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Introduction by the Organisers

There has been very fruitful interaction between the fields of Combinatorics and
Commutative Algebra since the 70’s [1], [2], [3], [4]. Notably, there has been a surge
in interest and research during the last 8 years: a great variety of new ideas and
techniques were introduced, and substantial progress was made. Projects in this
direction have been undertaken by both established mathematicians and graduate
students or postodcs. Currently, the main centers for such research are Germany,
Italy, Japan, and USA. The toolset from Commutative Algebra that helps to solve
combinatorial problems ranges from Hilbert-series to local cohomology. On the
other hand, Combinatorics enriches Commutative Algebra by supplying questions,
methods and results that ask for a more general setting, a setting which in many
cases has a ring theoretic framework.

The Oberwolfach workshop on “Combinatorial Commutative Algebra” was or-
ganized as an attempt to gather researchers from Combinatorics and Commutative
Algebra in order to announce the latest developments, spread new problems, and
spark further interaction. For that purpose only very few and only longer talks
were scheduled, and they all reported on exciting recent developments. The talks
covered a wide spectrum of topics ranging over f-vector theory, algebraic shifting,
simplicial complexes, polytopes, Gröbner basis, free resolution, powers of ideals,
Hilbert-Kunz functions, and related questions in Classical Algebraic Geometry.

The talks were confined to the morning session and the afternoons were kept
free for research. Existing teams continued their collaboration and new teams
were formed; conjectures announced during a lecture before lunch did not exist
anymore at dinner time. Mathematics was on the move.
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Gil Kalai envisaged in his talk yet another round of progress through the inter-
action of Commutative Algebra and Combinatorics. We hope that this conference
has made a contribution for this vision to become true. The success of a conference
is determined by many factors, one of them is the atmosphere at the conference
location. The Oberwolfach staff created the perfect atmosphere and we are very
grateful for their hospitality.
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Abstracts

Kazhdan-Lusztig polynomials

Francesco Brenti

This has been an expository/survey talk about Kazhdan-Lusztig polynomials em-
phasizing their connections to the algebraic geometry of Schubert varieties and
some recent developments.

1. Definitions

Let [n] = {1, . . . , n}, Sn = {σ : [n] → [n] : σ is a bijection},

S = {(1, 2), (2, 3), . . . , (n − 1, n)} , and T = {(i, j) : 1 ≤ i < j ≤ n} ,

(where (i, j) is the permutation that switches i and j and leaves everything else
fixed). For σ ∈ Sn let

inv(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|

(number inversions of σ, or length of σ, denoted l(σ)) and

D(σ) = {(i, i + 1) ∈ S : σ(i) > σ(i + 1)}(⇔ l(σ(i, i + 1)) < l(σ))

(descent set of σ ).
There are two main combinatorial objects needed to define Kazhdan-Lusztig

polynomials.
The Bruhat graph of Sn is the directed graph B(Sn) having Sn as vertex set

and where u → v if and only if there exist (i, j) ∈ T such that v = u(i, j) and
l(v) > l(u) (equivalently, such that v = u(i, j), i < j and u(i) < u(j)). Note that
this digraph is always acyclic. The transitive closure of B(Sn) is the Bruhat order
of Sn, denoted by ≤.

Given u, v ∈ Sn we let [u, v] = {a ∈ Sn : u ≤ a ≤ v}, l(u, v)
def
= l(v) − l(u), and

write u ⊳ v if |[u, v]| = 2.
We are now in a position to define Kazhdan-Lusztig and R-polynomials. We

begin with a “Theorem-Definition”.

Theorem 1. There is a unique family of polynomials {Ru,v(q)}u,v∈Sn
⊆ Z[q]

satisfying the following conditions:

i): Ru,v(q) = 0 if u 6≤ v;
ii): Ru,v(q) = 1 if u = v;
iii): if s ∈ D(v) then

(1) Ru,v(q) =

{

Rus,vs(q), if s ∈ D(u),
qRus,vs(q) + (q − 1)Ru,vs(q), if s 6∈ D(u).
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A proof of the preceding theorem can be found in [11, §7.5]. The polyno-
mials whose existence and uniqueness are guaranteed by Theorem 1 are called
the R-polynomials of Sn. Theorem 1 can be used to compute the polynomials
{Ru,v(q)}u,v∈W , by induction on l(v). It is not hard to show that Ru,v(q) is a

monic polynomial of degree l(u, v), and that Ru,v(0) = (−1)l(u,v).
We now come to the definition of the Kazhdan-Lusztig polynomials. This is

again a “Theorem-Definition”.

Theorem 2. There exists a unique family of polynomials {Pu,v(q)}u,v∈Sn
⊆ Z[q]

satisfying the following conditions:

i): Pu,v(q) = 0 if u 6≤ v;
ii): Pu,v(q) = 1 if u = v;
iii): deg(Pu,v(q)) < 1

2 l(u, v) if u < v;
iv):

ql(u,v) Pu,v

(

1

q

)

=
∑

u≤a≤v

Ru,a(q)Pa,v(q)

if u ≤ v.

The preceding theorem was first proved in [12] and a proof of it can also be found
in [11, §7.10]. The polynomials {Pu,v(q)}u,v∈Sn

whose existence and uniqueness
are guaranteed by Theorem 2 are called the Kazhdan-Lusztig polynomials of Sn.
It can be shown that Pu,v(0) = 1 for all u, v ∈ Sn. So, in particular, Pu,v(q) = 1
if l(u, v) ≤ 2.

Once the R-polynomials have been computed, then Theorem 2 can be used to
compute recursively the polynomials {Pu,v(q)}u,v∈Sn

, by induction on l(u, v).

2. Classical Results

Kazhdan-Lusztig polynomials (which can be defined for any Coxeter group)
were introduced by Kazhdan and Lusztig in [12] in order to construct representa-
tions of the associated Hecke algebra, which is a deformation of the group algebra.

The Kazhdan-Lusztig polynomials have then found numerous and unexpected
applications also in other areas of mathematics, including the representation theory
of semisimple algebraic groups (see, e.g., [1] and the references cited there), the
theory of Verma modules (see, e.g., [2], [5]), the algebraic geometry and topology
of Schubert varieties (see, e.g., [13], [15], [3]), canonical bases ([7], [16]), and
immanant inequalities ([10]).

Here are the main connections to Schubert varieties. For a permutation v ∈
Sn+1 let Ωv be the Schubert cell indexed by v, and Ωv (Zariski closure) be the
corresponding Schubert variety (we refer the reader to, e.g., [8], or [3] for the def-
inition of, and further information about, Schubert cells and varieties). It is well
known (and not hard to see) that Ωv =

⊎

u≤v Ωu so that u ≤ v if and only if

Ωu ⊆ Ωv. Denote by IH∗(Ωv,C)Ωu
the (middle perversity) local intersection co-

homology of Ωv at a (equivalently, any) point of Ωu. This is a graded vector space,
and we denote by IHi(Ωv,C)Ωu

(i ∈ N) its graded pieces (we refer the reader to,
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e.g., [9], or [14], for further information about intersection (co)homology). The
following result was first proved by Kazhdan and Lusztig in [13, Theorem 4.3].

Theorem 3. Let u, v ∈ Sn+1, u ≤ v. Then

Pu,v(q) =
∑

i≥0

qi dimC(IH2i(Ωv,C)Ωu
).

Note that it is known that dimC(IHi(Ωv,C)Ωu
) = 0 if i ≡ 1 (mod 2).

Theorem 3 implies that the coefficients of Pu,v(q) are nonnegative for all u, v ∈
Sn (something that Kazhdan and Lusztig had conjectured in [12]). No combi-
natorial, or commutative algebra, interpretation is known, in general, for these
coefficients.

Here are two other connections between the Kazhdan-Lusztig polynomials and
the algebraic geometry of Schubert varieties (see, e.g., [3]).

Theorem 4. Let u, v ∈ Sn, u ≤ v. Then Pu,v(q) = 1 if and only if Ωv is smooth
at any point of Ωu.

Theorem 5. Let v ∈ Sn. Then Pe,v(q) = 1 (where e is the identity) if and only

if Ωv is smooth.

What about the R-polynomials? Do they have any connections to geometry?
The following result is a simple consequence of the main theorem in [6].

Theorem 6. Let F be a finite field of order q and u, v ∈ Sn. Then Ru,v(q) =
|Ωv ∩ Ω∗

u| where Ω∗
v is the Shubert cell opposite to Ωv.

3. Recent Developments

Let P be (any) poset, and M be a complete matching of the Hasse diagram of
P . For x ∈ P denote by M(x) the match of x.

Definition 7. We say that M is a special matching if, for all x, y ∈ P , such that
M(x) 6= y, we have that

x ⊳ y ⇒ M(x) ≤ M(y).

Note that this implies, in particular, that if x ⊳ y and M(x) ⊲ x then M(y) ⊲ y
and M(y) ⊲ M(x), and dually that if x ⊳ y and M(y) ⊳ y then M(x) ⊳ x and
M(x) ⊳ M(y).

It is a surprising fact that special matchings can be used to compute the
Kazhdan-Lusztig polynomials.

Theorem 8. Let v ∈ Sn, and M be a special matching of [e, v]. Then

(2) Ru,v(q) =

{

RM(u),M(v)(q), if M(u) ⊳ u,
qRM(u),M(v)(q) + (q − 1)Ru,M(v)(q), if M(u) ⊲ u,

for all u ∈ [e, v]. So the polynomials Rx,y(q)x,y∈[e,v] (and hence Px,y(q)
x,y∈[e,v],

and hence the intersection homology of the Schubert variety Ωv ) depend only on
[e, v] as an abstract poset.

The preceding result has been recently proved in [4, Theorem 5.2].
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Initial algebras of determinantal rings, Cohen-Macaulay and Ulrich
ideals

Winfried Bruns

Let K be a field and X an m × n matrix of indeterminates over K. Let K[X ]
denote the polynomial ring generated by all the indeterminates Xij . For a given
positive integer r ≤ min{m, n} we consider the determinantal ideal Ir+1 = Ir+1(X)
generated by all r + 1 minors of X if r < min{m, n} and Ir+1 = (0) otherwise.
Let Rr+1 = Rr+1(X) be the determinantal ring K[X ]/Ir+1.

Determinantal ideals and rings are well-known objects and the study of these
objects has many connections with algebraic geometry, invariant theory, repre-
sentation theory and combinatorics. See Bruns and Vetter [BV] for a detailed
discussion.
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We develop an approach to determinantal rings via initial algebras. We cannot
prove new structural results on the rings Rr+1 in this way, but the combinatorial
arguments involved are extremely simple.

