal force needed for tunnelling.
In statistical mechanics, the forces b are random and their probability is a datum
of the problem: thus one knows, in principle, the probability of any possible force
field b in (6) and in particular of those which give rise to a tunnelling. These
probabilities are expected to be very small, exponentially small with an exponent
proportional to −ǫ−d (d the space dimension, here d = 1), ǫ > 0 a small parameter
which represents the ratio between microscopic and macroscopic lengths. The
proportionality coefficient is called the “rate function of large deviation” and we
interpret our Iτ (u) as such a rate function. Thus we are supposing that the
probability of observing u goes like exp{−ǫ−dIτ (u)} and since the time to wait
before observing an event is proportional to the inverse of its probability, the
expected time T for tunnelling, will go like exp{ǫ−dP±}. Thus the main interest
in statistical mechanics is to estimate the proportionality coefficient P±, which we
do in following theorem.

Theorem. For any L large enough,

(10) inf
τ>0

inf
u∈Uτ

Iτ (u) = FL(m̂L)

m̂L is an antisymmetric function stationary solution of (4), namely it solves

(11) m̂L(x) = tanh{βJneum ∗ m̂L(x)}, |x| ≤ L

The next problem is to understand how the tunnelling proceeds once it starts
and this is described by the minimizing sequences which realize P±. This problem
in our context has a quite complete and detailed answer. In fact, a much more
refined analysis of (4), shows that there are two invariant, one dimensional man-
ifolds M±, connecting m̂L to −mβ and to mβ , see (5). This statement has been
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proved in [2], see also [4], for a dynamics which is closely related to the one we are
considering, and we show that the results extend to the present case.

We prove that all the minimizing sequence are very similar to each other, fol-
lowing (4) in some parts of the tunnelling orbit and its time reversal, in other
parts. Roughly speaking, the solution to (8) is given by an orbit which is made
by patching together the time reversed of v(−) ∈ M− and v(+) ∈ M+. While it
is well established that a minimizing sequence can be obtained by following the
reversed flow on the invariant manifolds, our result completes the picture by say-
ing that “this is in fact the only possible way”, as any other pattern would lead
to a larger penalty. The time for the tunnelling, once it starts, is dictated by the
flow along the invariant manifolds, except for the motion close to its endpoints,
which can be reached only after an infinite time, if moving all the way along the
invariant manifolds. To keep the time τ finite, we then need to depart from the
manifolds, with “shortcuts” close to the endpoints.

The relation between variational problems and large deviations is well estab-
lished, see the classical reference text by Freidlin and Wentzel, [6]. The application
of the theory to tunnelling in the spirit outlined above has been first and beau-
tifully carried out by Faris and Jona-Lasinio, [5], in the context of the stochastic
Allen Cahn equation ut = uxx +φ(u) +

√
ǫb for a particular choice of force φ, with

b a standard white noise in space-time and with Dirichlet boundary conditions at
±L. The rate function in such cases has a structure similar to (7) and we in fact
use many of the ideas contained in [5]. Their adaptation to (4) is from one side
simpler, because we only look at the variational problem and avoid all questions
concerning probabilities, but, on the other side, it brings in new difficulties, as we
miss a characterization of the stationary solutions of the deterministic problem
(i.e. without b) which are instead easy in the case uxx + φ(u) = 0.
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Large-time behavior for Hamilton-Jacobi equations forced by additive
noise

Nicolas Dirr

(joint work with P.E. Souganidis)

We are interested in the long-time behavior of solutions to equations of the form

(1) du − (trA(x)D2u−H(Du, x))dt+ dW (x, t) = 0 in R
n × (0,∞) ,

where both A(x) and H(x, p) are Lipschitz-continuous and periodic with respect to
x. Moreover, we assume that there exists a periodic, Lipschitz-continuous matrix-
valued function σ such that A = σσT .

The random noise has the form dW (x, t) =
∑M

i=1 Fi(x)dWi(t), where the
Wi are Brownian motions and Fi ∈ C2(Rn) is periodic in x. We use the property
that the Brownian motion has almost surely continuous sample path, independent
increments, and that the event {supt∈[0,l] |W (t) −W (0)| < ǫ } has positive prob-
ability for all ǫ > 0. In the view of this, our analysis extends to other types of
random forcing. Moreover, using discontinuous viscosity solutions, it is possible
to extend our analysis to equations driven by certain jump processes, like, for
example, kicking force.

Our results hold for all initial data and initial times and for all realizations of
the noise in a set of full measure.

We denote by C(T) the space of periodic in x continuous real valued functions
on [0, 1]n. For w ∈ C(T), we write |‖w|‖ = infc ‖w− c‖ . Moreover we denote
by SW,A(t, s)(u) the solution of (1) starting with initial datum u at s. As the
semigroup commmutes with adding a constant to u, the norm introduced above is
the appropriate notion of convergence.
S0,A denotes the solution of the deterministic version of (1), i.e. the solution

of the equation

(2) vt − trA(x)D2u+H(Du, x) = 0 in R
n × (0,∞) .

Our main result can be summarized in the following way. Let H(x, p) be
bounded from below, superlinear in p, and such that there exists an increasing
function Φ such that, for some δ > 0, Φ(r)r−(1+δ) → ∞ as r → ∞, and

p ·DpH(p, x) −H(p, x) ≥ Φ(|p|)
for all (p, x) with |p| sufficiently large. This is some form of asymptotic convexity
of the level sets of H. Moreover assume that (2) has a unique up to constants
periodic in space and global in time attracting solution, i.e. there exist a unique
λ ∈ R and a unique up to constants U ∈ C(T), which depends on A and H , such
that, for all v ∈ C(T) and t0 ∈ R, there exists c ∈ R such that

lim
N→∞

sup
x∈T

∣∣S0,A(t0 +N, t0)(v) − (U + c) − λN
∣∣ = 0.

Then the stochastic Hamilton-Jacobi equation (1) also has a unique up to con-
stants periodic in x and global in time attracting solution, i.e. there exists a unique
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up to constants solution uinv(·, ·, ω) of (1) such that for any v ∈ C(T), s ∈ R,

lim
t→∞

|‖uA
inv(·, t, ω) − SW,A(t, s)(v)(·)|‖ = 0 .

As A→ 0, these attracting solutions converge to attracting solutions of the first-
order equation. Indeed, assume that A = ǫÃ is uniformly elliptic. If uǫ

inv(·, ·, ω)
and uinv

0(·, ·, ω) are the attracting solutions of (1) corresponding to ǫ > 0 and
ǫ = 0 respectively, then, for any [a, b],

lim
t→∞

sup
[a,b]

|‖uǫ
inv(·, t, ω) − u0

inv(·, t, ω)|‖ = 0 .

The problem under consideration here is a ”toy” example for far more com-
plex models in, for example, fluid mechanics (stochastically forced Navier-Stokes
equation ) and phase transitions and growth processes (the so-called KPZ (Kadar-
Parisi-Zhang) equation).

Another example to which our results apply is the stochastic Burger’s equation
with additive noise, because if u solves the stochastic Hamilton-Jacobi equation,
then v = ux solves Burger’s equation. The unique up to constants random attrac-
tor of the Hamilton-Jacobi equation yields a unique invariant measure for Burger’s
equation.

Invariant measures of the stochastic Burgers equation and other closely related
equations have been the object of extensive study. We refer to E, Khanin, Mazel
and Sinai [4], Iturriaga and Khanin [7], Gomes, Iturriaga, Khanin and Padilla [6]
for Burger’s equation.

The large-time behavior of solutions (2) depends strongly on whether A ≡ 0 or
uniformly elliptic, while very little is known in the degenerate case. When A = 0
and H is periodic in time, it was shown by Barles and Souganidis [1] (see also
Fathi and Mather [5]) that there are no global attracting solutions. Phenomena
like period doubling can occur. Our result shows that this cannot happen if the
time dependence of the coefficients is very irregular, like a path of the Brownian
motion.

The proofs in our paper are based on general arguments from the theory of
viscosity solutions. This allows to consider general Hamiltonians H and matrices
A. In view of the generality of our assumptions, this note extends previous works
of Iturriaga and Khanin [7], E, Khanin, Mazel and Sinai [4] and Gomes, Iturriaga,
Khanin and Padilla [6], which consider strictly convex Hamiltonians. For such
Hamiltonians the solution of (1) can be expressed as the value function of a control
problem. The asymptotic behavior of the solutions then reduces to the study of
the corresponding controlled stochastic and ordinary differential equations.

For the “correct” interpretation of solutions of (1) we use the ideas of the theory
of fully nonlinear stochastic pde developed by Lions and Souganidis in [9], [10] and
[11], which applies to more general equations. This allows to consider pathwise
solutions which can be expressed, up to a simple transformation, as solutions of a
pde with random coefficients. For this, we need the equation

(3) vt − trA(x)D2v +H(x,Dv +DW (x, t, t0)) = trA(x)D2W (x, t, t0).
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A function u is a viscosity solution of (1) on T × [a, b], if the function

v(x, t, ω) = u(x, t, ω) −
∫ t

a

dW (x, s)

is a viscosity solution of (3) for a < t < b.
The crucial step in our proof is to show that, after a time of order one, the

solutions of (1) become Lipschitz continuous with respect to x with a Lipschitz
constant which depends on the realization of the noise, but is independent of the
initial datum.

When the Hamiltonian is super-linear but not sub-quadratic and the equation is
of second order, the estimate is delicate. In this case we have to obtain the Lipschitz
bound without using a-priori L∞-bounds for nonnegative solutions, which may not
exist.
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On Phase Diagrams and Diffusional Problems in the Presence of
Surface Tension and Multiaxial Stresses

Wolfgang Dreyer

(joint work with Frank Duderstadt)

1. Introduction

Phase transitions in solids are usually strongly influenced by surface tension
and multiaxial stresses which give rise to nonzero stress deviators. A case at hand
regards the nucleation of liquid droplets in semi-insulating GaAs where deviatoric
stresses result from the liquid/solid volume misfit. In turn, the nucleation barrier
is determined by surface tension and the stress deviator at the interface. The
latter quantity may reduce the barrier to zero.

The talk adresses two problems: 1. The calculation of phase diagrams relies
on the determination of the extrema of the free energy of the considered system.
The usual standard phase diagrams from the existing literature do not take into
account surface tension and deviatoric stresses, and they contain exclusively the
minima of the free energy. We calculate non-standard phase diagrams for the
problem at hand, where the liquid phase consists of small droplets so that surface
tension and deviatoric stresses become important phenomena. Furthermore we
include the maxima of the free energy, because these refer to the size of critical
droplets. 2. The evolution of liquid droplets in semi-insulating GaAs is due to
diffusional processes in the vicinity of the droplet. The diffusion flux results from
a competition of chemical and mechanical driving forces, which may imply various
unexpected conditions whereupon a droplet may grow or shrink. However, due to
lack of space, we only consider the first problem in this report.

The quantity of central importance for the description of all these phenomena is
the chemical potential. Its calculation in the presence of mechanical stresses is one
of the subjects of this study. We determine the chemical potential in the framework
of the St.Venant–Kirchhoff law, which gives an appropriate stress/strain relation
for many solids in the small strain regime, Subtle problems regarding the chemical
potential appear in the limit where the St.Venant–Kirchhoff law is approximated
by the well known Hooke law.

2. Basic variables

The thermodynamic description of semi-insulating GaAs relies on three fcc sub-
lattices, denoted by α, β, γ, with equal densities of lattice sites. There are three dif-
ferent species on the sublattices, viz. Ga, As and vacancies, V , and when they are
found on different sublattices, the species are considered as different constituents.
We indicate this fact by the notation, Gaα, Asα, Vα, Asβ , Vβ , Asγ , Vγ , and we have
thus 7 constituents with mole densities na, a ∈ {Gaα, Asα, Vα, Asβ, Vβ , Asγ , Vγ}.
These variables are supplemented by the displacement, ui, so that there are 7+3
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variables in the solid phase. The variables in the liquid phase are the 2 mole den-
sities nGaL

and nAsL
. The details of the constitution of GaAs can be found in

[2].

3. Description of deformation

Let be X = (X i) = (X1, X2, X3) the location of a material point of the solid
in the reference state, and x = (xi) = (x1, x2, x3) its location at time t. The
function x = (χi(t,X)) gives the motion of X and U i(t,X) = χi(t,X)−X i is the
displacement field. The deformation gradient is defined by F ij = ∂χi(t,X)/∂Xj,
J = det(F ij) is the Jacobian and the deformation is described by the right Cauchy
Green tensor Cij = FmiFmj . The deformation of a solid can be decomposed into
changes of its volume and of its shape. Volume changes are given by J = ρR/ρ,
where ρR and ρ are the mass densities in the reference state and in the actual
configuration, whereas changes of the shape are described by cij = J−2/3Cij with
det(cij) = 1.

4. Constitutive model

The general constitutive model for GaAs starts from a free energy density ρψ =
ρψ(T, n1, n2, ..., c

ij), which allows the calculation of the central quantities of the
thermodynamics of GaAs. These are the chemical potentials, µa, the Cauchy
stress, σij , the pressure, p = −σkk/3, and the second Piola - Kirchhoff stress, tij .
according to, see [2] for details,

µa =
∂ρψ

∂na
, p = −ρψ +

∑

a=1

µana, tij = −pJ(
−1

C )ij + 2J1/3 ∂ρψ

∂ct〈i
Cs〉t(

−1

C )sj .

The free energy density and the chemical potentials are decomposed as ρψ =
ρψchem + ρψmech and µa = µchem

a + µmech
a , respectively. We define the indicated

mechanical contributions so that they are zero if the body is exclusively under
homogenous hydrostatic pressure. For an illustration we give the mechanical part
of the chemical potentials in the solid phase that results from the Kirchhoff -
St. Venant law for the stress. We refer the reader to [2] regarding the chemical
contributions and the corresponding representations in the liquid phase.

µmech
a (T, ̺, c) = − Ma

24ρ̄S(T )
(J2/3cij + 3δij)Kijkl(J2/3ckl − δkl),

This representation differs from the existing corresponding representations of the
literature, see for example Landau/Lifschitz [4]. The main difference is the appear-
ance of linear terms in the strain (Cij − δij)/2, which are absent in the literature.

5. Calculation of a non-standard phase diagram

We calculate the phase diagram for a GaAs solid, which contains a single spheri-
cal droplet with radius rI . To this end we consider isothermal processes at constant
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outer pressure, and then the first and second laws of thermodynamics imply

dA
dt

≤ 0 with A := Ψ + p0V.

The phase diagram relies on the extrema of the available free energy A = ΨS +
ΨL+σ4πrI

2+p0V . There are five side conditions: (i) conservation of total mass of
Ga and As, respectively, (ii) equal numbers of lattice sites of the three sublattices,
(iii) constant number of atoms during the transition of a piece of solid into a liquid
droplet.

Figure 1

For given radius rI there are nine unknowns: seven mole densities in the solid
and two mole densities in the liquid. They are determined by the four side con-
ditions (i) and (ii) and the necessary conditions for the minima of A yield five
equations that read

µAsβ
− µAsγ

− µVβ
+ µVγ

= 0

µAsα
− µAsγ

− µVα
+ µVγ

= 0

µVα
+ µVβ

+ µVγ
= 0

µGaα
− µGaL

− µVα
− MGa

ρS
σ〈ik〉νi

Iν
k
I = 0

µAsγ
− µAsL

− µVγ
− MAs

ρS
σ〈ik〉νi

Iν
k
I = 0

The deviatoric stress σ〈ik〉 follows from the solution of the mechanical problem of
a misfitting liquid droplet in a solid environment and contains the radius of the
droplet as a parameter, which, however, can be fixed by the side condition (iii).
For the details see [1] and [2].

There result standard and non-standard phase diagrams. The figure on the
left hand side shows the liquidus lines. The solid line represents the standard
liquidus line corresponding to the minima of A for the standard system, whereas
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the two dashed lines regard the non-standard system. The left part gives the stabil
equilibria and the right part corresponds to the maxima of A and gives the critical
radii. The figure on the right hand side shows the solidus lines. The standard
system is indicated again by the solid line, and the two dashed lines represent the
arsenic concentration of the solid for the stabil and unstabil equilibria, respectively.
Further details are found in [3].
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Random Homogenization for Liquid-Solid Phase Transitions with
Equiaxed Dendritic Microstructure

Christof Eck

Many solidification processes, for example in the casting of metals, exhibit a
dendritic microstructure of the phase interface, as schematically depicted in Fig. 1.
We consider the following phase field model for binary alloys:
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Figure 1. Columnar (left) and equiaxed (right) dendritic structures

∂tT + L∂tΦ −∇ · (K(Φ)∇T ) = 0

∂tc−∇ · (D1(Φ)∇c) −∇ · (D2(c,Φ)∇Φ) = 0

αξ2∂tΦ − ξ2∆Φ + p′(Φ) + q(∇Φ, T, c,Φ) = 0

(1)

The quantities there are temperature T , concentration c, phase field Φ, with Φ = 1
in liquid and Φ = −1 in solid, diffusivity constants K, D1, D2, half of the latent
heat L, kinetic coefficient α, constitutive parameter ξ, a double well potential p
and a function q related to the phase difference of a free energy or entropy.
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Using techniques from homogenization theory, we derive a two-scale model that
is suitable for a very small scale of equiaxed dendritic structures. The structures
are generated via initial conditions that have oscillations of a given scale ε,

u(0, x) = u0(x, x/ε) with u0 : Ω × Y → R for u = T, c,Φ,

with spacial domain Ω and periodicity cell Y of size 1. The data are scaled
according to Dj = ε2Dj,0, ξ = εξ0, α = ε−2α0 and q(∇Φ, · · · ) = q0(ε∇Φ, · · · ). For
locally periodic structures the two-scale model consists of a global heat equation

∂tT + L∂tΦ −∇ ·
(
K∗(Φ)∇T

)
= 0(2)

for T = T (t, x) with cell average Φ(t, x) =
∫

Y Φ(t, x, y) dy and effective heat con-
ductivity K∗(Φ), and of local microscopic problems

∂tc−∇y ·
(
D0,1(Φ)∇yc

)
−∇y ·

(
D0,2(c,Φ)∇yΦ

)
= 0

α0ξ
2
0∂tΦ − ξ20∆yΦ + p′(Φ) + q0(∇yΦ, T, c,Φ) = 0

(3)

for (c,Φ) = (c,Φ)(t, x, y). The microscopic problems describe the evolution of sin-
gle equiaxed crystals, they are solved for every point x ∈ Ω. The two-scale model
is rigorously justified by an estimate that compares the solution uε = uε(t, x),
u ∈ {T, c,Φ}, of the original problem of scale ε with macroscopic reconstructions
uε(t, x) = u(t, x, x/ε) of the solutions u = u(t, x, y) of the two-scale model:

∑

u=T,c,Φ

‖uε − uε‖L∞(It;L2(Ω)) ≤ Cε1/2

In a numerical discretization of the two-scale model the mesh size is decoupled
from the scale of the microstructure. The two-scale model is superior, if the mesh
size for the macroscopic problem is bigger than the scale of the microstructure.

The case of a non-periodic, random microstructure is modeled by a probabilistic
description of the initial conditions. Following the approach described in [4], the
initial conditions are given via realizations of random fields with respect to an
ergodic multi-dimensional system T on a probability space P;

u(0, x) = u0(x,T(x/ε)ω) with u : Ω × P → R for u ∈ {T, c,Φ}
with fixed ω ∈ P. The corresponding homogenized two-scale model consists of
the macroscopic heat equation (2) with the corresponding stochastic versions of
the effective heat conductivity K∗(Φ) and the expectation value Φ instead of the
cell average; and of microscopic problems whose solutions are random fields u =
u(t, x, ω), ω ∈ P. The latter can be formulated as partial differential equations
on RN for the realizations uω(t, x, y) = u(t, x,T(y)ω), u = c,Φ, of these random
fields. These equations are the same (3) as for the periodic case, but they are
solved on the full space RN . It is possible to derive an estimate for the difference
of the solutions uω,ε of the original problem with scale ε and choice ω ∈ P, and
the macroscopic reconstructions uω,ε(t, x) = u(t, x,T(x/ε)ω) for the solution of
the two-scale model. This difference converges to 0 for ε → 0, but there is no
information about the order of convergence.
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In a numerical discretization of the random two-scale model one may restrict
the microscopic problems to a finite domain, with suitable artificial boundary
conditions. A natural choice would be periodic boundary conditions, and then the
actual computation would be rather close to that for a periodic model.
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Surface diffusion driven by capillarity, stress and electromigration

Harald Garcke

(joint work with John Barrett and Robert Nürnberg)

The evolution of free surfaces driven by surface tension, mechanical stresses
and/or the effect of an electric field appears in many applications. This phe-
nomenon plays an important role in void migration in interconnects appearing in
microelectronic devices and in epitaxial growth of thin films.

In the talk a sharp interface model and a phase field model are presented to
model the above phenomenon. The sharp interface model is a fourth order geo-
metric evolution equation for the interface coupled to an elliptic system which has
to hold in the bulk. This system models mechanical equilibrium and determines
the electric potential. If we denote by E(u) the linear elastic strain, by W1(E) the
energy density and by φ the electric potential, the geometric evolution law is

V = ∇s ·Ds∇s(−σκ+W1(E(u)) + αφ)

where V is the normal velocity, ∇s is the surface gradient, ∇s· is the surface
divergence, Ds is a diffusion constant and σ is the surface energy density. For
the displacement u, the equations of linear elasticity have to hold and φ solves
the Laplace equation, where both φ and u have to attain appropriate boundary
conditions.

We present an asymptotic analysis relating the above geometric evolution equa-
tion to the phase field system

γ∂tc = ∇ · ( 8
πDsb(c)∇w),

w = σ 2
π (−γ∆c+ 1

γψ(c)) + 1
2d

′(c)C E(u) : E(u) + αφ

where

d(s) := c0 + 1
2 (1 − c0)(1 + s)
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and b(c) = 1 − c2. This system is a degenerate Cahn-Hilliard equation where c in
our context is an order parameter being 1 in the solid and −1 in the void. The
phase field system is, as in the case of the geometric evolution equation, coupled
to an elliptic system in a non-trivial way.

We prove an existence result for the full phase field model using energy and
entropy estimates and a perturbation argument giving higher integrability for the
gradient of the elliptic system. Existence of a solution is achieved by showing
convergence of a finite element method.

Finally we present several numerical simulations of the phase field model, show-
ing that the model recovers several experimental observed features.
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Macroscopic pulse evolution for a nonlinear oscillator chain

Johannes Giannoulis

(joint work with Alexander Mielke)

We consider the nonlinear oscillator chain

(1) ẍj = V ′(xj+1−xj) − V ′(xj−xj−1) −W ′(xj), j ∈ Z,

where the potentials V,W ∈ C5(R) are of the form

(2) V (d) :=
α1

2
d2+

α2

3
d3+

α3

4
d4+O(d5), W (x) :=

β1

2
x2+

β2

3
x3+

β3

4
x4+O(x5).

These are the equations of motion for the deviations xj(t) ∈ R from the rest
positions j ∈ Z of (a chain of) atoms with equal mass 1, at time t ≥ 0. V is
the potential for the nearest-neighbor interaction, and W is an external potential,
which might arise through embedding of the atomic chain in a background field.