The classical generic point is the embedding ϕ : Rr+1 → K[Y, Z] where Y and
Z are matrices of indeterminates of formats m× r and r×n respectively, and ϕ is
induced by the substitution Xij 7→ (Y Z)ij . In other words, Rr+1 is identified with
the subalgebra of K[Y, Z] generated by the entries of the product matrix Y Z.

By the straightening law [DRS] the standard bitableaux form a K-basis of
Rr+1. With respect to a suitable term order on K[Y, Z], the initial monomials
of the standard bitableaux (or rather their images under ϕ) have a very simple
description and are pairwise different. Therefore these initial monomials span the
initial algebra in(Rr+1), and we can easily deduce that the latter is a normal
semigroup ring. Using general results about toric deformations (see [CHV]) and
the properties of normal semigroup rings [Ho], one obtains immediately that Rr+1

is normal, Cohen-Macaulay [HE], with rational singularities in characteristic 0,
and F -rational in characteristic p. (One should not mix up this approach with the
construction of Gröbner bases for the determinantal ideals; see [BC].)

Toric deformations of determinantal rings have been constructed by Sturmfels
[St] for the coordinate rings of Grassmannians (via initial algebras) and Gonciulea
and Lakshmibai [GL] for the class of rings considered by us. The advantage of our
approach, compared to that of [GL], is its simplicity.

Moreover, it allows us to determine the Cohen-Macaulay and Ulrich ideals of
Rr+1. Suppose that 1 ≤ r < min{m, n} and let p (resp. q) be the ideal of Rr+1

generated by the r-minors of the first r rows (resp. the first r columns) of the
matrix X . The ideals p and q are prime ideals of height one and hence they are
divisorial, because Rr+1 is a normal domain. The divisor class group Cl(Rr+1) is
isomorphic to Z and is generated by the class [p] = −[q]. (See [BV, Section 8].)
The symbolic powers of p and q coincide with the ordinary ones. Therefore the
ideals pk and qk represent all reflexive rank 1 modules.

The precise description of the monomial cone underlying in(Rr+1) allows us to
show that the initial ideals of pk (resp. qk) are conic ideals in the sense of [BG] if
k ≤ m− r (resp. k ≤ n− r). It follows that the intial ideal and therefore pk (resp.
qk) itself is Cohen-Macaulay for k ≤ m − r (resp. k ≤ n − r). Since the minimal
number of generators of the remaining divisorial ideals exceeds the multiplicity of
Rr+1 (for example, see [Gh]), they cannot be Cohen-Macaulay. Comparing the
minimal number of generators and the multiplicity, we prove that the powers pm−r

and qn−r are even Ulrich ideals (see [BHU]).

These results were obtained in joint work with Tim Römer (Osnabrück) and
Attila Wiebe (Essen), see [BRW].
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Regularity of ideals and their powers

Marc Chardin

We lectured on some parts of a recent work providing bounds for the Castelnuovo-
Mumford regularity of homogeneous ideals and their powers in terms of degrees of
generators.

A key point in these estimates is variants of a lemma due to Gruson, Lazarsfeld
and Peskine in their joint work on regularity of reduced curves [3]. In its simplest
form it says :

Lemma 1. Let F• be graded complex of free modules over a polynomial ring R,
with Fi = 0 for i < 0 and Fi = ⊕jR[−j]βij . If dimHi(F•) ≤ i for i ≥ 1, then

reg(H0(F•)) ≤ max
i

{bi((F•)},

where bi(F•) := max{j | βij 6= 0} if Fi 6= 0 and −∞ else.

Notice that, by definition, the inequality above is an equality if F• is acyclic.

More refined versions using the same kind of ideas give results on certain local
cohomology modules of H0(C•) in terms of some cohomology modules of the Ci’s
whenever C• is a graded complex of R-modules which is not too far from being
acyclic. In a geometric context, this kind of results have been previously used by
Ein and Lazarsfeld (see for instance [2]). For precise statments we refer to the first
section of our preprint [1].
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A first application concerns the regularity of Frobenius powers, and partially
solves a conjecture of M. Katzmann motivated by the challenging problem of
localization of tight closure.

Theorem 2. Let S be a standard graded ring over a field of characteristic p > 0
and M a finitely generated graded S-module.
Assume that dim(Sing(S)∩Supp(M)) ≤ 1 and set bS

i (M) := max{j | TorS
i (M, k)j 6=

0} if TorS
i (M, k) 6= 0, and bS

i (M) := −∞ else. Then, denoting by F the Frobenius
functor, one has

reg(FeM) ≤ max
0≤i≤j≤dim S

{pebS
i (M)+aj(S)+j−i} ≤ reg(S)+ max

0≤i≤dim S
{pebS

i (M)−i}.

As a second example, we presented the following theorem on regularity of an
intersection of projective schemes :

Theorem 3. Let k be a field, Z1, . . . ,Zs be closed subschemes of a projective
k-scheme Z of dimension d. Assume that reg(Z1) ≥ · · · ≥ reg(Zs). If the inter-
section of the Zi’s is of dimension at most 1, then

reg(Z1 ∩ · · · ∩ Zs) ≤ reg(Z) +

min{d,s}
∑

i=1

reg(Zi).

For the regularity of surfaces, we have for instance,

Theorem 4. Let S be a standard graded Gorenstein ring, Z := Proj(S), n :=
dimZ and I be a graded S-ideal generated by forms of degrees d1 ≥ · · · ≥ ds. Set
X := Proj(S/I) and ℓ := min{s, n}. Assume that dimX = 2, the component of
dimension two of X is a reduced surface S and µ(IX,x) ≤ dimOZ,x for x ∈ S
except at most at finitely many points, then

reg(X) ≤ reg(S) + d1 + d2 + · · · + dℓ − ℓ.

Without the hypothesis on the local number of generators, we are able to get a
bound which is essentially twice the bound above.

Using the approximation complexes introduced by Simis and Vasconcelos as a
candidate resolution for the symmetric powers of an ideal, we also provide the
following result that estimates the regularity of powers in terms of the regularity
of the ideal sheaf :

Theorem 5. Let I ⊂ R = k[X0, . . . , Xn] be an ideal generated in degrees d1 ≥
· · · ≥ ds. Set X := Proj(R/I) ⊆ Pn

k , Xj := Proj(R/Ij) for j ≥ 2 and ℓ :=
min{s, n}.

Assume that dimX ≤ 3, µ(I℘) ≤ dimR℘ for all ℘ ∈ Supp(R/I) of codimension
at most n − 2, and further X is generically reduced if dimX = 3, then

reg(Xj) ≤ (j − 1)d1 + max{reg(X), d2 + · · · + dℓ − ℓ}.
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Betti numbers and initial ideals

Aldo Conca

The goal of the talk is to present some results obtained in collaboration with
J.Herzog and T.Hibi [3] and with S.Hosten and R.Thomas [4]. The main setting
is the following. Let K be a field of characteristic 0 and R = K[x1, . . . , xn] the
polynomial ring equipped with the standard grading. Let I be an homogeneous
ideal of R. The ideal I has a finite minimal graded R-free resolution.

0 → Fp → Fp−1 → · · · → F1 → F0 → I → 0.

The modules Fi are graded and R-free so that they are direct sums of rank
1 graded R-free. A rank 1 graded R-free module has the form R(−j) for some
integer j. Here R(−j) denotes the graded module whose degree h component
equals the degree (h − j) component of R. By collecting terms we may write
Fi = ⊕jR(−j)βij . The numbers βij are called (graded) Betti numbers of I and
they are denoted by βij(I) to stress their dependence on I. Concretely, βij(I) is
the number of minimal generators of degree j of the i-syzygy module of I. One
knows that

βij(I) = dim TorR
i (I, K)j

Two important invariants related to Betti numbers are the projective dimension:

proj dim(I) := max{i : βij(I) 6= 0 for some j}

and the Castelnuovo-Mumford regularity:

reg(I) := max{j − i : βij(I) 6= 0}

A standard way to attach to I a discrete object, a monomial ideal, is to take an
initial ideal inτ (gI) with respect to term order τ after a change of homogeneous
coordinates defined by an invertible matrix g ∈ GLn(K). Set J = inτ (gI). It is
well-known that the Betti numbers can only increase by passing from I to J and
hence so do the regularity and the projective dimension.

βij(I) ≤ βij(J) for all i, j proj dim(I) ≤ proj dim(J) reg(I) ≤ reg(J) (1)

For a given I and τ there is an Zariski open and not empty subset U of GLn(K)
such that inτ (gI) = inτ (hI) if g, h ∈ U . This constant value is called the generic
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initial ideal of I with respect to τ and it is denoted by ginτ (I). It just depends
on I and on τ but not on the coordinates system. In generic coordinates and with
respect to the degree reverse lexicographic order (rl for short) two of the three
inequalities of (1) become equalities:

Theorem 1 ([2]). Let J = ginrl(I). Then proj dim(I) = proj dim(J) and reg(I) =
reg(J).

In general, even when J = ginrl(I), the Betti numbers of I might be strictly
smaller than those of J . But one has:

Theorem 2 ([1]). Let J = ginrl(I). If β0j(I) = β0j(J) for all j then βij(I) =
βij(J) for all i, j.

Generalizing Theorem 2, we have obtained:

Theorem 3 ([3]). Let J = ginrl(I). If βij(I) = βij(J) for all j and for a given i
then βkj(I) = βkj(J) for all k ≥ i and all j.

We call this behavior “rigidity”. It can be rephrased by saying that if the
minimal free resolutions of I and J coincide (numerically) in position i then they
coincide all the way back toward the end of the resolution. The same sort of
rigidity is established also when J is replaced by any other gin of I or with the
(unique) lex-segment ideal with the Hilbert function of I. It is easy to construct
examples showing that the resolutions of I and J can be (numerically) different at
the beginning and equal at the end. In other words, there is no rigidity toward the
beginning of the resolution. Also, if J is an initial ideal is some special coordinates
system then there is no rigidity at all. For example, toric and determinantal
ideals arising from classical constructions are known to be minimally generated by
Gröbner bases in their special coordinates systems. We call these ideals “classical”.
The family of classical ideals includes ideals defining Segre products of polynomial
rings, ideals defining Veronese subrings of polynomial rings, ideal of minors of given
size in generic or symmetric matrices of variables, ideal of Pfaffians of generic skew-
symmetric matrices, ideals of Plücker relations, etc... For any such classical ideal
I we know an explicit initial ideal J (called the classical initial ideal) which is
Cohen-Macaulay and has as many generators as I, that is, β0j(I) = β0j(J). But
for most of the cases one has βij(I) 6= βij(J) for some i (very often already i = 1)
and some j. So we are led to ask:

Question 4. Given a classical ideal I does there exist an initial ideal (in the given
coordinates) H such that βij(I) = βij(H) for all i, j?