The linearized system

ẍj = α1(xj+1−2xj+xj−1) − β1xj , j ∈ Z,

has the basic solutions xj(t) = ei(eωt+ϑj), where the wave number ϑ ∈ (−π, π] and
the frequency ω̃ have to satisfy the dispersion relation ω̃2 = 2α1(1− cosϑ) + β1 =:
ω2(ϑ). We assume min{β1, 4α1+β1} > 0 in order to obtain stability: ω2(ϑ) > 0
for all ϑ ∈ (−π, π]. We consider a fixed value ϑ ∈ (−π, π], and write shortly
ω, ω′, ω′′ to denote ω(ϑ), ω′(ϑ), ω′′(ϑ), respectively. The associated basic mode
E(t, j) := ei(ωt+ϑj) is considered to be the microscopic pattern.
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Our aim is to understand the macroscopic evolution of solutions, which are
modulations of the microscopic pattern, given by a modulation function A :
[0, τ0]×R → C:

(3) xj(t) = (XA
ε )j(t) + O(ε2) with (XA

ε )j(t) := εA(ε2t, ε(j−ct))E(t, j) + c.c.

(c.c. denotes the complex conjugate), where ε ≤ ε0 for some ε0 > 0, and where
τ = ε2t and ξ = ε(j−ct) play the role of a macroscopic time and space variable,
respectively. To this end, we derive formally the associated modulation equation
for A, and then justify it mathematically as a valid macroscopic limit.

Inserting (3) into the nonlinear problem (1) will generate higher harmonic terms
(with factors En) having scaling parameters εk, k ∈ N. Hence, we insert in (1) the
multiple scale ansatz

(X(A)
ε )j(t) := (XA

ε )j(t) +
∑

k=2,3

εk
k∑

n=−k

Ak,n(τ, ξ)E(t, j)n

with Ak,−n = Āk,n, and expand the left hand side and right hand side of the
equation in terms of εkEn. Then we equate the coefficients of both sides for
each of these terms separately. Thus, we obtain an hierarchy of equations for
k = 1, 2, 3, n = 0, . . . , k (cf. [1, Sec. 2]). Solving these equations consecutively, we
obtain c = −ω′, and can determine the functions Ak,n as functions of A, which in
turn has to be necesarilly a solution of the nonlinear Schrödinger equation (NLSE)

(4) i∂τA =
1

2
ω′′∂2

ξA+ρ|A|2A, ρ :=
1

ω

(
(α2s1c1)2−β2

2

4ω2−ω2(2ϑ)
+

2β2
2

β1
− 3

(
α3c

2
1+β3

)

2

)

(s1 := 2i sinϑ, c1 := 2(1− cosϑ)). Thus, we have shown that if the microscopic
model (1) has for all ε ≤ ε0 and ε2t ≤ τ0 solutions of the form (3), where
A : [0, τ0]×R → C is a smooth function, then A has to satisfy the NLSE (4).
We call this result a formal derivation, since the existence of solutions maintaining
the form (3) for t ≤ τ0/ε

2 is not at all clear.
The mathematical justification of the NLSE (4) consists in showing, that for A

satisfying (4) for τ ∈ [0, τ0], τ0 > 0, solutions t 7→ (xj(t))j∈Z of (1), which start
at t = 0 in the form (3), stay in this form over intervals [0, τ0/ε

2], which have a
positive macroscopic length.

More precisely, we have shown the following theorem ([1, 2]):

Theorem. Assume that the potentials V, W ∈ C5(R) in (1) have the form (2)
with min{β1, (16/3)α1+β1} > 0. Let A : [0, τ0]×R → C, τ0 > 0, be a solution
of the NLSE (4) with A(0, ·) ∈ H5(R), and let XA

ε be the formal approximation
given in (3) with c = −ω′. Then, for each d > 0 there exist ε0, C > 0 such that
for all ε ∈ (0, ε0) the following statement holds: Any solution x of (1) satisfying

‖(x(0), ẋ(0)) − (XA
ε (0), ẊA

ε (0))‖ℓ2×ℓ2 ≤ dε3/2,
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fulfills the estimate

‖(x(t), ẋ(t)) − (XA
ε (t), ẊA

ε (t))‖ℓ2×ℓ2 ≤ Cε3/2 for t ∈ [0, τ0/ε
2].

We give a short sketch of the proof of the theorem. The details can be found
in [1, 2]. In the first paper [1] we justified the NLSE (4) in the case of absence of
quadratic terms in the nonlinearity. We followed the ideas used also in [3].

We write (1) as a first order system ˙̃x = Lx̃ + N(x̃) in the Banach space
Y = ℓ2×ℓ2 with x̃ := (x, ẋ). Y is equipped with the energy norm ‖ · ‖, equivalent

to ‖ · ‖ℓ2×ℓ2 . We want to prove that the error R := ε−3/2(x̃−X̃A
ε ) between an

original solution x̃ and the approximation X̃A
ε remains bounded for t ∈ [0, τ0/ε

2].
By definition, the error fulfills an evolution equation, which by the variation of
constants formula leads to the estimate
(5)

‖R(t)‖ ≤ ‖R(0)‖+ε−3/2

∫ t

0

‖N(X̃(A)
ε (s)+ε3/2R(s))−N(X̃(A)

ε (s))+res(X̃(A)
ε (s))‖ds

with the residuum res(X̃
(A)
ε ) :=

˙̃
X

(A)
ε − LX̃

(A)
ε − N(X̃

(A)
ε ). From the formal

derivation of (4) we obtain res(X̃
(A)
ε ) = O(ε4) for ε → 0 pointwise in j ∈ Z. This

yields ‖res(X̃
(A)
ε )‖ = O(ε7/2) (cf. [1, Prop. 3.3]). On the other hand, using the

cubic structure of N , we show by use of the mean value theorem the estimate

‖N(X̃(A)
ε (t)+ε3/2R(t))−N(X̃(A)

ε (t))‖ ≤ CNε
7/2‖R(t)‖ as long as ‖R̃(t)‖ ≤ D.

Inserting these estimates in (5), we eventually obtain the statement of the theorem
by a Gronwall type argument.

In the case of presence of quadratic terms of the nonlinearity, which we treated
in [2], we obviously can not apply directly the method we have just described, since
it relies exactly on the absence of quadratic terms. We circumvent this difficulty by
applying a method also used in [4]. It consists in applying on the original system
˙̃x = Lx̃ + Q(x̃, x̃) + M(x̃) (with quadratic terms Q and cubic and higher order
terms M) the normal form transform F : Y → Y with ỹ = F (x̃) := x̃ + B(x̃, x̃),
where B : Y×Y → Y is a bilinear form, which has to be determined. We obtain
the transformed system

˙̃y = Lỹ+Q̄(x̃, x̃)+M̄(x̃), Q̄(x̃, x̃) := −LB(x̃, x̃)+B(Lx̃, x̃)+B(x̃, Lx̃)+Q(x̃, x̃),

where Q̄ consists again of all quadratic terms. Next, we determine B such that
Q̄ ≡ 0. This can be done uniformly for all ϑ ∈ [−π, π), if we restrict ourselves
to the case min{β1, (16/3)α1+β1} > 0. Exploiting the boundedness of B, we

thus obtain the system ˙̃y = Lỹ + N(ỹ) with N(ỹ) := M̄(F−1(ỹ)), which has a
nonlinearity with cubic leading terms. Applying on this transformed system the
method used in [1], we obtain an estimate for the transformed error. Transforming
back, this gives us the estimate for the error R of the original system. Of course,
the derivation of the estimate for the transformed error, is more complicated then
in the case of absent quadratic terms in the original system, since the non-local
operator B is involved in the nonlinearity N . �
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Entropy driven phase transition in a system of hard rods

Dmitry Ioffe

(joint work with Yvan Velenik, Milos Zahradnik)

We study a system of rods on Z2, with hard-core exclusion. Each rod has
a length between 2 and N . We show that, when N is sufficiently large, and
for suitable fugacity, there are several distinct Gibbs states, with orientational
long-range order. This is in sharp contrast with the case N = 2 (the monomer-
dimer model), for which Heilmann and Lieb proved absence of phase transition
at any fugacity. This is the first example of a pure hard-core system with phases
displaying orientational order, but not translational order; this is a fundamental
characteristic feature of liquid crystals.

Our model is defined as follows. We call rod a family of k, k ∈ N, distinct,
aligned, nearest-neighbor sites of Z2 a k-rod is a rod of length k, and we refer
to 1-rod as vacancies. Let V ⊂ Z2; a configuration ω of our model inside V is a
partition of V into a family of disjoint rods. We write Nk(ω) the number of k-rods
in ω. The probability of the configuration ω is given by

µq,N,V (ω) ∝ 1{Nk(ω)=0,∀k>N}(2q)N1(ω) q
P∞

k=2 Nk(ω) ,

where q > 0 and N ∈ N. Informally, only rods of length at most N are allowed;
the activity of each rod of length at least 2 is q, and is independent of the rod’s
length; there is an additional activity 2q for vacancies. Note that the activity of
vacancies can be removed at the cost of introducing an additional factor (2q)−k

for each k-rods (k ≥ 2).
Our main task is the proof of the following theorem, which states that for large

enough N , there is a phase transition from a unique (necessarily isotropic) Gibbs
state at large values of q to several Gibbs states with long-range orientational order
at small values of q, but no translational order. This is thus the first model, where
such a behavior can be proved. We claim that:
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1) For any N ≥ 2, there exists q0 = q0(N) > 0 such that, for all q ≥ q0 there is a
unique, isotropic Gibbs state.
2) There exist N0, and q1 such that for all N ≥ N0 and all q ≤ q1, there are 2
different extremal Gibbs states with long-range orientational order. More precisely,
there exists a Gibbs state µq,N such that

µq,N ( 0 belongs to a horizontal rod ) > 1/2 .

The main claim 2) is proved by showing that, for N large enough, the model
defined above is a small perturbation (in a suitable sense) of the “exactly solvable”
case N = ∞. For the latter, the theorem takes the following form. Let qc =
1/(2 + 2

√
2). Then:

1) Let N = ∞. For all q ≥ qc there is a unique, isotropic Gibbs state.
2) For all q < qc, there are (at least) 2 different extremal Gibbs states with long-
range orientational order. More precisely, there exists a Gibbs state µq such that

µq( 0 belongs to a horizontal rod ) > 1/2 .

Dynamic phase transitions in ferroic systems with pinned domain walls

Wolfgang Kleemann

Quenched randomness in ferroic systems (ferromagnets, ferroelectrics, ferroe-
lastics) containing domain walls has interesting consequences on its response to
an external conjugate field. In dependence on the strength of the driving field,
h, the domain walls exhibit different states of motion below and above a critical
”depinning” field, hc, which separates the regions of thermally activated creep
and friction-limited slide, respectively [1,2]. At finite frequencies, ω > 0, addi-
tional states of motion are encountered: local relaxation without net wall motion
at high frequencies [3] and switching between differently poled states at high field
amplitudes [4]. The dynamic behavior of domain walls in random media under the
influence of a periodic external field h0 exp(iωt) gives rise to hysteresis cycles of
different shape depending on various external parameters. According to a recent
theory based on the Langevin equation of a driven interface z(x, t) in a quenched
random field hr(x, z) (“Quenched Edwards-Wilkinson (QEW) equation”[5]):

(1) γ−1(∂z/∂t) = Γ∇2z + h0 exp(iωt) + hr(x, z)

the polarization, P , or the magnetization, M , in a disordered ferroelectric or
ferromagnetic material, respectively, is expected to display a number of different
features as a function of T , frequency, ω, and probing ac field amplitude, h0. They
are probably accompanied by a series of dynamical phase transitions, whose order
parameters Q = (ω/2π)

∮
Pdt or (ω/2π)

∮
Mdt reflect the shape of the P or M vs.

h loop. When increasing the ac amplitude h0 the polarization or magnetization
displays four regimes. First, at very low fields, h < hω, only local “relaxation”,
but no macroscopic motion of the walls should occur at finite frequencies, ω > 0.
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Second, within the range hω < h0 < ht1, a thermally activated drift motion
(”creep”) is expected, while above the depinning threshold ht1 the “sliding” regime
is encountered within ht1 < h0 < ht2. Finally, for h0 > ht21 a complete reversal
of the polarization (”switching”) occurs in the whole sample in each half of the
period, T = 2π/ω. It should be noticed that all transition fields, hω , ht1 and ht2,
are expected to depend strongly on both T and ω [4].

Thus a series of dynamic phase transitions emerges in the T −ω− h parameter
space. This scenario has recently been observed in the strongly disordered uniax-
ial “relaxor” ferroelectric Sr1−xBaxNb2O6 (SBN) [6], in nanoparticular ferromag-
netic “discontinuous multilayers” [Co80Fe20 (tnominal=1.4nm)/Al2O3 (3nm)] 10

(DMIM) [7], in the isotope exchanged “quantum ferroelectric” SrTi18O3 (STO18)
[8] and in periodically poled ferroelectric KTiOPO4 (KTP) [9]. The main features
are:

(i) High frequency and/or low field and/or low temperature relaxation spectra
due to relaxation, which are white noise-like in DMIM or highly polydispersive
in SBN, STO18 and KTP.

(ii) Intermediate frequency field and/or temperature creep spectra, which exhibit
power law dispersion

χ(ω) = χ∞(1 + (iωτ)−β)

where β ≈ 2/3. This exponent was introduced semi-empirically within a
theory of sideways wall motion induced susceptibility [6] as a consequence of
the nonlinearity of the creep velocity, v = v0exp[−α(hc/h)δ] [1]. In a very
recent attempt to describe creep-induced domain wall susceptibility directly
via the above QEW equation of motion (1), Fedorenko et al. [10] justified
the exponent β by a broad distribution of mobilities, µ(h).

(iii) Low frequency and/or high field and/or high temperature easy slide spectra
in DMIM and STO18.

(iv) Very low frequency and/or high field and/or high temperature switching spec-
tra in DMIM, which obey Debye-type monodispersivity

χ(ω) = χ∞(1 + iωτ)−1.

While theory has so far been applied only to the time domain [4], we have re-
cently attempted its translation into the frequency domain by appropriate Fourier
transformation [11] in order to interpret available complex linear susceptibility
experiments [6,7]. We have used two different approaches.

Method (i) employs an expression for the mean domain wall velocity in the
adiabatic driving regime, which interpolates between the creep and viscous slid-
ing regime at small frequencies [4]. The mean displacement Z(t) of the do-
main wall is related to ∂Z/∂t = v(H(t)) and to the dynamic magnetization
M(t) = Ms(2Z(t)/Lz − 1). The simulated hysteresis curves in this adiabatic
regime exhibit both the slide and the switching regime, but do not account for
creep and relaxation.

Method (ii) employs the QEW equation of motion (1) of the domain wall in
the non-adiabatic driving regime under random forces hr(x, z) with < hr >= 0.
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Numerical integration of the simulated ac susceptibility components in the non-
adiabatic regime for frequencies 10−4 < f < 104 Hz yields three regimes, creep,
slide and switching at sub-threshold fields ho = 0.8 hp. In corroboration of the
experimental data, however, all expected phase transitions are obviously thermally
smeared. This is known theoretically from the creep-to-slide transition at non-zero
temperature [1]. Very probably only the relaxation-to-creep transition might be
unsmeared at finite temperatures as seems to be evident from sharp kinks found at
hω in the Cole-Cole diagrams of SBN [6], DMIM [7] and KTP [9]. Unfortunately
its adequate treatment is out of reach within the present model, which does not
account for the local response of the domain wall to the external field.

Acknowledgment: Thanks to DFG for financial funding. This paper is in final form
and no version of it will be submitted for publication elsewhere.
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Annealed deviations for random walk in random scenery

Wolfgang König

(joint work with N. Gantert and Z. Shi)

Let (Zn)n∈N0
be a d-dimensional random walk in random scenery, i.e., Zn =∑n−1

k=0 Y (Sk) with (Sk)k∈N0
a random walk in Z

d and (Y (z))z∈Zd an i.i.d. scenery,
independent of the walk. The walker’s steps are assumed to have mean zero and
finite variance. For the purpose of this abstract, let S be simple random walk.

The random walk in random scenery has been introduced and analyzed in di-
mension d 6= 2 by H. Kesten and F. Spitzer [3] and by E. Bolthausen [2] for d = 2.
Under the assumption that Y (0) has expectation zero and variance σ2 ∈ (0,∞),
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their results imply that

(1)
1

n
Zn ≈ a0

n =





n− 1
4 if d = 1,

( n
log n )−

1
2 if d = 2,

n− 1
2 if d ≥ 3.

More precisely, 1
na0

n
Zn converges in distribution towards some non-degenerate ran-

dom variable. In terms of the so-called local times of the walk,

(2) ℓn(z) =

n−1∑

k=0

1l{Sk=z}, n ∈ N, z ∈ Z
d,

the random walk in random scenery may be identified as

(3) Zn =
∑

z∈Zd

Y (z)ℓn(z) = 〈Y, ℓn〉.

It is the goal of the present work to identify the speed and the rate of the
logarithmic decay of P( 1

nZn > bn) for various choices of sequences (bn)n in (0,∞)
satisfying bn ≫ a0

n. Furthermore, we want to explain, at least on a heuristic level,
the optimal joint strategy of the random walk and the scenery to meet the event
{ 1

nZn > bn} in the cheapest way.
In order to demonstrate the main idea of the investigation, let us derive a lower

bound for P( 1
nZn > u) for u > 0 fixed. Our ansatz is to fix a scale function 1 ≪

αn ≪ n
1
d and to consider the event that the appropriately normalized rescaled local

times and the rescaled scenery resemble fixed given shape functions ψ2, ϕ : Rd →
[0,∞), respectively, where we impose the conditions

∫
ψ2 = 1 and 〈ψ2, ϕ〉 ≥ u.

This gives the lower bound

(4)
P( 1

nZn > u) ≥ P

(αd
n

n
ℓ
(
⌊·αn⌋

)
≈ ψ2(·), Y

(
⌊·αn⌋

)
≈ ϕ(·)

)

≈ exp
{
− n

α2
n

I(ψ2)
}

exp
{
−αd

nJH(ϕ)
}
,

where the last line follows from well-known techniques in large-deviation theory,
and the rate functions are

I(ψ2) =
1

2
‖∇ψ‖2

2 and JH(ϕ) =

∫
sup
t>0

(
ϕ(x)t −H(t)

)
dx,

and H(t) = E(etY (0)) is the cumulant generating function of the scenery. From
(4) we already see that the choice αn = n1/(d+2) is the proper choice for which
we can expect a non-trivial result. Indeed, A. Asselah and F. Castell [1] derived
a theorem on the logarithmic asymptotics of P( 1

nZn > u) for the case of bounded
sceneries Y , which we do not cite here.

However, we are interested in sceneries unbounded from above. In general, the
random walk in random scenery with unbounded sceneries has interesting relations
to self-intersection properties of the walk, which makes this subject particularly
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interesting. As an example, if the scenery is standard Gaussian, then the distri-
bution of Zn given the random walk is equal to a centred Gaussian with variance
equal to

∑
z∈Zd ℓn(z)2, the self-intersection number.

Our main result is the following.

Theorem. Suppose that log P(Y (0) > r) ∼ −Drq as r → ∞, for some D > 0 and

q > d
2 . Pick a sequence (bn)n∈N satisfying 1 ≪ bn ≪ n

1
q . Then

(5) lim
n→∞

n− d
d+2 b

− 2q
d+2

n log P

( 1

n
Zn > bn

)
= −KD,q,

where

(6) KD,q ≡ inf
{1

2
‖∇ψ‖2

2 +D‖ψ2‖−q
p : ψ ∈ H1(Rd), ‖ψ‖2 = 1

}
,

(where 1
p + 1

q = 1), and KD,q is positive.

The constant KD,q is zero in the subcritical cases where q < d
2 :

Proposition (Positivity of KD,q). Fix d ∈ N and p, q > 1 satisfying 1
p + 1

q = 1.

Then, for any D > 0,

(7) KD,q = (d+ 2)
(D

2

) 2
d+2
(χd,p

d

) d
d+2

,

where

(8) χd,p = inf
{1

2
‖∇ψ‖2

2 : ψ ∈ H1(Rd) : ‖ψ‖2 = 1 = ‖ψ‖2p

}
,

Moreover, the constant χd,p is positive if and only if d ≤ 2p
p−1 = 2q.

The constant χd,p is directly related to the well-known Gagliardo-Niremberg
constant. In [6], the existence of a minimizer in (8) has been established; indeed
there is a minimizer which is rotationally symmetric, positive everywhere and
infinitely often differentiable. Uniqueness of the minimizer has been proven in [5]
for d ∈ {2, 3, 4} for all p ∈ (1, d

d−2 ] and for d ∈ {5, 6, 7} for p ∈ (1, 8
d ).
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Diffusion and domain walls

William T. Lee

(joint work with E.K.H. Salje and U. Bismayer)

A number of experimental and simulation results suggest that diffusion in twin
walls is quite different from bulk diffusion. The most dramatic of these concerns
sodium diffusion in WO3 [1]. Here sodium was diffused in from the surface, and
penetrates a considerable distance into the bulk following linear features which
are the twin walls of the structure. There are three possible explanations why
diffusion in twin walls should be faster than bulk diffusion

1. There are secondary strains within the twin wall which give it a more open
structure.

2. The twin wall is elastically soft with respect to the bulk.
3. There is a large vacancy concentration within the twin wall.

Probably the most important of these is point (3). We therefore investigated
the interaction between point defects such as vacancies with twin walls. We were
also interested in investigating a recent experiment [2] in which the widths of twin
walls in PbTiO3 were measured using atomic force microscopy (AFM). The results
suggested that the twin wall width was not a material constant but a function of
position. They proposed the explanation that the variations in wall width was due
to the dissolution of point defects within the wall. To investigate this possibility we
considered a system in which an continuous order parameter Q ∈ [−1, 1] interacts
with an Ising spin S = ±1 representing a point defect. S = +1 signals the presence
of the point defect, S = −1 signals its absence.

Experimentally point defects in ferroelastic crystals are known to order at very
high temperatures, while the equilibration of the point defect concentration is
slow, so that non-equilibrium concentrations are common. Therefore we decided
to simulate the system using the microcanonical or NVT ensemble. The equation
describing the energy of the system is

F =
∑

i

[
a

2

(
Q2

i − 1
)2

+
λ

2

(
Q2

i − 1
)

(Si + 1)

]
+
∑

<ij>

[g
2

(Qi −Qj)2 + JSiSj

]

The first term is a double well potential in the order parameter Q, the second term
is the lowest order coupling between the order parameter and the point defects.
The parameter λ controls the interaction between point defects and the twin wall
and their effect on the wall width. The third term is a Ginzburg energy, preventing
rapid spatial variations in the order parameter: in the absence of point defects this
term controls the twin wall width.

In order for point defects to cause significant variations in the wall we must
have an attraction between point defects and the wall (this also ensures that the
point defects can affect the wall width) and furthermore the particles must cluster
in the wall. This is achieved by a positive value of λ and a negative value of J .
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(a) Q (b) S

Figure 1. Results of simulations for a point in parameter space
in which defects are expected to cluster within the wall. (a) The
order parameter Q dark shading corresponds to Q close to zero,
i.e. twin walls, light shading corresponds to Q close to ±1. (b)
The point defect distribution. Sites of point defects are shown in
black.

The clusters of point defects may be considered as nuclei of a second, defect rich
phase, with an interfacial energy determined by J .