Such an ideal, if it exists, is clearly the best possible initial ideal of I, at least ho-
mologically speaking. For instance for maximal minors of generic matrices or sub-
maximal minors of generic symmetric matrices already the classical initial ideals
have the property required in Question 4. This is simply because they have min-
imal multiplicity with respect to their defining degree. For other “small” cases
like submaximal minors of generic square matrices, the classical initial ideals does
not have the correct resolution but one can find an initial ideal H as required in
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Question 4. On the other hand, in most of the cases we think (and sometime we
can prove) that such an H does not exist. For instance:

Example 5. Let I be the ideal of 2-minors of a generic 4×4-matrix i.e. I defines
the Segre embedding of P3 × P3 in P15. With the help of the program TiGERS
(Toric Gröbner bases Enumeration by Reverse Search) written by B.Huber and
R.Thomas, one checks that all the quadratic initial ideal of I have at least 2 non-
linear first syzygies. Since I has only linear first syzygies, it follows that there is
no H has requested in Question 4.

The next best thing that one could ask for is an initial ideal which has the
correct number of generators and Cohen-Macalay type, i.e. head and tail of the
resolution. This led us to:

Question 6. Given a classical ideal I which is Gorenstein does there exist a
Gorenstein initial ideal (in the given coordinates) H such that I and H have the
same number of generators?

Recent work of Reiner and Welker [5] on the Neggers-Stanley conjecture gives a
positive answer to Question 6 for the the class of Gorenstein Hibi rings associated
with posets of width at most 2. This class includes Segre embedding of Pn × Pn

and it includes also the Grassmanninan G(2, n) via a Sagbi deformation.
Our main result is the following:

Theorem 7 ([4]). For the ideal defining Segre embedding Pn × Pn and for the
ideal defining the Veronese embedding of Pn with forms of degree 2 and n odd we
describe Gorenstein square-free initial ideals with explicit shellings of the associated
simplicial complexes.
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Instant Elimination, Powers of Ideals and an Oberwolfach Example

David Eisenbud

(joint work with Craig Huneke and Bernd Ulrich)

In our recent preprint entitled “The Regularity of Tor and Graded Betti Numbers”
(www.arxiv.org/Math.AC/0405373) Craig Huneke, Bernd Ulrich and I studied a
group of problems centered around powers (or products) of homogeneous ideals
with linear presentations or linear relations in polynomial rings. In the first two
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sections of this report I will describe the motivating problem and our best theorem
about it. The third section contains a more elementary conjecture and a result
relating the powers of an ideal of finite colength to its resolution. In the last
section we present a counter-example to a stronger conjecture, discovered by Mike
Stillman at Oberwolfach in response to my talk.

The main technical result in our preprint is a bound for the Castelnuovo-
Mumford regularity of the local cohomology of certain Tor modules. We will
not present this bound here. However, the results below are all applications of it.
The preprint gives many further applications as well.

1. Instant Elimination and the Cubic Surface

One of my favorite results from classical algebraic geometry states that any
smooth cubic surface X in P3 (over an algebraically closed field K) is isomorphic
to the blow-up of the projective plane P2 at 6 points. Conversely given a set
Γ ⊂ P2 of 6 points such that Γ is not contained in a conic and no three points
of Γ lie on a line, the blow-up of P2 at Γ is embedded as a smooth cubic surface
X by the linear series of cubic plane curves passing through the 6 points. More
recent, but still classical (possibly it was discovered by Room in [4]), is an explicit
method of writing down the equation of X , given a basis for the space of cubic
forms vanishing on Γ. I want to begin by reminding you of this construction, which
was the motivation for the work by Huneke, Ulrich and myself that I will describe.

The points of Γ inmpose independent conditions on cubic forms, so the vec-
tor space of cubics through Γ has dimension 4; suppose that Fi(x0, x1, x2) (i =
1, . . . , 4) form a basis. By the Hilbert-Burch Theorem (see for example [2]), the
ideal IΓ of Γ is generated by the n × n minors of an n × n− 1 matrix M of forms
of positive degree, which occurs as the presentation matrix of I. Since Γ is not
contained in a conic, four of the minimal generators of I are cubic forms. We
deduce at once that the number n must be 4 (so IΓ is generated by cubics) and
the entries of M must be linear forms.

Now the 3×4 matrix M of linear forms in the polynomial ring S := K[x0, x1, x2]
may be regarded as a tensor in K3 ⊗ K4 ⊗ S1 = K3 ⊗ K4 ⊗ K3, where S1 = K3

denotes the degree 1 part of S. Let T be the homogeneous coordinate ring of P3, a
polynomial ring in 4 variables T = K[z0, . . . , z3]. If we identify T1 with the middle
tensor factor K4, then such a tensor equally represents a 3× 3 matrix N of linear
forms over T .

Theorem 1 (Room). The image of P2 under the linear series of cubics through
Γ that are the minors of M is defined by the determinant of N .

We would normally compute the ideal of X by eliminating the variables xi

from the four polynomials zi − Fi(x0, x1, x2), and this is a relatively complicated
calculation. Thus we think of theorem 1 as an “instant elimination” formula, and
we ask when such instant elimination is possible.

Analyzing the proof of theorem 1, one finds that it rests on two independent
propositions:
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(1) The cokernel of N is a module whose annihilator is precisely the ideal of
X .

(2) The annihilator of the cokernel of N is equal to its Fitting ideal (the ideal
generated by the determinant of N .

The relationship between the Fitting ideal and the annihilator is an old subject,
and Item (2) is a condition that has been studied elsewhere, for example in [1].
In the case of a square matrix N the equality follows as soon as the submaximal
minors of N generate an ideal of grade at least 2, which covers the case of theorem
1.

2. Rees Algebra and Symmetric Algebra

On the other hand, condition (1) is rather mysterious. It belongs to the theory
of Rees algebras, defined as follows. Let I ⊂ S be any ideal. For simplicity, we
will restrict ourselves to the case where S is a polynomial ring over K. The Rees
algebra of I is the graded algebra R(I) := ⊕dI

d = S[It] ⊂ S[t], where t is a new
variable. When I is a homogeneous ideal, R(I) is a bigraded algebra with (i, j)
component equal to ((Ij)i). Thus for example when I is generated by cubics as
above, R(I) has (i, j) component equal to 0 when i < 3j, and the space R(I)3j,j

is the space of minimal generators (of degree 3j) of the ideal Ij .
We may write R(I) as a homomorphic image of the symmetric algebra Sym(I),

say Sym(I)/B. Let Bt be the component of B in Symt(I), so that B = ⊕t≥2Bt. It
is easy to see that Bt is the torsion submodule of Symt(I).

The relations defining Sym(I) are easily derived from the relations defining I:
if G1 → G0 → I → 0 is a free presentation of I as an S-module, then Sym(I) =
Sym(G0)/G1 Sym(G0). That is, the defining ideal of Sym(I) in the polynomial
ring Sym(G0) is generated by the image of G1, regarded as a space of forms that
are linear in the variables corresponding to generators of G0. Thus the difficult
part of understanding R(I) is to understand B.

Returning to the setup for instant elimination, suppose that I is generated by
forms of a single degree d, which we think of as defining a rational map from the
projective space ProjS to a projective space whose coordinates zi correspond to
the generators of I. Suppose further that the presentation matrix of I is a matrix
of linear forms M , as in the example of the ideal of 6 points in the plane above.
It is not hard to show that the matrix N derived from M by the process in the
example is actually the presentation matrix of the module N := ⊕j Symj(I)dj+1

over the polynomial ring in variables corresponding to a set of generators of I. On
the other hand, the module N ′ := ⊕j(I

j)dj+1 has annihilator equal to the image
of Proj(S) under the rational map defined by the generators of I. The module N ′

is naturally a homomorphic image of N , and it is not hard to show that condition
(1) of the “instant elimination process” is satisfied if and only if they are equal,

Symj(I)dj+1 = Ij
dj+1 for all j; that is, (Bj)dj+1 = 0 for all j.

The simplest way in which to have (Bj)dj+1 = 0 for all j is for B = 0; in this
case the ideal I is said to be of linear type. However, the ideal of 4 cubics in the
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example above is not of linear type, so this simple case doesn’t even cover that
classical example.

The next simplest situation occurs when the regularity of Bj is jd, that is, when
each Bj is a vector space concentrated in degree jd. This is exactly what happens
in the example of the four cubics, above. The meaning of this condition is that
the “extra” relations on the Rees algebra, beyond those of the symmetric algebra,
are just those given by the K-linear relations among the monomials of degree j in
the minimal generators of I that are the “obvious” generators of Ij . An obvious
necessary condition, equivalent to the statement that each Bj has finite length, is
that SymjI = Ij locally on the punctured spectrum of S, that is, I is of linear
type on the punctured spectrum.

Here is a general conjecture that covers the case of the ideal of 6 points:

Conjecture 2. If I ⊂ S = K[x0, . . . , xr] has linear type on the punctured spec-
trum. If I is generated by forms of degree d and has linear free resolution, then
(with notation above) Bj has regularity jd.

When S/I has finite length, then I is automatically of linear type on the punc-
tured spectrum. In this case we can prove the conjecture in a strengthened form:

Theorem 3. Let I ⊂ S be a homogeneous m-primary ideal. Suppose that I is
generated in degree d. If the resolution of I is linear for ⌈n/2⌉ linear steps, then
Bt is concentrated in degree dt for every t; in particular, (Bj)dj+1 = 0 for all j.

3. Powers of Ideals

This is just the beginning of a whole series of conjectures about powers of
ideals with linear presentation or linear resolution. Throughout we work with a
homogeneous ideal I in a polynomial ring S = K[x1, . . . , xn]. Let m = (x1, . . . , xn)
be the homogeneous maximal ideal. Suppose that I is generated in a single degree
d. We say that I has linear resolution for t steps if the j-th syzygies of I are
generated in degree d + j for j = 1, . . . , t (so that the first t matrices in the
minimal free resolution of I are matrices of linear forms.) For example, to say
that I has linear resolution for 1 step just means that I is linearly presented. We
say that I has linear resolution if this holds for t = n− 1, so that all the matrices
in a minimal free resolution of I are matrices of linear forms. Here is a well-known
(and elementary) result that sets the stage for our conjectures:

Proposition 4. Suppose that I is a homogeneous m-primary ideal generated in
a single degree d. The ideal I has linear free resolution if and only if I is a power
of m.

In this sense, an m-primary ideal I ought to be “more like” a power of the
maximal ideal if it has linear resolution for t steps for large t. Even t = 1 is
enough to see some evidence:

Theorem 5. Suppose that I is a homogeneous m-primary ideal generated in a
single degree. If I has linear presentation, then some power of I is equal to a
power of the maximal ideal m.
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Experimentation suggests that the following sharper version might be true:

Conjecture 6. If I is a homogeneous m-primary ideal of S generated in a single
degree d, and I has linear free presentation, then In−1 = m(n−1)d.

For n ≤ 2 a linearly presented ideal has linear resolution, so the conjecture fol-
lows at once from proposition 4. We can prove the conjecture in the first nontrivial
case, n = 3, from the following more general version:

Theorem 7. If I is an m-primary homogeneous ideal of S generated in a single
degree d, and I has linear resolution for t steps with t ≥ (n−1)/2, then I2 = m2d.
In particular, if n = 3 and I has linear presentation then I2 = m2d.

4. An Oberwolfach Counterexample

A natural strengthening of conjecture 6 would be the statement that if I ⊂ S is a
homogeneous ideal generated by forms of degree d and having linear presentation,
then Ij has linear resolution for j steps. Huneke, Ulrich and I had made this
conjecture too, and I explained it in my talk. It provoked a lively discussion,
and we speculated about how one might search among “randomly” chosen ideals
with simple sets of generators to look for a counterexample. Since we could prove
the result for monomial ideals, one would have to use at least monomials and
binomials. Over the next couple of days Mike Stillman programmed Macaulay2
[3] to make such a search, and eventually found the following example, saving us
lots of useless work.

Example 8. Let J ⊂ K[a, b, c, d, e, f, g] be the m-primary ideal in 7 variables
generated by the cubes of the 7 variables together with the two binomials

d2(b − e), f(ce − g2).

If I = J ∩ (a, b, c, d, e, f, g)5, then I has linear presentation but I2 does not have
linear resolution for two steps.

Note that the ideal J used to make the example is obtained from an ideal not
involving the variable a by factoring out a3. This suggests a way of analyzing the
example—perhaps the subject of a future Oberwolfach presentation!
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Enriched homology and cohomology modules of simplicial complexes

Gunnar Fløystad

1. Definitions and basic properties. For a simplicial complex ∆ on [n] =

{1, . . . , n} and a field k, one has the augmented oriented chain complex C̃(∆; k)
and the reduced homology groups, which depend only on the topological realization
of ∆. The chain complex is defined by letting C̃i(∆; k) be the vector space ⊕kF
generated by the faces F of dimension i and the differential be defined by

F 7→
∑

dim F ′=i−1

ε(F, F ′)F ′

where ε : ∆ × ∆ → {−1, 0, 1} is a suitable incidence function. The reduced

homology groups H̃i(∆; k) are then the homology groups of this complex.
However the combinatorial structure makes the simplicial complex a richer ob-

ject than its topological realization. We define enriched homology of the simplicial
complex as follows. Let S = k[x1, . . . , xn] be the polynomial ring. We get a com-
plex L(∆; k) of free S-modules be letting Li(∆; k) be the free S-modulee ⊕SF
generated by the faces F of dimension i and the differential be given by

F 7→
∑

F=F ′∪{l}

ε(F, F ′)xlF
′.

We define the symmetric homology modules HSi(∆; k) (or just HSi(∆)) as the
homology modules of this complex. The justification for calling this enriched
homology is that rankS HSi(∆) is equal to dimk H̃i(∆).

This definition is inspired by the theory of cellular resolutions [2] by attaching
the monomial xi to vertex i, and by Koszul duality between S and the exterior
algebra E in n variables [4],[6] by applying the functor L defined there to the
graded dual of the exterior face ring k{∆} (a quotient of E).

If R ⊆ [n] denote by ∆R the restricted simplicial complex consisting of faces of
∆ which are subsets of R. For b in Nn, let R be the support of b. Then HSi(∆)b
is equal to H̃i(∆R). Hence one sees that the symmetric homology module contains
exactly the same information as the linear strands of the resolution of the Stanley-
Reisner ring k[∆], see [9, ch.2]. Our approach gives a different perspective to this
set of data and new questions are natural to ask.

Let L(∆; k)∨ be the dual complex HomS(L(∆), S(−n)) of L(∆). Then we
define the symmetric cohomology modules HSi(∆; k) (or just HSi(∆)) to be the

cohomolgy modules of this complex. Again rankS HSi(∆) is equal to dimk H̃i(∆).

Furthermore HSi(∆)b is equal to H̃i−r(lk∆R) where R is the complement of the
support of b in [n], r = |R| and lk∆R is the link of R in ∆, see [9].

Now recall from [9] that ∆ is a Cohen-Macaulay simplical complex iff H̃i−r(lk∆R)
vanishes for i < dim ∆ and all R. We get the following as a consequence.

Proposition 1. ∆ is Cohen-Macaulay iff the cohomolgy modules HSi(∆) vanish
for i < dim∆ iff L(∆)∨ is a resolution of HSdim∆(∆).
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2. Cohen-Macaulay connectivity and Gorenstein* property. If ∆ is a
Cohen-Macaulay (CM) simplicial complex we then get a unique non-vanishing
cohomology module HSd−1(∆) where d − 1 = dim ∆. It is natural to ask in this
case how properties of this modules reflects itself in the properties of ∆.

Theorem 2. HSd−1(∆) is a rank one torsion free S-module iff ∆ is Gorenstein*.
In this case HSd−1(∆)∨∨ ∼= S, (provided all vertices are in ∆), and HSd−1(∆)
identifies as the Stanley-Reisner ideal of the Alexander dual simplicial complex
∆∗.

In [1], Baclawski introduced the notion of ∆ being l-Cohen-Macaulay. This is
defined to be that ∆R is Cohen-Macaulay of the same dimension of ∆ for all R
such that [n]\R has cadinality l − 1. As an example, if ∆ is a graph then ∆ is
l-CM iff ∆ is l-connected.

Theorem 3. HSd−1(∆) can occur as an l − 1’th syzygy module in an S-free
resolution iff ∆ is l-CM.

In the theory of convex polytopes, Brasilinskys theorem [8], says that if P
is a d-polytope, then the 1-skeleton i d-connected. In the simplicial case this
has been proven more generally for homology spheres [7]. The following is a
rather comprehensive generalization of this with a one-line proof, given the above
theorem.

Corollary 4. If ∆ is l-CM then the codimension i skeleton is (l + i)-CM.

Proof. L(∆≤d−i)
∨ is the truncation of L(∆)∨ in cohomological degrees ≤ d−i. �

3. Vanishing of homology modules. We assume now that ∆ contains all the
vertices. From [6] one has the following, which is essentially also the main result
in [3].

Theorem 5. Only one homology module HSi(∆) is non-zero (except HS−1(∆) =
k) iff the Alexander dual ∆∗ is Cohen-Macaulay.

If ∆ is also Cohen-Macaulay so both ∆ and ∆∗ are Cohen-Macaulay, we call ∆
bi-Cohen-Macaulay. As an example, if ∆ is a graph, then ∆ is bi-CM iff ∆ is a tree.
When ∆ is bi-CM we get now that there is only one non-vanishing cohomology
module HSd−1(∆) and only one non-vanishing homology module HSc−1(∆) (with
the abovemenitoned exception) where c is the maximum of {i | all i-sets are in ∆}.
This gives rather strong conditions on ∆ and the f -vector will be determined by
c, d, and n.

Now defined the girth of ∆ to be the minimum of {i |HSd−1(∆)i 6= 0} (or ∞ if
HSd−1(∆) = 0). If ∆ is a graph this is the minimal length of a cycle in the graph.

Proposition 6. Assume ∆ is l-CM. Then its girth is ≤ n + 2− l (for l ≥ 2), and
d ≤ n − l (except when ∆ is the skeleton of a simplex).

Now we put some strong conditions on ∆.
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Theorem 7. Let ∆ be l-CM. The i) its girth is the maximal possible n + 2 − l
(or ∞ if l = 1) and ii) only one HSi(∆) is non-zero for i < dim∆ (except
HS−1(∆) = k) iff ∆R is bi-CM of the same dimension as ∆ for all R such that
[n]\R has cardinality l − 1.

We call such ∆ for l-Cohen-Macaulay designs. In this case the f -vector is
determined by the invariants c, d, n, and l. As examples, when l = 1 we have
the bi-CM simplcial complexes, when l = 2 and d = 2c cyclic polytopes of even
dimensions are examples, and when d has the maximal possible value n− l we get
exactly the Alexander duals of Steiner systems S(c, d, n).
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Graphs, lattices, and monomial ideals

Jürgen Herzog

This is a survey on joint papers with Hibi and Zheng in which we study classes of
monomial ideals associated with a graph or a meet-semilattice.

Let G be a finite graph with no loops and double edges. The edge ideal I(G)
of the graph G is the monomial ideal in K[x1, . . . , xn] generated by the the set of
monomials

{xixj {i, j} ∈ E(G)}.

We say a graph G is Cohen-Macaulay (over K) if S/I(G) is Cohen-Macaulay.

Theorem 1 (Herzog-Hibi). Let G be a bipartite graph with vertex partition V ∪V ′.
Then the following conditions are equivalent:

(a) G is a Cohen-Macaulay graph;
(b) |V | = |V ′| and the vertices V = {x1, . . . , xn} and V ′ = {y1, . . . , yn} can

be labelled such that:
(i) {xi, yi} are edges for i = 1, . . . , n;
(ii) if {xi, yj} is an edge, then i ≤ j;
(iii) if {xi, yj} and {xj , yk} are edges, then {xi, yk} is an edge.
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For the proof of the implication (b) ⇒ (a) we make a detour. Let L be a
distributive lattice, P the poset of join irreducible elements of L. The set J (P ) of
poset ideals with union as join, and intersection as meet is a distributive lattice.