To simulate this system we used monte-carlo methods. At every stage of the
monte-carlo algorithm we relaxed the order parameter Q using a conjugate gra-
dient minimiser. Our system sizes were 40 × 40 sites, with 80 point defects. We
carried out 500 000 Monte Carlo steps in each simulation. Figure 1 shows the
resulting distribution of the spins and order parameter under conditions in which
defects cluster within the wall. This shows that the clustering of point defects
within the wall can have a large effect on the twin wall width.
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Rate–independent models of phase transition

Alexander Mielke

1. Mechanical Modeling of Rate-Independent Processes

We consider materials which have elastic as well as inelastic behavior, the
latter one being described by an internal variable z as in the theory of rate-
independent, generalized standard materials. Such models for phase transitions in
shape-memory alloys have been used succesfully in [2, 3, 6, 9, 10, 11].

We consider a body Ω ⊂ Rd which undergoes a deformation ϕ : Ω 7→ Rd

such that the deformation gradient F(x) := Dϕ(x) ∈ Rd×d. Additionally there
are internal variables z = (z1, . . . , zn) ∈ Z ⊂ Rn where Z denotes a manifold
like, for instance, SL(d) × Rm ⊂ Rd×d × Rm in elasto-plasticity. The elastic
properties are described via the elastic potential W which is a function of the
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material point x ∈ Ω and (F, z): W = Ŵ (x,F, z). For fixed (x, z) we assume
polyconvexity as well as coercivity. The total elastic and potential energy of a
given state (ϕ, z) : Ω 7→ Rd × Z at time t is the Gibbs’ energy:

E(t,ϕ, z) =
∫
Ω
Ŵ (x,Dϕ(x), z(x)) dx − 〈ℓ(t),ϕ〉

with

〈ℓ(t),ϕ〉 =
∫
Ω fvol(t, x) · ϕ(x) dx +

∫
ΓNeu

f tract(t, y) · ϕ(y) da(y).

Changes of the internal variables during a slow loading or unloading process will
give rise to internal friction which dissipates energy via the rate ż:

ψ = ψ̂(x, z, ż) ≥ 0 where ż(t, x) = ∂
∂tz(t, x).

The function ψ̂ : Ω×TZ 7→ [0,∞] is called dissipation potential, since its derivative
with respect to the rate ż gives the frictional forces arising from changing z. Rate-
independence is modeled by the assumption of homogeneity in ż of degree 1:

ψ̂(x, z, αż) = αψ̂(x, z, ż) for α ≥ 0. Thus, ψ̂(x, ·, ·) defines a distance on Z via

D̂(x; z0, z1) = inf{
∫ 1

0 ψ̂(x, z(s), ż(s)) ds | z ∈ C1([0, 1], Z), z(0) = z0, z(1) = z1 }.
This defines also a metric on the set of internal states Z by setting, for z0, z1 ∈ Z,

D(z0, z1) =
∫
Ω D̂(x; z0(x), z1(x)) dx. The distance D is called the dissipation dis-

tance between the internal states z0 and z1 in Z. By definition the functions

D̂(x, ·, ·) and hence the function D satisfy the triangle inequality D(z0, z2) ≤
D(z0, z1)+D(z1, z2) for z0, z1, z2 ∈ Z. We note that we never assume that ψ̂(x, z, ·)
is symmetric, i.e., in general D(z0, z1) 6= D(z1, z0). Such an unsymmetry is needed
to describe damage or hardening in plasticity.

The dissipation along a curve z : [0, T ] 7→ Z can be expressed without any rate

via Diss(z, [t0, t1]) = sup
∑M

i=1 D(z(τi−1), z(τi)) where the supremum is taken over
all discretizations.

Definition 1. A process (ϕ, z) : [0, T ] 7→ F×Z is called an energetical solution of
the rate-independent problem associated to (F×Z, E ,D), if the stability condition
(S) and the energy balance (E) hold for all t ∈ [0, T ]:

(S) E(t,ϕ(t), z(t)) ≤ E(t, ϕ̂, ẑ) + D(z(t), ẑ) for all (ϕ̂, ẑ) ∈ F × Z.

(E) E(t,ϕ(t), z(t)) + Diss(z; [0, t]) = E(0,ϕ(0), z(0)) +
∫ t

0
∂
∂τ E(τ,ϕ(τ), z(τ)) dτ .

The stability condition (S) has a clear mechanical interpretation. Letting
ẑ = z(t) we have D(z(t), ẑ) = 0 and the condition implies that ϕ(t) is a global min-
imizer of E(t, ·, z(t)) on F , which gives elastic equilibrium. Moreover, any change
of z(t) into ẑ must dissipate at least as much energy as the associated gain in the
elastic energy. Thus, (S) is equivalent to a principle of maximal dissipation. The
internal variable will move (and dissipate energy) as soon as the energy release in
the elastic energy is large enough to compensate for the dissipation. The energy
inequality (E) has an obvious interpretation, since ∂

∂tE is the power of the changing
external forces.
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2. Abstract existence theory

Defining the reduced potential I(t, z) = inf{ E(t,ϕ, z) | ϕ ∈ F } the mathe-
matic can be formulated most consistently. In [8] it is shown that this form is
equivalent to (S) and (E) under reasonable assumptions on Ψ and E . In [7, 8] an
existence theory for (S) and (E) was developed under the assumption that Z is a
weakly closed, convex subset of a Banach space X and that D is given in the form
D(z0, z1) = Ψ(z1−z0).

Here we present the more general approach of [1, 4] which is independent of any
linear structure in Z. The phase space Z is considered to be a topological space like
a weakly closed subset of a Banach space. The dissipation distance D : Z × Z →
[0,∞] is continuous, satisfies the triangle inequality and the following compatibility

with the topology on Z: if min{D(z, zk),D(zk, z)} → 0 for k → ∞, then zk
Z→ z.

The functional I : [0, T ]×Z → R∪{∞} has compact sublevels and is differentiable
in t such that there exist constants CI , I0 > 0 with | ∂

∂tI(t, z)| ≤ CI(I0 + I(t, z))
whenever I(t, z) <∞.

One of the standard methods to obtain solutions of nonlinear evolution equa-
tions is that of approximation by time discretizations. To this end we let tNk =
kT/N for k = 0, 1, . . . , N and seek zk which approximates z at tNk . The energetical
formulation suggests the following incremental problem.

(IP)
For z0 ∈ S(0) ⊂ Z find z1, . . . , zN ∈ Z such that
zk ∈ Argmin{ I(tk, z) + D(zk−1, z) | z ∈ X } for k = 1, . . . , N .

Here “Argmin” denotes the set of all minimizers and S(t) = {z ∈ Z | I(t, z) ≤
I(t, ẑ)+D(z, ẑ) for all ẑ ∈ Z} is the set of stable states, such that (S) can be
written as z(t) ∈ S(t). It is easy to dereive the a priori estimate I(tk, zk) +∑k

j=1 D(zj−1, zj) ≤ C(z0, T ) (independent of k andN). This supplies compactness

of the interpolants for each t ∈ [0, T ] as well a BV-type estimate on [0, T ] via the
dissipation.

Theorem 2. For each z0 ∈ S(0) (S) and (E) have at least one solution.

3. Applications in Phase Transformations in Shape-Memory Alloys

In each microscopic point y, an elastic material is free to choose one of p crystal-
lographic phases and that the elastic energy density W is then given by Wj(Dφ).

On the mesoscopic level, the internal variables are phase portions z(j) ∈ [0, 1] for
the j-th phase and we set Z = { z ∈ [0, 1]p ⊂ Rp |∑p

1 z
(j) = 1 } and Z = L1(Ω, Z).

The material properties are described by a mixture function W : R
d×d × Z →

[0,∞], see [9, 2] and the dissipation has the form D(z0, z1) = ψ̂(z1−z0). So far we
are unable to prove existence results for this model in its full generality. However,
the case with only two phases (p = 2) was treated successfully in [9] under the
additional assumption that the elastic behavior is linear and both phases have the
same elastic tensor.

In [5] a microscopic model is treated where no phase mixtures are allowed, i.e.,
z ∈ Zp := {e1, e2, . . . , ep} ⊂ Rp, where ej is the j-th unit vector. The functions



1630 Oberwolfach Report 30/2004

z ∈ Z are like characteristic functions which indicate exactly one phase at each
material point. The dissipation is as above, but now the elastic energy contains an
additional term measuring the surface area of the interfaces between the different
regions: E(t,ϕ, z) =

∫
Ω
W (Dϕ, z) dx+σ

∫
Ω
|Dz|−〈ℓext(t),ϕ〉, where σ is a positive

constant. Here Z = { z : Ω → Zp |
∫
Ω |Dz| <∞} equipped with the L1-topology.
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Socio-thermodynamics − Integration and segregation in a population

Ingo Müller

An analogy is constructed between thermodynamics and sociology. The socio-
logical system is one of hawks and doves who compete for the same resource. In
the analogy the price of the resource corresponds to the temperature of a liquid
or solid and the two species correspond to the constituents of a liquid solution
or an alloy. Different phases of a solution are analogous to different strategies of
competition in the population. It turns out that in good times, when the price
is low the species mix homogeneously while in bad times when the price is high,
there is segregation into hawk-rich and dove-rich colonies.

A life-long preoccupation with thermodynamics has given me the fixed idea that
thermodynamic concepts and thermodynamic arguments may be used in fields out-
side physics. As a result I believe that the average behaviour of large systems of
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many individual elements follows a predictable course which represents a compro-
mise between the attraction of the individuals on the one hand and their tendency
to spread out by random walk on the other hand.

Once this idea is conceived analogies appear between

− a system of atoms that seeks to minimize its potential energy and to maximize
its entropy.

− a population of birds in search for a needed resource and competing for it, and
− the evolution of species hunting the same prey.

Such analogies call for the introduction of thermodynamic thinking into socio-
logy and socio-biology.

The fact is that thermodynamics is fully understood for more than a century
and a half. And in thermodynamics the knowledge about the conflicting interests
between individual atoms sticking to each other and the system seeking equal
distribution of the atoms over all available space have long jelled into the concepts
of low energy, high entropy, and low free energy.

Thus it is well-known under which pressures and temperatures two liquids, say
water and propylenoxide, form a homogeneous solution and under what circum-
stances they do not mix so that droplets of propylenoxide appear in a bulk of
water like fat droplets in a watery soup.

It is less well-known under what conditions a population of two species live
together harmoniously and homogeneously mixed, i.e. in a fully integrated manner,
and what the conditions are for the species to segregate into colonies with a large
majority of one or the other.

This is the question which I plan to address in the present work and for that
purpose I consider a bird population with two characters: hawks and doves both
competing for the same resource.

For the record I will say that these hawks and doves are not real hawks and
doves. In particular, the hawks do not eat the doves. The species are more like the
hawks and doves in the Pentagon of the United States. Infact my hawks and doves
are an often used paradigm for a mixed population in game theory. I believe that
the rules of the game were invented by Maynard-Smith & Price [1]. They are used
in socio-biology by Dawkins [2] and in the same context the game is described by
Straffin [3].

Remark: Preliminary and much less detailed versions of socio-thermodynamics
were published in my articles [4] and [5] dedicated to Professors K.H. Hoffmann
and K. Hutter respectively in celebration of their 60th birthdays.
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Droplet growth for isotropic and anisotropic model with Kawasaki
dynamics

Francesca Romana Nardi

(joint work with E. Olivieri and E. Scoppola, A. Bovier and F. den Hollander)

We analyze metastability and nucleation in the context of a “local version”
of the Kawasaki dynamics for the two-dimensional Ising lattice gas at very low
temperature.