The fundamental theorem of Birkhoff says that L∼=J (P ).

For any distributive lattice L = J (P ) we associate an ideal HL ⊂ K[{xp, yp}p∈P ]
as follows: for each poset ideal I ⊂ P let

uI =
∏

p∈I

xp

∏

q 6∈I

yq.

Theorem 2. (a) HL has a linear resolution.
(b) HL =

⋂

p≤q(xp, yq).

Let ∆ be the simplicial complex with I∆ = HL, L = J (P ), and let ∆∨ be the
Alexander dual of ∆. Then I∆∨ = ({xpyq}p≤p). Since HL has a linear resolution,
the Eagon-Reiner theorem implies that S/I∆∨ is Cohen-Macaulay, and obviously
it is the edge ideal of a bipartite graph, which we denote by G(P ).
Now we can prove the implication (b)⇒ (a) of Theorem 1: Let G be bipartite
graph with vertex decomposition V = {xp}p∈P and V ′ = {yp}p∈P , where P = [n],
and suppose G satisfies the conditions (b) of the theorem. On P we define a partial
order < by setting p < q if {xp, yq} ∈ E(G). Then G = G(P ), and hence G is
Cohen-Macaulay.

We now extend the definition of the ideal HL to more general lattices. Let L
be a finite meet-semilattice and 0̂ its unique minimal element. In a finite meet-
semilattice L, each element of L is the join of elements of L.

A finite meet-semilattice L is called meet-distributive if each interval [x, y] =
{p ∈ L x ≤ p ≤ y} of L such that x is the meet of the lower neighbors of y in this
interval is Boolean.

As in the case of a distributive lattice we introduce the squarefree monomial
ideal HL associated with a finite meet-semilattice L. Let P be the set of join
irreducible elements of L. Let K be a field and S = K[{xp, yp}p∈P ] the polynomial
ring in 2|P | variables over K. We associate each element p ∈ L with the poset
ideal ℓ(p) = {q ∈ P : q ≤ p}, and for each element q ∈ L we write uq =
∏

p∈ℓ(q) xp

∏

p∈P\ℓ(q) yp, and set HL = (uq)q∈L.

Note that height(HL) = 2 if L is a lattice. In fact, HL ⊂ (xp, yp) for any p ∈ P
while on the other hand u0̂ =

∏

p∈P yp and u1̂ =
∏

p∈P xp both belong to HL and
have no common factor.

We have the following algebraic characterization meet-distributive meet-semi-
lattices

Theorem 3 (Herzog-Hibi-Zheng). Let L be an arbitrary finite meet-semilattice.
The following conditions are equivalent:

(i) L is meet-distributive;
(ii) HL has a linear resolution;
(iii) HL has linear relations.
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On the other hand one can construct for any finite meet-semilattice L a finite
free resolution of HL. This resolution is a cellular resolution in the sense of Bayer
and Sturmfels.

Theorem 4 (Herzog-Hibi-Zheng). Let L be finite meet-semilattice.

(a) There exists a finite multigraded free S-resolution F of HL such that for
each i ≥ 0, the free module Fi has a basis with basis elements

b(p; S)

where p ∈ L and S is a subset of the set of lower neighbors N(p) of p
with |S| = i.

(b) The following conditions are equivalent:
(i) the resolution constructed in (a) is minimal;
(ii) L is meet-irredundant, i.e. for any p ∈ L and any proper subset

S ⊂ N(p) the meet
∧

{q q ∈ S} is strictly greater than the meet
∧

{q q ∈ N(p)}.
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Hilbert-Kunz Functions for Normal Rings

Craig Huneke

The talk reported on joint work with Moira McDermott and Paul Monsky on our
recent result [HMM] about the Hilbert-Kunz function of normal rings. To describe
the result and its background, we adopt the following terminology: (R, m) is a
Noetherian local Z/pZ-algebra of Krull dimension d, and I ⊂ R is m-primary. We
let n be a varying non-negative integer, and let q = pn. By I [q] we will denote
the ideal generated by xq, x ∈ I. If M is a finite R-module, M/I [q]M has finite
length; we denote this length by en(M, I), or more briefly by en(M). We use
λ(−) to denote the length of an R-module. Our basic question is how does en(M)
depend on n? The results of [Mo1] show that en(M) = αqd + O(qd−1) for some
real α. Our main theorem strengthens this by proving:

Theorem 1. Let (R, m, k) be an excellent, local, normal ring of characteristic p
with a perfect residue field and dimR = d. Then en(M) = αqd + βqd−1 + O(qd−2)
for some α and β in R.

Moreover our results establish that β(M) = 0 whenever M is torsion-free and
the class group of R is torsion.

One could hope that Theorem 1 could be generalized to prove that there exists
a constant γ such that en(M) = αqd + βqd−1 + γqd−2 + O(qd−3) whenever R is
non-singular in codimension two. However, this cannot be true. For example,
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if R = Z/5Z[x1, x2, x3, x4]/(x4
1 + · · · + x4

4), then with I = (x1, ..., x4), en(R) =
168
61 (53n) − 107

61 (3n) by [HaMo]. Note that R is a 3-dimensional Gorenstein ring

with isolated singularity. 1

Our proof proceeds in a number of steps, each of which studies the rate of
growth of the lengths of certain Tor modules. A first key step is:

Lemma 2. If T is a finitely generated torsion R-module with dimT = ℓ, then
λ(TorR

1 (R/In, T )) = O(qℓ).

A consequence of this lemma is the next result, a rather surprising fact about
the rate of growth of Tor modules of torsion-free modules. A priori one would
expect these modules to growth as O(qd−1).

Lemma 3. If M is torsion-free, λ(TorR
1 (R/In, M)) = O(qd−2).

Definition 4. Let (R, m, k) be a local, normal ring of characteristic p. If M is
torsion-free of rank r, δn(M) = en(M) − ren(R).

Our main results are summarized in the theorems and corollaries below.

Theorem 5. Let (R, m, k) be an excellent, local, normal ring of characteristic p
with a perfect residue field. Let M be a torsion-free finite R-module. There is a
real constant τ(M) such that δn(M) = τ(M)qd−1 + O(qd−2).

Let R be an integrally closed Noetherian domain. A Weil divisor on R is an
element of the free abelian group on the height 1 primes of R. A principal Weil
divisor is a divisor of the form

∑

P ordP (f)·P with f 6= 0 in the field of fractions of
R. C(R) is the quotient of the group of Weil divisors by the subgroup of principal
divisors. Let M be a finite R-module. Then M admits a filtration with quotients
(isomorphic to) R/Pi where each Pi is prime. Consider the Weil divisor −

∑

Pi,
the sum extending over those Pi that are of height 1. The image of this divisor
in C(R) is independent of the choice of filtration, and is denoted by c(M). c is
additive on exact sequences and c(R) = 0. If P is a height 1 prime of R the exact
sequence 0 → P → R → R/P → 0 shows that c(P ) = P .

Corollary 6. Let (R, m, k) be an excellent, local, normal ring of characteristic p
with a perfect residue field. There is a homomorphism τ : C(R) → R, + with the
following property. If M is torsion-free of rank r then en(M) = ren(R) + τqd−1 +
O(qd−2) with τ = τ(c(M)).

We remark that it is immediate from this corollary that τ is the zero map
whenever the class group of R is torsion. In particular:

Remark 7. Suppose that (R, m, k) is a complete local normal two-dimensional
ring, and k is the algebraic closure of the field with p elements. Then C(R) is a
torsion group.

1For additional work see [BuCh] for computations of the Hilbert-Kunz function for plane
cubics, as well as [Mo2]-[Mo4] and [Te] for other concrete computations of the Hilbert-Kunz
function, and [WY1]-[WY3], [BE] for work on minimal possible values for the Hilbert-Kunz
multiplicity. Recent work of Brenner [Br1, Br2] and Trivedi [T] give even more information in
the case R is a two-dimensional graded domain.
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Finally, our main result:

Theorem 8. Let (R, m, k) be an excellent, local, normal ring of characteristic p
with a perfect residue field and dim R = d. Let M be finitely generated R-module.
Then there exists α(M), β(M) ∈ R such that en(M) = α(M)qd + β(M)qd−1 +
O(qd−2).
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The multigraded Poincaré series and the Golod-property

Michael Jöllenbeck

Let k be a field of arbitrary characteristic, S := k[x1, . . . , xn] the polynomial
ring in n commuting indeterminants with the natural multigrading deg(xi) :=
ei ∈ N

n, and A := S/a the quotient algebra, where a ⊂ S is a monomial
ideal with minimal generating system G(a) := {m1, . . . , ml}. We are interested
in the multigraded Poincaré series of k as an A-modul, given by PA(x, t) :=
∑

i≥0
α∈Nn

dimk(TorA
i (k, k)α) tixα. If the Taylor resolution of a as an S-modul is

minimal, Charalambous and Reeves gave in [CR] an explicit description of PA,
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namely

PA(x, t) :=

n
∏

i=1

(1 + t xi)

1 +
∑

I⊂G(a)

(−1)cl(I)mI tcl(I)+|I|
.

where mI := lcm(m ∈ I), cl(I) := |I/ ∼ | and ∼ is the transitive hull of the
relation m ∼ n iff gcd(m, n) 6= 1.
In general, they conjectured that the Poincaré series has a similar form. Particu-
larly, they claimed that only the summation index of the sum in the denomiantor
will change, but they did , however, not provide its specific structure.

Now, using an algebraic version of the discrete Morse theory (see [F1],[F2]), in-
dependently found by Emil Sköldberg ([Sk]), and Volkmar Welker and the author
([JW]), the general summation index can be discribed. Also, a proof is given in
certain special cases. Furthermore, we present an idea how to prove the conjec-
ture in the general setting. Finally, we obtain some interesting corollaries if A is
assumed to be Golod. Then, for instance, the conjecture implies that a monomial
ring is Golod if and only if the product on the Koszul homology (i.e. the first
Massey operation) vanishes.

The main idea is to minimize the Taylor resolution of a with a special sequence
of acyclic matchings M := M1, . . . ,Mr, called the standard-matching, which
always exists. It preserves the product on the Taylor complex in the sense that
the resulting Morse complex is minimal and, if tensored with k, is isomorphic as
an algebra to the Koszul homology.

Writing I 6∈ Mi if I ⊂ G(a) is not matched by the i-th acyclic matching, the
conjecture of Charalambous and Reeve can be reformulated as follows.

Conjecture 1. If M is a standard-matching on the Taylor resolution, then PA

is given by

PA(x, t) :=

n
∏

i=1

(1 + t xi)

1 +
∑

I⊂G(a)
I 6∈M1

(−1)cl(I)mI tcl(I)+|I|
.

We are able to prove Conjecture 1 if

• the Taylor resolution of a is minimal (theorem of [CR]),
• A = S/a is Koszul, such that a admits a quadratic Gröbner basis,
• the Koszul homology is an M -ring (see [Fr]), and either there exists a

homomorphism s : H•(K
A) → KA, such that π ◦ s = id, or a has a

minimal resolution as S-modul, which carries the structure of a differential
graded algebra.

For the general case, we give an outlining proof idea.
The algebra A is Golod, by definition, iff all Massey-operations on the Koszul

homology vanish. Also, Golod proved that A is Golod iff the Poincaré series PA
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is given by

PA(x, t) :=

n
∏

i=1

(1 + t xi)

1 −
∑

i≥0,α∈Nn

dimk(TorS
i (A, k)α)xα ti

.

Now, Conjecture 1 implies that A is Golod iff the product, i.e. the first Massey-
operation, on the Koszul homology vanishes.

Finally, we discuss some criteria for algebras to be Golod.
For instance, it is known that A is Golod if a is componentwise linear (see

[HRW]). This result can be generalized to

Theorem 2. Let a be generated by monomials with degree l.

(i) If dimk(Tori,i+j) = 0 for all j ≥ 2(l − 1), then A = S/a is Golod.
(ii) If A is Golod, then dimk(Tori,i+j) = 0 for all j ≥ i(l − 2) + 2.

In particular: If A is Koszul, then A is Golod iff a has linear minimal resolution.
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d’Algebre Paul Dubreil, Proc., Paris 1977/78, 31eme Annee, Lect. Notes Math. 740, (1979),

272-284.
[HRW] J. Herzog, V.Reiner, V.Welker, Componentwise linear ideals and golod rings, Mich.

Math. J. 46 (1999), 211-223.
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Combinatorial Expectations from Commutative Algebra

Gil Kalai

Commutative algebra turned out to be a powerful tool to study enumerative and
extremal combinatorial problems. It is especially useful in connections with graded
combinatorial objects such as polytopes, simplicial complexes and arrangements of
hyperplanes. In various situations, commutative algebra not only provide answers
to basic questions but put the questions in what appears to be their right context.
In this summary I will describe some problems and developments in this line of
research.
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Some very successful rings for combinatorial applications are the Stanly-Reisner
ring (the face ring) of a simplicial complex and the Orlik-Solomon algebra associ-
ated to arrangements. The Cohen- Macaulay property turned out to be extremely
important for combinatorics and so are also notions related to generic initial ideals,
Gröbner bases, algebraic shifting, etc.

Towards a Homological VC-dimension. The questions discussed here are part
of a long term project with Roy Meshulam. Discussions with Jiri Matousek and
Tomas Kaiser were also very helpful.

Let K be a simplicial complex. We denote by fi(K) the number of i-dimensional
faces of K and by bi(K) the ith Betti number of K. b(K) denotes the sum of the
Betti numbers of K.

Definition 1. A family of simplicial complexes is strongly hereditary if it is closed
under induced subcomplexes and links.

(An induced subcomplex of a simplicial complex K is obtained by taking a
subset U of the vertices and all faces contained in U .)

Definition 2. A strongly hereditary family of simplicial complexes has HVC-
dimension d with constant A if for every complex K in the family with n vertices

b(K) < A · nd.

Conjecture 3. If K has HVC dimension d then so is its algebraic shifting (GIN).

Recent works of Bayer, Charalambous ,Popescu, Aramova,Herzog and Hibi [7,
2, 3, 4] give the ultimate generalization for what we know on face-numbers/Hilbert
polynomials/Generic initial ideals/Algebraic shifting for Cohen-Macaulay like com-
plexes. These works give a very good description of invariants that are preserved
under algebraic shifting. I hope that the methods used by these authors can be
used to settle Conjecture 1.

An example of hereditary family of simplicial complexes of HVC-dimension d
is the class of d-Leray complexes:

Definition 4. A simplicial complex K is d-Leray if for every induced subcomplex
K ′,

Hi(K
′) = 0,

for every i ≥ d.

It follows from commutative algebra considerations (and as a very special case
of the results mentioned above) that the property of being d-Leray is preserved
under shifting. We describe now an important combinatorial consequence.

Definition 5. A class K of simplicial complexes satisfy the fractional Helly prop-
erty of order d if for every t > 0 there is s = s(t) > 0 such that for every K ∈ K,
with f0(K) = n

fd(K) ≥ t ·

(

n

d + 1

)
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implies that

dimK ≥ s · d.

The fact that d-Leray complexes are preserved under algebraic shifting implies
that they satisfy a fractional Helly property of order d. Fractional Helly theorems
have further important combinatorial applications, e.g. concerning the connection
between covering numbers and fractional covering numbers, see [1]. See also [17]
for much background on Helly-type theorems and also for the original notion of
VC-dimension and its combinatorial significance.

Conjecture 6. The class of simplicial complexes K with HVC-dimension d, with
constant A , satisfies a fractional Helly theorem of order d.

Conjecture 7. Let A be a fixed positive constant. Consider families M of sets in
Rd such that if L is the intersection of m sets in M then b(L) ≤ A · (md). Then
the nerve of M has HVC-dimension d.

Conjecture 8. In conjectures 1,2,3,4 we can replace b(K)- the sum of Betti num-
bers, by χ(K) - the Euler characteristic of K.

(If we based HVC-dimension on the Euler characteristic rather than the sum of
Betti numbers it becomes a purely combinatorial object).

Are all spheres Lefschetz? One of the most outstanding conjectures in commu-
tative combinatorial algebra (see also [21]) asserts that all Gorenstein∗ face rings
are Lefschetz. A Gorenstein∗ face rings are the face rings of homology sphere K
(in the widest sense of the word). The Lefschetz property is a profound property
of the face ring: Suppose that K is a (d − 1)-dimensional Gorenstein∗ complex
and let R(K) be its face ring. Let ϑ1, ϑ2, . . . , ϑd a generic system of parameters
which are linear forms. Let

H(K) = ⊕d
i=0Hi(H) = R(K)/ < ϑ1, ϑ2, . . . , ϑd >,

and let hi = dimHi(K). It follows from the fact that K is Gorenstein∗ that
hi = hd−i. The conjecture is that for an additional generic linear form ω,

ωd−2i : Hi(K) → Hd−i(K)

(the map is by multiplication) is an isomorphism.
When K is the boundary complex of a simplicial (rational) polytope the hard

Lefschetz theorem for the associated toric variety implies that K is Lefschetz.
(This is the reason for this name.) The conjecture that all Gorenstein∗ complexes
are Lefschetz would imply the ”g-conjecture” for spheres, namely a complete de-
scription of face numbers of simplicial spheres. Once proved, various far-reaching
extensions of this problem are waiting to be attacked but at present it is open even
for d = 5.
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Face rings for polyhedral complexes - a Massey answer? A very early
connection between commutative algebra and combinatorics is the characterization
by Macaulay of f -vectors of order ideal of monomials (= Hilbert functions of
standard polynomial rings). A similar characterization by Kruskal-Katona of f
vectors of simplicial complexes provided a complete description of Hilbert functions
of exterior face rings. It turns out that numerical conditions given by Macaulay
and Kruskal-Katona theorems extend to much more general combinatorial objects
such as polyhedral complexes (and much beyond them), see [22, 19] but a notion
of a face ring is missing.

Perhaps we need a structure which is weaker than a ring (and yet had the same
consequences on the face numbers/Hilbert functions). One example that come to
mind is Massey product in algebraic topology [16] (there are other ”products” in
algebraic topology which are similar.). You have a graded vector space ⊕H i and
the product of two elements x ∈ Hj and y ∈ Hk is defined in Hj+k only modulo
some subspace of Hj+k.

Problem 9. Define an abstract notion of a graded ”ring” (with ambiguous prod-
uct) that is strong enough to imply Macaulay’s inequalities (and Kruskal-Katona
inequalities in the exterior or square free cases).

(Massey-like ?) product on toric intersection homology. The Lefschetz
property of boundary complexes of simplicial polytopes extend in a beautiful com-
plicated way to non simplicial polytopes using intersection homology of toric va-
rieties. For some of the involved combinatorics see [21, 10]. Recently, a direct
construction of graded modules which apply for arbitrary polytopes was achieved
by Barthel, Brasselet, Fieseler and Kaup [5] and by Bressler and Lunts [8] and
a direct proof for the Lefschetz property which apply even for nonrational poly-
topes was given by Karu [14]. The ”combinatorial” definition of the intersection
homology module has strong commutative algebra ingredients. (So far, these defi-
nition relies in a strong way on the geometry of the polytope and an extension for
polyhedral spheres is not known.)

The ”g-conjecture” that we mentioned before relies on the Lefschetz property
and also on the ring structure of the face ring (or the cohomology of the associ-
ated toric variety). There is some evidence (see [10], [6]) that the Macaulay-type
inequalities which follow from the ring structure continue to apply for the for the
general case. However, no ring structure on intersection homology that can im-
ply these relations is known or even expected. Perhaps one should look for some
weaker form of product so Problem 5 can be relevant also here.

Other topics.

Clique complexes and the Charney - Davis conjecture. Clique complexes are de-
fined as follows. We start with a graph G and form the simplicial complex whose
faces are sets of vertices of G which form a complete graph in G. (Other related
constructions where you replace the word ”complete” by another property like
”bipartite”, ”perfect”, etc) are also of interest. There are important results and



Combinatorial Commutative Algebra 1729

many problems concerning such complexes. Conjectures 1,2 and 4 above are of
much interest for the special case of clique complexes.

The Charney-Davis conjecture is a beautiful combinatorial problem concern-
ing face numbers of simplicial spheres which are also clique (flag) complexes. See
[20] and references cited there. It can be regarded as a strong form of inequali-
ties derived from the Lefschetz property. Commutative-algebraic approaches are
proposed in [21], [20].

Khovanskii’s Upper bound theorem. Khovanskii [15] extended the classic upper
bound theorem (UBT) to describe an upper bound theorem for simplicial d-
polytopes which are obtained as a section of a polytope Q. (The classical UBT
is the case where Q is a simplex. The answer depends on the face numbers of Q)
Khovanslii’s motivation was to show that certain hyperbolic reflection groups do
not exist in high dimensions.