Let Λ ⊂ Z2 be a sufficiently large finite box and let ∂−Λ = {x ∈ Λ: ∃ y /∈
Λ: |y−x| = 1}, be the interior boundary of Λ and let Λ0 = Λ\∂−Λ be the interior
of Λ. With each x ∈ Λ we associate an occupation variable η(x), assuming values
0 or 1. A lattice configuration is denoted by η ∈ X = {0, 1}Λ. Each configuration
η ∈ X has an energy given by the following Hamiltonian:

H(η) = −U1

∑

(x,y)∈Λ∗
0,h

η(x)η(y) − U2

∑

(x,y)∈Λ∗
0,v

η(x)η(y) + ∆
∑

x∈Λ

η(x)

where Λ∗
0,h ( resp. Λ∗

0,v ) is the set of the horizontal (vertical) unoriented bonds
joining n.n. points in Λ0. Thus the interaction is acting only inside Λ0; the binding
energy associated to a horizontal (vertical) bond is −U1 < 0 (−U2 < 0). We say
that U1 = U2 corresponds to the isotropic case. We will refer to U1 6= U2 as
anisotropic case and we suppose without loss of generality that U1 > U2.

Kawasaki dynamics is a discrete time Markov chain on the state space X , defined
by Metropolis algorithm in such a way that: on the finite box Λ0, particles live
and evolve in a conservative way, and at the boundary ∂−Λ, are created with rate
ρ = e−∆β resp. annihilated with rate 1. Where β is the inverse temperature and
∆ > 0 is an activity parameter. Thus, the boundary of Λ plays the role of an
infinite gas reservoir with density ρ. We take ∆ ∈ (U1, U1 +U2) where the totally
empty (full) configuration can be naturally associated to metastability (stability).
In this way the number of particles is not globally conserved and the equilibrium
will be described by means of a grancanonical Gibbs measure with a chemical
potential which is related to the rate of creation of particles at the boundary. The
detailed balance condition is satisfied with respect to the Gibbs grancanonical
measure corresponding to the Hamiltonian. We consider the asymptotic regime
corresponding to fixed volume and chemical potential in the limit of large inverse
temperature β. The above setup gives rise to a reversible Freidlin Wentzell Markov
chain.
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For the isotropic case we discuss the results in [1], where we study the metastable
behavior of the model in two and three dimensions. We are interested in how the
system nucleates, i.e., how it reaches a full box when it starts from an empty
box. Our approach combines geometric and potential theoretic arguments. Our
goal is to improve on earlier work by combining a detailed analysis of the energy
landscape for the dynamics with the potential theoretic approach to metastability
that was developed in Bovier, Eckhoff, Gayrard, and Klein [2].

Our main theorems sharpen those obtained by den Hollander, Olivieri, and
Scoppola [3] in two dimensions and by den Hollander, Nardi, Olivieri, and Scop-
pola [4] in three dimensions. In particular, in two dimensions we identify the full
geometry of the set of critical droplets defined in [3], compute the average nu-
cleation time up to a multiplicative factor that tends to one in the limit of low
temperature and low density, express the proportionality constant in terms of cer-
tain capacities associated with simple random walk, and compute the asymptotic
behavior of this constant as the system size tends to infinity. In three dimensions,
we obtain similar results but with no better control than in [4] over the geometry,
and so, less control on the constant.

Kawasaki differs from Glauber in that it is a conservative dynamics: particles
are conserved in the interior of the box. This creates a complication in control-
ling the growing and the shrinking of droplets, because particles have to travel
between the droplet and the boundary of the box. Moreover, it turns out that in
the metastable regime particles move along the border of a droplet more rapidly
than they arrive from the boundary of the box. This leads to a shape of the crit-
ical droplet that is more complicated than the one for Ising spins under Glauber
dynamics. This complexity needs to be handled in order to obtain the sharp
asymptotics. For a critical comparison of Glauber and Kawasaki we refer to [6].

For the anisotropic case we discuss results in [7] where we identify the size and
shape of the critical droplet and the time of its creation in the same limit. In
particular we are able to determine the asymptotic behavior in probability, for
large β, of the transition time between the empty and full configuration. Indeed,
using [6], the control of the transition time can be obtained on the basis of relatively
weak hypotheses: a rough knowledge of the global saddles between the metastable
and the stable state together with the absence of too “deep wells”.

We also have some partial information on the typical trajectories realizing the
transition between metastability and stability. Indeed we discuss in detail the
critical droplet representing the “gate” to the stable state. Our results are compa-
rable but less complete with those obtained by Kotecký and Olivieri in [5] for the
Ising model subject to Glauber dynamics, because we do not obtain a complete
description of the tube of typical trajectories.

Let us now discuss the motivations and the specific features of our model by
outlining the main results. In the Freidlin Wentzell regime it is natural to call
Wulff shape the one minimizing the energy of a droplet at fixed volume. In our
case this is a rectangle with horizontal and vertical sides proportional, respectively,
to the corresponding coupling constants U1 and U2 (see [5]). The main question
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that is natural to address concerns the relevance of Wulff shape in the nucleation
pattern. Since, particles can move along the border of a droplet more rapidly
than they can arrive from the boundary of the container, one could be tempted to
conjecture that this displacement along the border of the growing droplet should
be able to establish the equilibrium shape at fixed volume namely, the Wulff shape.
However, a careful comparison between time scales of contraction, growth and of
different types of movements on the border, shows that the above conjecture is
false. The critical configurations are different and more complicated than the one
for Ising spins under Glauber dynamics. We observe very different behavior of
our model for weak or strong anisotropy, corresponding, roughly speaking, to U1

smaller or larger than 2U2.
For weak anisotropy a rigorous result that we are able to prove is that the critical

droplet is almost Wulff (with a highly degenerate and complicated microscopic
structure) whereas we have strong indications that during the other stages of
nucleation, namely both in the subcritical and supercritical part, the shape of the
growing droplet is not Wulff. Actually large supercritical droplets tend to have
almost squared shape contrary to what happens for the non conservative Glauber
dynamics. In the strongly anisotropic case the critical droplet is not Wulff and
Wulff shape is crossed during the supercritical growth. In any case Wulff shape is
not relevant in the nucleation pattern, similarly to what came out in the Glauber
case (see [5]). In any case we find that Wulff shape is not relevant for the nucleation
pattern.
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Convergence to Mullins-Sekerka motion for phase kinetics equation
with a conservation law

Enza Orlandi

(joint work with E.A.Carlen, M.C.Carvalho)

The nonlocal and nonlinear evolution equation I consider is typified by

(1)
∂

∂t
m(x, t) = ∇ ·

(
∇m(x, t) − β(1 −m(x, t)2)(J ⋆∇m)(x, t)

)
,

where β > 1 and “⋆” denotes convolution. Moreover, J is a smooth spherically
symmetric probability density with compact support. This equation first appeared
in the literature in a paper [9] on the dynamics of Ising systems with long–range
interaction and so–called “Kawasaki” or “exchange” dynamics. Later it was rigor-
ously derived in [5]. In this physical context, m(x, t) ∈ [−1, 1] is the magnetization
density at x at time t, viewed on the length scale of the interaction, and β is the
inverse temperature. We refer to the previous quoted paper and to [8] for more
physical insights. The purpose of this talk is to present a method for construct-
ing approximate solutions to (1) suitable for studying its sharp interface limit.
The sharp interface limit of (1) has been investigated by Giacomin and Lebowitz
[6] using a formal analysis with matched asymptotic expansions in analogy with
Pego’s treatment for the Cahn-Hilliard equations, [7]. In [6], two time scales were
considered: one leading to the sharp interface Stefan problem, the other, a longer
time scale, leading to the Mullins-Sekerka motion. Nicolas Dirr, [4], has rigorously
studied the first case for (1), by matched asymptotic expansions. In a recent paper,
[3], by an alternative method, it has been shown how to construct an approximate
solutions to a class of evolutions typified by the Cahn-Hilliard equation. The
method, based on the Hilbert expansion used in kinetic theory, besides its rela-
tive simplicity, leads to calculable higher order corrections to the interface motion.
The present aim is to apply the Hilbert expansion approach, introduced in [3], to
construct approximate solutions to (1).

Let Ω be a d− dimensional torus having diameter much larger than the support
of the interaction J . Write (1) as a gradient flow:

∂

∂t
m = ∇ ·

(
σ(m)∇

(
δF
δm

))

where σ(m) = β(1 −m2) is the mobility,

F(m) =

∫

Ω

[f(m(x)) − f(mβ)]dx +
1

4

∫

Ω

∫

Ω

J(x− y)[m(x) −m(y)]2dxdy,

and

f(m) = −1

2
m2 +

1

β

[(
1 +m

2

)
ln

(
1 +m

2

)
+

(
1 −m

2

)
ln

(
1 −m

2

)]
.
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For β > 1, f is a symmetric double well potential on [−1, 1]. We denote the
positive minimizer of f by mβ . Formally, one derives

d

dt
F(m(t)) = −

∫ ∣∣∣∣∇
(
δF
δm

)∣∣∣∣
2

σ(m(t))dx

thus F is a Lyapunov function for (1). This suggests that the free energy should
tend locally to one of the two minimizing values, ±mβ, and that the interface
between a region at +mβ magnetization and a region at −mβ magnetization should
have a “profile” – in the direction orthogonal to the interface – that makes the
transition from one local equilibrium to the other in a way that minimizes the free
energy. This is indeed the case, as it has been shown in [1], [2]. The minimizers
of the free energy ±mβ represent the “pure phases” of the system. However,
unless the initial data m0 happens to satisfy

∫
Ω
m0(x)dx = ±mβ|Ω|, these “pure

phases” cannot be reached because of the conservation law. Instead, what will
eventually be produced is a region in which m(x) ≈ +mβ, with m(x) ≈ −mβ in
its complement, and with a smooth transition across its boundary. This is referred
to a phase segregation, and the boundary is the interface between the two phases.
If we “stand far enough back” from Ω, all we see is the interface, and we do not see
any structure across the interface – the structure now being on an invisibly small
scale. The evolution of m under (1) drives an evolution of the interface, and we
wish to determine how it evolves. To see an evolution of the interface, one must
wait a sufficiently long time. More specifically, let λ be a small parameter, and
introduce new variables τ and ξ through τ = λ3t, and ξ = λx. Hence if m(x, t) is
a solution of (1), and we define mλ(ξ, τ) by mλ(ξ, τ) = m(x(ξ), t(τ)), we obtain

(2)
∂

∂τ
mλ(ξ, τ) =

1

λ
∇ ·
(
σ(mλ(ξ, τ))∇

[
1

β
arctanhmλ − (Jλ ⋆ m

λ)

])
(ξ, τ)

where Jλ(ξ) = λ−dJ(λ−1ξ). Following Giacomin and Lebowitz [6], we will be
studying solutions of the equation (2) in the limit as λ tends to zero. For the
reasons indicated above, we shall consider initial data m0(ξ) with value −mβ in
the region bounded by a smooth closed curve Γ0 in Ω, and +mβ outside this region.
We refer to such initial data as “sharp interface initial data”. At later times t there
will still be a fairly sharp interface between a region where m(ξ, t) ≈ +mβ and
where m(ξ, t) ≈ −mβ , centered on a smooth curve Γt. One might hope that for
small values of λ, all information about the evolution on m(ξ, t) is contained in
the evolution of the interface Γt. This is indeed the case. Let M denote the set
of all smooth simple closed curves in Ω. A vector field V on M is a functional
associating to each Γ in M a function in C∞(Γ). This function gives the normal
velocity of each point on Γ, and thus describes a “flow” on M. Formally

(3)
dΓt

dt
= V (Γt) .

Now, given a flow on M, we can produce an evolution in C∞(Ω) through the
following device: Let m be any function from M to C∞(Ω). We can then define
a time dependent function on Ω, m(ξ, t), through m(ξ, t) = m(Γt)(ξ). Notice that
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time dependence in m(ξ, t) enters only through the evolution of Γt. If, for small
λ and sharp interface initial data, all of the information about the evolution of
solutions of (2) were contained in the motion of the interface, then one might
hope to find a vector field V on M governing the evolution of the interface, and
a function m from M to C∞(Ω) so that (3) defines the corresponding solution of
(2). The following is the basic ansatz for our construction relating an asymptotic
expansion for a flow of curves in Ω to an asymptotic expansion for an evolution of
functions in Ω.