Problem 10. Extend Khovanskii’s theorem:

• a) to the context of simplicial spheres (you have to find what is the analog
of ”section”),

• b) to give a complete description of the face numbers of P in terms of
those of Q

• c) for general polytopes.

Braden (unpublished) had some results on part c).

Missing faces and Betti numbers. A remarkable result by Migliore and Nagel [18]
describes the maximum values of Betti numbers for Stanley-Reisner rings of sim-
plicial polytopes (and Lefschetz spheres.) The extremal cases are the Billera-Lee
polytopes [9] constructed for proving the sufficiency part of the g-conjecture.

Using a formula by Hochester for these Betti numbers this result has a concrete
combinatorial statement which I expect will have many combinatorial applica-
tions. It appears to include as a special case an upper bound for the number of
i-dimensional missing faces of a simplicial polytope with a prescribed f -vector.
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Non-generic initial ideals and face numbers of simplicial complexes

Isabella Novik

One of the central problems in geometric combinatorics is to characterize or at
least to obtain significant necessary conditions on the face numbers of different
classes of simplicial complexes. Among the earliest results in this quest was the
Kruskal–Katona theorem [5], [6] that characterized the face numbers of all simpli-
cial complexes. Since then many powerful tools and techniques have been devel-
oped, among them are the theory of Stanley-Reisner rings (see [10]), one of whose
first applications was the characterization (due to Stanley [8]) of the face numbers
of all Cohen-Macaulay complexes, and the theory of algebraic shifting (introduced
by Kalai and closely related to the notion of reverse lexicographic generic initial
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ideals) that culminated in the characterization of the face numbers of all simplicial
complexes with prescribed topological Betti numbers (due to Björner–Kalai [4]).

Recently algebraic shifting was extensively studied from the algebraic point of
view by Aramova, Herzog, Hibi, and others. Its usefulness in attacking prob-
lems related to face numbers of simplicial complexes (or more generally, to the
Hilbert function of homogeneous ideals) is explained by the fact that while re-
verse lexicographic generic initial ideal Gin(I) of a homogeneous ideal I has a
much simpler combinatorial structure than I, it shares with I many combinato-
rial and algebraic invariants such as its Hilbert function, regularity, homological
dimension, and more generally extremal Betti numbers (the latter result is due to
Bayer-Charalambous-Popescu [2] and Aramova-Herzog [1]).

This technique has, however, one disadvantage: the resulting ideal is too sim-
ple, that is, any additional structure the original ideal (simplicial complex) may
have been equipped with, such as symmetry, balancedness, etc. is completely de-
stroyed when passing to its Gin, making Generic initial ideals inappropriate for
studying face numbers of such complexes. This motivates a new approach: ex-
ploring the behavior of a special (only partially generic) initial ideal appropriate
for the complex at hand. In [7] we develop and use this technique to strengthen
Stanley’s characterization of the face numbers of Cohen-Macaulay simplicial com-
plexes (e.g., simplicial spheres) to certain necessary conditions on the face numbers
of Cohen-Macaulay complexes with a proper Z/pZ-action We then generalize those
conditions further for the class of Buchsbaum complexes (e.g., simplicial manifolds)
with a proper Z/pZ-action. (The latter result is similar in spirit to the necessity
portion of the theorem of Björner-Kalai on face numbers and Betti numbers of
simplicial complexes.) As applications of this theorem we establish:

• a new version of the Upper Bound Theorem for centrally symmetric man-
ifolds;

• a single generalization that covers both Kühnel’s conjecture on the Euler
characteristic of even-dimensional manifolds and Sparla’s analog of this
conjecture for centrally symmetric manifolds for all 2k-manifolds on n ≥
6k + 3 vertices.

Additional results (this is still a work in progress, parts of it are joint with Eric
Babson) include

• A new and simpler proof of the characterization of the flag f -numbers of
Cohen-Macaulay balanced complexes due to Stanley [9] (necessity) and
Björner-Frankl-Stanley [3] (sufficiency), as well as a generalization of the
necessity portion of this result to conditions on the flag f -numbers and
Betti numbers of balanced Buchsbaum complexes.

• Certain necessary conditions on the face numbers and Betti numbers of
general simplicial complexes with a proper Z/pZ-action.
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Prestable ideals and Sagbi bases

Hidefumi Ohsugi

This is a joint work with Takayuki Hibi. In order to find a reasonable class of
squarefree monomial ideals I for which the toric ideal of the Rees algebra of I
has a quadratic Gröbner basis, the concept of prestable ideals will be introduced.
Prestable ideals arising from finite pure posets together with their application to
Sagbi bases will be discussed.

Let R = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K
with each deg xi = 1 and let I ⊂ R be an ideal which is generated by monomials
u1, . . . , um with deg u1 = · · · = deg um. The Rees algebra of I is the subalgebra
R(I) = K[x1, . . . , xn, u1t, . . . , umt] of R[t]. Let A = K[x1, . . . , xn, y1, . . . , ym] =
R[y1, . . . , ym] denote the polynomial ring over K and define the surjective homo-
morphism π : A → R(I) by setting π(xi) = xi and π(yj) = ujt. The toric ideal
JR(I) of R(I) is the kernel of π. Blum [1] proved that if R(I) is Koszul, then all
powers of I have linear resolutions. Thus in particular if JR(I) has a quadratic
Gröbner basis, then all powers of I have linear resolutions. However, the existence
of a quadratic Gröbner basis of JR(I) is a rather strong condition which guarantees
that all powers of I have linear resolutions. In [4] a much weaker condition, called
the x-condition, for JR(I) is introduced and it is proved that if JR(I) satisfies the
x-condition, then all powers of I have linear resolutions.

Recently, we introduced a new class of monomial ideals, the class of prestable
ideals, which contains the stable ideals [2]. If I is prestable, then JR(I) satisfies
the x-condition and all powers of I have linear resolutions. We then discuss a
class of prestable squarefree monomial ideals I arising from finite pure posets
(partially ordered sets) such that JR(I) has a quadratic Gröbner basis. As one
of the applications of such prestable ideals coming from finite pure posets, Sagbi
bases of the algebras studied in [3] will be determined.
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The geometry of 2-regular algebraic sets

Sorin Popescu

(joint work with D. Eisenbud, M. Green, K. Hulek)

This work was motivated by the classical results of Del Pezza (1886) and Bertini
(1907) describing subvarieties of P

r of minimal degree, that is X ⊂ P
r such that

deg(X) = codim(X) + 1.

Algebraically, these are characterized by the fact that their homogeneous ideal
is 2-regular in the sense of Mumford and Castelnuovo. Geometrically, they are
quadric hypersurfaces (codim = 1), the Vernonese surface in P

5, scrolls

P(OP1(a0) ⊕ · · · ⊕ OP1(ad))
O(1)
−֒→ P

N

and cones over all these.

We describe completely 2-regular ideals which are radical. More precisely, we show
that the following assertions are equivalent for an algebraic set X ⊂ P

r:

a) X is 2-regular.
b) X is small (i.e. every zero-dimensional linear section of X is 2-regular in

its span, or, equivalently, consists of a scheme in linearly general position).
c) Each irreducible component Xi of X is a variety of minimal degree in its

span, and there is an ordering of the components X1, . . . , Xn of X such
that for all i

(X1 ∪ · · · ∪ Xi−1) ∩ Xi = span(X1 ∪ · · · ∪ Xi−1) ∩ span(Xi) .

We also describe the combinatorics of all orderings of components of X that satisfy
c) above.

Bounds for multiplicities

Tim Römer

Let S = K[x1, . . . , xn] be the polynomial ring with n variables over a field K
equipped with the standard grading by setting deg(xi) = 1. Let I ⊂ S be a
graded ideal and R = S/I. Consider the minimal graded free resolution of R:

0 →
⊕

j∈Z

S(−j)βS
p,j(R) → · · · →

⊕

j∈Z

S(−j)βS
1,j(R) → S → 0
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where we denote with βS
i,j(R) = dimK TorS

i (R, K)j the graded Betti numbers of
R and p = proj dim(R) is the projective dimension of R. Let e(R) denote the
multiplicity of R and for 1 ≤ i ≤ p define Mi = max{j ∈ Z : βS

i,j(R) 6= 0} and

mi = min{j ∈ Z : βS
i,j(R) 6= 0}. Based on results of Huneke and Miller in [8],

Huneke and Srinivasan conjectured that if R is Cohen-Macaulay then

(1) (

p
∏

i=1

mi)/p! ≤ e(R) ≤ (

p
∏

i=1

Mi)/p!.

Herzog and Srinivasan proved this conjecture in [6] for several types of ideals:
complete intersections, perfect ideals with quasipure resolutions (i.e. mi(R) ≥
Mi−1(R) for all i), perfect ideals of codimension 2, codimension 3 Gorenstein ideals
generated by 5 elements (the upper bound holds for all codimension 3 Gorenstein
ideals), codimension 3 Gorenstein monomial ideals with at least one generator of
smallest possible degree (relative to the number of generators), perfect stable ideals
(in the sense of Eliahou and Kervaire [2]), perfect squarefree strongly stable ideals
(in the sense of Aramova, Herzog and Hibi [1]). See also [7] for related results.

The lower bound fails to hold in general if R is not Cohen-Macaulay (see [6] for a
detailed discussion). Let c = codim(R). Then Herzog and Srinivasan conjectured
in this case the following inequality:

(2) e(R) ≤ (

c
∏

i=1

Mi)/c!.

Since the codimension is less or equal to the projective dimension and for all
i we have that Mi ≥ i, the inequality in Conjecture (2) is stronger than the
corresponding one in Conjecture (1).

Herzog and Srinivasan proved this conjecture in the cases of stable ideals,
squarefree strongly stable ideals and ideals with a d-linear resolution, i.e. βS

i,i+j(I) =
0 for j 6= d. Furthermore Gold [4] established Conjecture (2) in the case of codi-
mension 2 lattice ideals. This conjecture is also known to be true for so-called
a-stable ideals by Gasharov, Hibi and Peeva [3] which generalizes the stable and
squarefree stable case.

We show that Conjecture (2) is valid for codimension 2 ideals (see [9] for details).
This generalizes the cases of perfect codimension 2 ideals of Herzog and Srinivasan
and codimension 2 lattice ideals of Gold.