Ansatz. Let V0, V1, V2, . . . be a sequence of vector fields on M. For any given

initial interface Γ0 in M, and all N > 0, let Γ
(N)
t be the solution of

(4)
dΓ

(N)
t

dt
=




N−1∑

j=0

λjVj




(

Γ
(N)
t

)
with Γ

(N)
0 = Γ0.

Let m0,m1,m2, . . . be functions from M to C∞(Ω) defined as

m(N)(ξ, t) =
N∑

j=0

λjmj(ξ,Γ
(N)
t ) .

Theorem. For any N > 1 there are vector fields Vj , j = 0, ..., (N − 1) on M and
functions mj , j = 0, ..., N from M to C∞(Ω) as prescribed in the ansatz having
the following properties: Let T denote the lifetime of the solution of (4) in M.
Then there is a constant CN so that for all t < T ,

∂

∂t
m(N) = ∇ ·

(
σ(m(N))∇

(
1

λ

[
1

β
arctanhm(N) − (Jλ ⋆ m

(N))

]
+R(N)

))

where

sup
ξ∈Ω,t∈[0,T ]

∣∣∣R(N)(ξ, t)
∣∣∣ ≤ CNλ

N−1 .

Finally the sequences of vector fields and functions are essentially uniquely deter-
mined: Given Vj for j < k, then Vk is determined up to O(λk+1), and similarly
given mj for j < k, then mk is determined up to O(λk+1).

Giacomin and Lebowitz [5] by a formal analysis, discovered that in leading
order, the evolution of the interface should be governed by the Mullins–Sekerka
flow. Naturally enough, the corresponding vector field is the fist term, V0, in our
expansion in (4).
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An FKG type inequality for certain conditional measures

Agoston Pisztora

We consider a collection of binary 0-1 valued random variables (Xe)e∈E indexed
by a finite set E. The corresponding probability space is Ω = {0, 1}E and ω ∈
Ω is called a configuration. The joint distribution of the variables is denoted
by P . Ω has a natural partial order: ω′ ≥ ω iff ω′

e ≥ ωe for every e ∈ E.
A random variable f : Ω → R is called increasing if f(ω′) ≥ f(ω) for every
pair ω′ ≥ ω. An event is increasing if its characteristic function is increasing.
The FKG-inequality [2] guarantees non-negative correlations between increasing
random variables whenever the so-called lattice condition is satisfied:

P (ω ∨ ω′)P (ω ∧ ω′) ≥ P (ω)P (ω′)

where the min and max operations are performed coordinatewise. This condititon
is easily verified for product measures. The FKG-inequality for events can be
stated as follows: if A,B ⊂ Ω are increasing then P (A|B) ≥ P (A) (provided
P (B) 6= 0). Heuristically this is understood as follows: The occurrence of B
guarantees the occurrence of some 1-s (unless B = Ω) which will make it easier for
A to occur. By using the same argument one is tempted to believe the if A,B,C
are all increasing events, then

(1) P (A|B ∩ C) ≥ P (A|C)

However, this inequality turns out to be false in general as was observed by van den
Berg and Kahn [1]. They provided a counterexample where A,B,C are connection
events which we next define. We equip the index set with a geometric structure
by interpreting the set E as the edge set of a graph G = (V,E). The edge-
configurations give rise to random subgraphs induced by the open edges (i.e. Xe =
1) only. For given subsets of vertices S, T ⊂ V we define the connection event
{S ↔ T } ⊂ Ω if there is a sequence of neighboring open edges linking some vertex
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in S with another one in T . The complement of this event is denoted by {S 6↔ T }
and is called a disconnection event. In [1] a surprising inequlity has been proved.
If P is a product measure, A = {S ↔ T }, B = {S ↔ U}, C = {S 6↔ Z}, where
S, T, U, Z ⊂ V , then (1) is true. Note that the primary conditioning event C is a
disconnection event, in particular it is decreasing.

The inequality (1) of van den Berg and Kahn is surprising but it is very specific
and leaves a lot of questions open. Is this inequality specific to product measures
(like the van den Berg-Kesten inequality)? Is it valid for connection events only?
Why does (1) hold for disconnection event but not for a connection event?

By trying to answer these and other questions we obtained an FKG-type in-
equlity which in some aspects considerably generalizes (1). Let Z ⊂ V be a fixed
set of vertices of the graph G. We denote by Cz the edge-cluster of Z, i.e., the
collection of open edges connected (by open edges) to some vertex in Z. If f is an

increasing function (random variable) on Ω, we set f̃(ω) = f(ω̃) , where ω̃e = ωe

if e /∈ Cz and ω̃e = 0 otherwise. Similarly, f̂(ω) = f(ω̂), where ω̂e = ωe if e ∈ Cz

and 0 otherwise. Note that f̃ ’senses’ increasing information off Cz whereas f̂
measures only what happens on the cluster Cz. For instance, if f = 1{a↔b} then

f̃ = 1{a↔b} 1{a↔Z} and f̂ = 1{a↔b↔Z}

or, if N is the number of open bonds then Ñ is the number of open bonds off Cz

and N̂ counts the open bonds in Cz. Note that even though f is increasing, f̃ is
not monotone (neither increasing nor decreasing.)

Finally let us recall the definition of random cluster (or FK-percolation) measure
Φ. For parameters q > 0 and (pe)e∈E

Φ(ω) =
1

ZG
qcl(ω)

∏

e:Xe(ω)=1

pe

∏

e:Xe(ω)=0

(1 − pe)

where cl(ω) denotes the number of clusters in the configuration ω and ZG is the
normalizing constant.

Theorem. Let D be a disconnection event of nonzero probability (D might also

be Ω). If f, g are increasing random variables then both pairs (f̃ , g̃) and (f̂ , ĝ) are
positively correlated with respect to the (conditional) measure Φ( · |D).

The theorem can be generalized in various ways, for instance the cluster Cz can
be replaced by more general random sets. Analogous statemets can be formulated
for Ising-Potts models.
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Existence of weak solutions to the Mullins-Sekerka flow

Matthias Röger

The Mullins-Sekerka flow describes phase transitions in materials with negli-
gible specific heat. Surface tension effects are included by imposing a geometric
condition an the phase boundary. Luckhaus and Sturzenhecker (see [1]) gave a
time-discrete approximation scheme and proved convergence under an additional
condition on the approximations, excluding cancellation of parts of the phase
boundaries in the limit. We use techniques from Geometric Measure Theory to
give a general existence result.

Let the partitioning of a given body Ω ⊂ R3 into a liquid and a solid phase,
and the temperature distribution inside the body be described by functions

X : (0, T ) × Ω → {0, 1},
u : (0, T ) × Ω → R,

where (0, T ) is a given time interval. The phase interface at time t is given as
the common boundary of the ”liquid” phase {X (t, .) = 1} and the ”solid phase”
{X (t, .) = 0}. The Mullins-Sekerka flow consists of an energy balance equation,

∂tX = ∆u+ f,(1)

and the Gibbs-Thomson condition on the phase interface,

H(t, .) = u(t, .).(2)

Here f denotes a given heat source and H(t, .) the mean curvature of the phase
interface, which we take positive for convex liquid phases.

Our main result is stated in the following Theorem (for simplicity we have not
formulated initial and boundary conditions).

Theorem. There exists functions X ∈ L∞(0, T ;H1,2(Ω)), u ∈ L2(0, T ;H1,2(Ω))
satisfying (1) in the sense of distributions and the Gibbs-Thomson law in the fol-
lowing sense: For almost all t ∈ (0, T ) a generalized mean curvature H(t), as de-
fined below, of ∂∗{X (t, .) = 1} exists and H2-almost everywhere on ∂∗{X (t, .) = 1}
equation (2) holds.

In [1] an implicit time-discretization of (1), (2) is introduced, using the gradient
flow structure of the problem. The approximate solutions satisfy a Gibbs-Thomson
law in a formulation which expresses the first variation of the Perimeter functional
for characteristic functions of bounded variation. Under the assumption that the
total surface area of the approximate phase interfaces is conserved, convergence of
approximate Gibbs-Thomson within the BV-formulation is shown in [1].

In general parts of the phase interfaces can cancel in the limit, cusp-like sin-
gularities and ”hidden boundaries” may occur. Thus convergence of approximate
in Gibbs-Thomson laws cannot be expected in the BV-formulation and a suitable
generalization is needed. We follow an idea of Schätzle and consider the limit
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of the surface measures of approximate phase interfaces. In [4] a convergence re-
sult for approximate Gibbs-Thomson laws is derived. Under suitable assumptions,
the limit of the surface measures yields an integral varifold which completes the
phase interface, given as reduced boundary of a function of finite perimeter. This
varifold has bounded first variation and a mean curvature of a certain integrability.
In our time dependent situation, for different limit points of the surface measures
an identification of their mean curvature on the phase interfaces is crucial. This
result was proved in [3] and justifies a notion of mean curvature for quite general
phase interfaces.

Proposition. Let X ∈ BV(Ω; {0; 1}). Assume that there is an integral (n − 1)-
varifold µ in Ω, with bounded first variation and

∂∗E ⊂ spt(µ),

~Hµ ∈ Ls
loc

(µ), s > n− 1, s ≥ 2.

Then the mean curvature of µ on ∂∗{X = 1} is entirely determined by X in the
sense that

H := ~Hµ · ∇X
|∇X|

is equal for different completions µ as above. We call H the generalized mean
curvature of ∂∗{X = 1}.

To prove our existence result we combine the last proposition and [4] to identify
also the first variations of different limit points of the surface measures. With
arguments from [2] and compactness results derived in [1] we finally show the
convergence to correct solutions of the problem.
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High Pressure Phase Transitions

Wilfried Schranz

In order to describe the thermodynamic properties of materials the knowledge
of the “equation of state” (EOS) is essential [1,2]. In the earth interior structural
phase transitions occur at very high temperatures and pressures. Some of the
most prominent examples are the pressure induced phase transformations in Olivin
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(Mg1−xFex)2SiO4 in the upper mantle or the solid-liquid phase transition of
iron at about 6000 K and 330 GPa in the earth core [3]. Our understanding of
materials at ultrahigh pressures has substantially increased due to developments
in experimental methods, especially the diamond anvil cell.

In the presence of pressure induced phase transformations elastic anomalies
are reflected through nonlinear variations of the lattice parameters and the corre-
sponding compressibilities [4,5]. Presently in many phenomenological descriptions
of high pressure data it is standard to describe the system in the different phases by
seperate EOS with corresponding EOS parameters, which are not related to each
other [6,7]. Althoug this method works in many cases it has the disadvantage to
provide no insight into the mechanism of the phase transformation. Moreover one
can hardly use the obtained parameters for calculation of other thermodynamic
properties like specific heat, soft mode, etc. as a function of pressure.

To overcome these problems we have constructed a thermodynamic theory
which is based on a Landau type free energy expansion in terms of the order
parameter η and the strains ǫij , and includes the order parameter part F (η), the
order parameter- strain coupling F (ηij , ǫ) and the elastic part F (ǫij) of the free
energy [8]. At extremely high pressures one faces two different types of nonlinear-
ities:

(a) Geometric nonlinearities appear due to the fact, that for high deformations
the strain tensor cannot be longer treated as infinitesimal, but one has to deal
with finite strains [9].

(b) Physical nonlinearities appear as a consequence of high pressures and show
up e.g. in a nonlinear pressure dependence of the volume, i.e. V (P ).

Usually V (P ) is fitted to nonlinear EOS of various kind, which are known in the
literature as “Murnaghan-, Birch Murnaghan-, Vinet-, etc. EOS” [3]. For cubic
systems it is trivial to find the pressure dependence of the axies from a given V (P ),
i.e. to calculate the third root. For other symmetries this is a hard problem. We
found expressions for the strains or the lattice parameters a, b, c as a function
of hydrostatic pressure, which yield a(P ) · b(P ) · c(P ) = V (P ) for tetragonal, and
orthorhombic systems [8]. With these expressions we could calculate the nonlinear
pure elastic free energy. Coupling these strains to the order parameters we have
also constructed the Landau free energy to describe high pressure phase transitions.

Compared to the heuristic engineering proceedure using several EOSs a thermo-
dynamic model represents a significant improvement, as it allows to relate different
measurable quantities such as unit cell volume, compressibility, specific heat, soft
mode frequencies, etc. via a pressure dependent order parameter to each other in
a systematic way.

At present the theory works for cubic, tetragonal and orthorhombic systems
and for phase transitions that are of the group-subgroup type. An improvement
of the theory to account for phase transitions between other crystal systems and
especially to describe pressure induced phase transitions which are not of the
group-subgroup type is in progress.
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On phase field modelling of alloy solidification

Björn Stinner

(joint work with H. Garcke and B. Nestler)

Solidification of alloys involves the formation of microstructures which essen-
tially influence the properties and quality of castings. In order to describe such
growth phenomena we have been developing a general model which allows for an
arbitrary number of components in the alloy. It is based on a phase-field formu-
lation to handle the moving phase boundaries in such a way that an arbitrary
number of phases can be considered.

During the evolution, energy and mass are conserved and a local entropy in-
equality is satisfied. The model can easily be fit to arbitrary materials by choosing
appropriate bulk free energies of the possible phases and suitable anisotropies for
the phase boundaries and by inserting physical parameters like diffusivities, latent
heats, and surface tensions. Besides, in the sharp interface limit if the diffuse
interface thickness tends to zero, a classical model with moving phase boundaries
is recovered. A full description can be found in [1].

The model is based on an entropy functional. The entropy density consists of
a bulk part s(e, c, φ) and a surface part εa(φ,∇φ) + 1

εw(φ). s depends on the
internal energy density e, the volume fractions ci of the N components and phase-
field variables φα, each one describing the presence of the corresponding phase
α. The surface terms only depend on the phase-field variables. w is some multi
well potential with absolute minima in the points eα = (δαβ)M

β=1 ∈ RM which
correspond to the pure phases. a is some gradient term modelling surface tension
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effects including anisotropy. The evolution is given by balance equations for mass
and energy of the form

(1) ∂te = −∇ · J0, ∂tci = −∇ · Ji, 1 ≤ i ≤ N,

where the fluxes are postulated to be linear combinations of the thermodynamical
forces. The corresponding potentials are given by ∂s

∂e = 1
T and ∂s

∂ci
= −µi

T , T being
the temperature and µi being the chemical potential of component i. We will

write u = (−1
T , µ1

T , . . . ,
µN

T ), then Ji =
∑N

j=0 Lij(u, φ)∇(−uj), 0 ≤ i ≤ N . The
evolution of the phase-field variables is given by a gradient flow of the entropy,

(2) εω(φ,∇φ)∂tφ =
δS

δφ
− λ

with some possibly anisotropic kinetic coefficient ω. We refer to [2] for possible
choices of the occuring functions.

The length scale ε corresponds to the characteristic interface thickness. In the
limit as ε→ 0 (the sharp interface limit) a classical model with moving boundaries
is recovered to first order in ε. The domain is divided into regions occupied by the
pure phases. There, balance equations for e and c are satisfied. On the moving
boundaries separating the phases, temperature and generalized chemical poten-
tial differences are continuous and jump conditions for the conserved quantities
hold. The motion of the boundaries is coupled to the thermodynamical quantities
by a Gibbs-Thomson condition in such a way that local entropy production is
nonnegative.

As in numerical simulations the diffuse interface has to be resolved by the grid
involving restrictions for the time step one is interested in a better approximation.
In [3, 4] results for an approximation to second order in ε have been presented.
They could be generalized to an arbitrary number of conserved quantities; the
case of multiple phases is still an open problem. Based on the method of formally
matched asymptotic expansions, a correction problem to order ε1 is derived. Defin-
ing a small correction to the kinetic coefficient ω, functions identically zero solve
this correction problem. In numerical simulation, second order convergence could
indeed be observed when the correction term was taken into account.

Defining the reduced grand canonical potential ψ as the Legendre transformed
of the entropy density with respect to the conserved quantities (e, c) (see [5]) and
considering (u, φ) as the independent variables we can write down the governing
set of equations in terms of ψ and derivatives,

∂tψ,ui
(u, φ) = ∇ ·

N∑

j=0

Lij∇uj ,(3)

εω ∂tφα = ε∇ · a,∇φα
− εa,φα

− 1
εw,φα

+ ψ,φα
(u, φ) − λ.(4)

Existence and uniqueness of a weak solution of this system of parabolic equations
can be shown under appropriate growth and structural conditions on ψ. To relax
the assumptions, the application of results in [6, 7] is planned.
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Crystallization in 2 dimensions

Florian Theil

Why do many solids form crystals? In order to shed light on this classical
question we consider N ∈ N particles in Rd, d ∈ {1, 2, 3} and study the asymptotic
behavior of ground states of the following pair-interaction energy

E(y) =
∑

{x,x′}⊂X

V (|y(x) − y(x′)|)

as N tends to infinity. Here X is a finite set, #X = N , y : X → Rd encodes the
positions of N particles and V : [0,∞) → R is a fixed interaction potential.

Theorem A (Asymptotic behaviour of the ground state energy per par-
ticle). Let d = 2. There exists a constant a > 0 such that for all V ∈ C2(0,∞)
with the properties V (1) = −1, limr→∞ V (r) = 0 and

V (r) ≥ 1
a for all r ∈ [0, 1 − a],

V ′′(r) ≥ 1 for all r ∈ (1 − a, 1 + a),

V (r) ≥ − 1
2 for all r ∈ [1 + a,

√
2],

V ′′(r) ≤ ar−5 for all r <
√

2,

the ground state energy has the following asymptotic behavior

lim
N→∞

1
N min

y
E(y) = 3 min

r
VR(r) = 3VR(r∗) = 3E∗.

The renormalized potential VR, which is defined by

VR(r) =
1

6

∑

k∈Z2\{0}
V

(
r
√
k2
1 + k1k2 + k2

2

)
,
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is the interaction energy between a single particle and a homogeneously stretched
copy of the hexagonal lattice

A2 =

{
1

2

(
2

0

1√
3

)
k

∣∣∣∣ k ∈ Z
2

}
⊂ R

2.

In particular the result implies that the ground state energy is asymptotically
proportional to the number of particles, not the number of terms in E.

Theorem B (Ground states). Let the assumptions of Theorem A be satisfied,
A ⊂ A2 be an arbitrary bounded subset and ymin be a ground state of the modified
energy ∑

x∈A
x′∈A2

V (|y(x) − y(x′)|)

subject to the constraint y(x) = r∗x for all x ∈ A2 \ A. Then {y(x) | x ∈ A2} =
r∗A2.

Previously Radin obtained in [1] similar results for a specific choice of V . In
the discussion several interesting point have been raised:

(1) Is it possible to define pressure by considing the constrained minimization

y(x) ∈
√
NΩ where Ω ⊂ R2 is a bounded open set? Intuitively one would

expect that the ground state energy per particle is given by

min
y∈ΩN

1
NE(y) = V ∗∗

R

(√
2√
3
meas(Ω)

)
,

where V ∗∗
R is the convexification of VR.

(2) An application of the methods developed so far might also lead to a rigorous
analysis of the Wigner-crystal where V (r) = 1

r is the Coulomb-interaction
enery between electrons. For large densities it would be be necessary to work
with a quantum mechanical version of the pair energy E.
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Dynamical problems with nonconvex energies as a model of damage in
materials

Johannes Zimmer

(joint work with Marc Oliver Rieger)

Young measures have been successfully applied to various mathematical prob-
lems in material science. Most notably, they are an appropriate tool to capture the
formation of microstructure arising in problems of martensitic phase transitions.
This approach has been pioneered by Ball and James [2]. There, Young measures
describe the oscillations in microstructured materials arising from a nonconvex
free energy density.
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Though variational methods have turned out to be tremendously successful for
the analysis of problems with nonconvex energy densities, an inherent difficulty is
that the traditional variation approach gives the global minimiser, which may be
unphysical. For fracture, Truskinovsky pointed out [7] that sublinear functionals
like

∫
log
(
1 + |ux|2

)
have a global minimiser with zero energy if the initial config-

uration is only stretched infinitesimally. That is, an elastic bar described by this
model would break instantaneously if the energy were to obtain its global mini-
mum. A natural strategy is therefore to search for local minimisers. To this aim,
the concept of a quasi-static limit of Young measure gradient flows with respect
to a regularized Wasserstein metric has been introduced [5].

We study the evolution of Young measures by means of a discretized gradient
flow, where the energy density is sublinear. To be specific, we may assume the
energy is convex in a neighbourhood of the origin and concave elsewhere.

A natural metric is given by the Wasserstein distance

dp
W (ν1, ν2) :=

1

2
inf
µ

(∫

X

∫

X

|x− y|p dµ(x, y), π1(µ) = ν1, π2(µ) = ν2

) 1
p

,

where π1(µ) and π2(µ), respectively, are the marginals, i.e., projections of the
measure µ on X ×X onto the first and second, respectively, component.

It turns out that the 1-Wasserstein metric provides a suitable scaling, while a p-
Wasserstein metric with p > 1 prohibits a “long-distance” mass transport between
existing masses [5].

Problems in materials science often turn out to be asymmetric. For instance,
nucleation and disappearance of a phase are not symmetric, since a nucleation
barrier has to be overcome. We introduce a phenomenological asymmetric part to
the metric. Namely, for two closed sets A and B, we define

(1) d+
H (A,B) := sup

a∈A
inf
b∈B

d(a, b).

This is “half” the Hausdorff distance

max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
;

we will consider time-discretized problems, where B will be the support of the
measure at the previous time step, and A the support at the current time step.

This regularisation is clearly phenomenological. We will demonstrate that it
nevertheless captures essential features of the dynamics. Specifically, the following
variational problem will be studied. Given ν0, define νj for j ∈ N as solution of

(2) inf
ν∈X

∫

Ω

[
1

2
d1

W

(
νj , ν

)2
+
h

ǫ
〈Φ, ν〉

]
dx+ δ sup

x∈Ω
d+

H

(
supp(νj), supp(ν)

)

(compare [4] for the connection to gradient flows without regularizing term). Here,
X is the class of (gradient) Young measures (varifolds) with expectation value F (t),
i.e.,

∫
Ω dν = F (t), where F (t) is given.

Gradient flows in metric spaces have been thoroughly investigated [1]. An
extension to flows in asymmetric metric spaces is ongoing [3].
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Here, the focus is on qualitative properties of the solution to (2) in a one-
dimensional situation. Suppose Ω := (0, 1), and assume for simplicity that the
energy Φ is convex in B(0, 1) (the ball with radius 1 centred at the origin), and
concave elsewhere. For such an energy of Lennard-Jones type, stability properties
can be shown for the space-homogeneous case, where where the measures are
constant in x.

Proposition. If F (t) = F < 1, then the solution is stable everywhere in (0, 1).
That means: νj(x) supported in (0, 1−η) implies that ν(x) is supported in (0, 1−η).

If F < 1 and νj , νj+1 are supported in (0, 1), then
(
supp

(
νj+1

))conv
is strictly

contained in
(
supp

(
νj
))conv

.

Corresponding results concerning the instability in the concave region will also
be presented, as well as questions of existence. This allows for a discussion of
how the mathematical model sketched above can serve as a description of damage
occuring in a material.

A more detailed presentation will be published elsewhere [6].
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