For d ≥ 0 let I〈d〉 ⊆ I be the ideal which is generated by all elements of degree
d in I. Recall from [5] that an ideal I ⊂ S is called componentwise linear if
for all d ≥ 0 the ideal I〈d〉 has a d-linear resolution. We show that the upper
bound for the multiplicity holds for componentwise linear ideals which generalizes
some of the known cases since for example stable and squarefree stable ideals are
componentwise linear. We prove that a-stable ideals are componentwise linear and
can also deduce the conjecture in this case.
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Resolutions of some ideals generated by powers of linear forms

Henry K. Schenck

Let R = K[x1, x2, x3] be a polynomial ring, and let ϕ(r) = l + k(3− r) > 0, k, l ∈

N (the positive integers). For char(K) = 0 or char(K) >
∑3

i=1 ϕ(i) − 2, we con-
sider the following families of ideals:

Iϕ = 〈x
ϕ(1)
1 , x

ϕ(1)
2 , x

ϕ(1)
3 , (x1x2)

ϕ(2), (x1x3)
ϕ(2), (x2x3)

ϕ(2), (x1x2x3)
ϕ(3)〉

Jϕ = 〈x
ϕ(1)
1 , x

ϕ(1)
2 , x

ϕ(1)
3 , (x1+x2)

2ϕ(2), (x1+x3)
2ϕ(2), (x2+x3)

2ϕ(2), (x1+x2+x3)
3ϕ(3)〉.

It is easy to use the Taylor resolution to obtain the Hilbert series of R/Iϕ. In [7]
Postnikov and Shapiro conjectured that the Hilbert series of the two families are
equal (actually, that the Hilbert series are equal for analogous families of ideals,
in any number of variables).

In [9], the inverse systems approach of Macaulay (see [1]) is used to translate
questions about the Hilbert series of R/Jϕ into questions about ideals of fatpoints.
In the three variable case, we can apply results of Harbourne on rational surfaces
with K2 > 0 and Riemann-Roch to show that the Hilbert series of R/Jϕ is

1 − 3tϕ(1) − 3t2ϕ(2) − t3ϕ(3) + 6tϕ(1)+ϕ(2) + 6t2ϕ(2)+ϕ(3) − 6tϕ(1)+ϕ(2)+ϕ(3)

(1 − t)3
;

and conjecture that the minimal free resolution of Jϕ is given by:

0 −→ R6(−
3

∑

i=1

ϕ(i)) −→
R6(−2ϕ(2) − ϕ(3))

⊕
R6(−ϕ(1) − ϕ(2))

−→

R3(−ϕ(1))
⊕

R3(−2ϕ(2))
⊕

R(−3ϕ(3))

−→ Jϕ −→ 0.
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Let G be a graph on vertices {0, . . . , n}, with edge {i, j} having weight aij .

For each I ⊆ {1, . . . , n} set dI(i) =
∑

j 6∈I aij , mI =
∏

i∈I x
dI(i)
i ; IG is the ideal

generated by the set of monomials mI . In a similar fashion, set Di =
∑

i∈I dI(i)

and pI = (
∑

i∈I xi)
DI ; JG is the ideal generated by the set of the pI . Postnikov and

Shapiro prove the equality of Hilbert series for R/IG and R/JG. For the complete
graph G on {0, 1, 2, 3} with edge weights ai,j = k if i, j > 0 and a0,i = l, we
find that IG = Iϕ and JG = Jϕ. Postnikov and Shapiro generalize the conjecture
about the minimal free resolution of R/Jϕ: for two related families of ideals I and
J , if the Hilbert series agree, then so do the betti numbers of the minimal free
resolutions. In [9], families I and J defined by “almost linear degree functions”
are studied; while methods of [8] do not yield the Hilbert series, the approach
using algebraic geometry does give the Hilbert series; and these families also yield
a counterexample to Conjecture 6.10 of [8]. However, the counterexample is not
obtained from a graph G, so the conjecture may be true if restricted to ideals of
the form JG.

The minimal free resolution of IG is described in [8] for a saturated digraph G
- the resolution is given by the Scarf complex. So for this restricted class, the
question is if JG has a “Scarf type” resolution.

Lemma 1. The free resolution of L = 〈x
ϕ(1)
1 , x

ϕ(1)
2 , (x1 + x2)

2ϕ(2)〉 is given by

0 −→ R2(−ϕ(1) − ϕ(2)) −→ R2(−ϕ(1)) ⊕ R(−2ϕ(2)) −→ L −→ 0.

Proof. Theorem 2.7 of [4] gives the minimal free resolution for any ideal generated
by powers of bivariate linear forms. �

This gives one way to show that Conjecture 6.10 of [8] is true for graphs on
{0, 1, 2}, since for a graph with edge weights {0, 1} = a, {0, 2} = b, {1, 2} = c we
have an obvious resolution for IG:

0 −→ R2(−a − b − c)

2

6

6

4

yb 0
0 xa

xc yc

3

7

7

5

−−−−−−−−−→

R(−a − c)
⊕

R(−b − c)
⊕

R(−a − b)

h

xa+c yb+c −xayb
i

−−−−−−−−−−−−−−−−−−→ I −→ 0

On the other hand, in two variables, if the Hilbert series agree, then the res-
olutions must also agree, since the ideals will each have three generators and
Hilbert-Burch resolutions.

The point of the lemma is that it does give some intuition for the first syzygies
of the ideals Jϕ ⊆ K[x1, x2, x3]. In particular, if

2l + 3k = ϕ(1) + ϕ(2) ≤ 2ϕ(2) + ϕ(3) = 3l + 2k,

then first syzygies of degree ϕ(1) + ϕ(2) are the first syzygies of minimal degree
(the Hilbert function has maximal growth to that point), so cannot cancel out. So
the lemma identifies six of the twelve first syzygies, as long as k ≤ l (it is easy to
see the syzygies are independent).
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The monomial ideals Iϕ fall into the class identified in [8] as having Scarf res-
olution, so the question is if the ideals Jϕ could have Scarf type resolutions. It
may be possible to use results of Yuzvinsky’s, which are an analog of the LCM
lattice for monomial ideals given by Gasharov, Peeva, and Welker in [2]; some
preliminary computations indicate that it is promising. Of course, it is necessary
to choose different generators for Jϕ, because the Taylor complex with the given
generators is never a resolution, so the results of [10] do not apply.
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Syzygies of Projective Toric Varieties

Greg Smith

(joint work with Henry K. Schenck)

This lecture examined the relationship between the Minkowski sum of lattice poly-
topes and the syzygies of the associated toric ideal. A lattice polytope ∆ gives
rise to a toric ideal I∆ in a polynomial ring S. If ∆ has dimension n, then Ewald
and Wessels [4] prove that the ring S/I(n−1)∆ is normal. Bruns, Gubeladze and
Trung [1] show that the ring S/In∆ is Koszul which implies that it is defined by
quadratic relations. Using some tools from algebraic geometry, we extend these
“lower order” results to higher syzygies.

The polytope ∆ corresponds to an ample line bundle L on a toric variety X such
that the lattice points in ∆ give a basis for H0(X, L). In particular, we can view the
polynomial ring S as SymH0(X, L) and the quotient S/I∆ as

⊕

j≥0 H0(X, L⊗j).

If F• is the minimal graded free resolution of S/I∆, then Green and Lazarsfeld [7]
say that L satisfies the property (Np) provided F0 = S and Fi =

⊕

S(−i − 1) for
1 ≤ i ≤ p. Explicit conditions certifying that a line bundle satisfies the property
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(Np) are known for curves [6], smooth varieties [2], normal surfaces [5] and abelian
varieties [11]. What are the analogous conditions for toric varieties?

To answer this question, we use multigraded Castelnuovo-Mumford regularity
as defined by Maclagan and Smith [9]. Fix a finite collection B1, . . . , Bℓ of globally
generated line bundles on X . For u ∈ Z

ℓ, we simply write Bu for B⊗u1
1 ⊗. . .⊗B⊗uℓ

ℓ .

Assume that there exists a u ∈ N
ℓ such that Bu is an ample line bundle on

X . Given a coherent OX -module F and a line bundle A on X , we say that
F is A-regular (with respect to B1, . . . , Bℓ) if Hi(X, F ⊗ A ⊗ B−u) = 0 for all
i > 0 and all u ∈ N

ℓ satisfying |u| = u1 + · · · + uℓ = i. If B is the semigroup
{Bu : u ∈ N

ℓ} ⊂ Pic(X), then the main result is:

Theorem 1. Let m, w ∈ N
ℓ such that Bm, Bw ∈

⋂ℓ
j=1(Bj + B). If the line

bundle Bm is OX-regular, then Bm+pw satisfies property (Np+1).

As an immediate corollary, we see that S/I(n−1+p)∆ satisfies property (Np)
which generalizes the motivating lower order results. Hering [8] also establishes
this corollary and Ogata [10] shows that S/I(n−2+p)∆ satisfies property (Np) when
n := dim(∆) ≥ 3.

The techniques used to prove Theorem 1 yield stronger results when X is a
product of projective spaces. In particular, this addresses a question raised in
Eisenbud, Green, Hulek and Popescu [3]. Nevertheless, the following questions
remain unanswered:

Question 2. Does every ample line bundle on a smooth toric variety satisfy prop-
erty (N1)?

Question 3. If n > 2 then does OPn(d) satisfy property (N3d−3)?
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Michael Jöllenbeck

joella@mathematik.uni-marburg.de

FB Mathematik und Informatik
Universität Marburg
Hans-Meerwein-Strasse (Lahnbg)
35032 Marburg

Prof. Gil Kalai

kalai@math.huji.ac.il

kalai@cs.yale.edu

Institute of Mathematics
The Hebrew University
Givat-Ram
91904 Jerusalem
ISRAEL

Prof. Isabella Novik

novik@math.washington.edu

Dept. of Mathematics
Box 354350
University of Washington
Seattle, WA 98195-4350
USA

Prof. Hidefumi Ohsugi

ohsugi@rkmath.rikkyo.ac.jp

Department of Mathematics
Rikkyo University
3-34-1 Nishi-Ikebukuro
Toshimaku
Tokyo 171-8501
Japan

Prof. Irena Peeva

irena@math.cornell.edu

Department of Mathematics
Cornell University
Mallot Hall
Ithaca NY 14853-7901
USA

Prof. Sorin Popescu

psorin@math.columbia.edu

Department of Mathematics
State University of New York
at Stony Brook
Stony Brook, NY 11794-3651
USA

Prof. Tim Römer
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