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Introduction by the Organisers

The worshop on Classical Algebraic Geometry, organized by David Eisenbud
(Berkeley), Joe Harris (Harvard) and Frank-Olaf Schreyer (Saarbrücken) was well
attended by important senior researchers and many gifted young mathematicians.

Classical Algebraic Geometry is characterized by having very basic and concrete
problems. However development of the abstract, sophisticated tools of algebraic
geometry has often lead to remarkable progress on these problems. It was our
intention to make a conference emphasizing progress on the classical problems,
and featuring the new tools and their applications. We emphasize a few results:

Geometry of the Moduli Spaces of Curves. Based partly on motivations from
mathematical physics, the enumerative geometry of the moduli spaces of curves
has been an extremely active area for some time. Several of the major conjectures
in the area have seen major progress, and may be close to resolution. The extension
of Brill-Noether theory for line bundles to the case of bundles of higher rank is a
long-standing problem (Mukai’s conjecture), and this plays now a novel role in the
search for interesting divisors on the moduli space in the work of Gavril Farkas. In
the talk of Brendon Hassett we learned how other birational models of the Moduli
space can be interpreted in terms of curves with nodes, cusps and tacnodes.

Derived Categories. Originally introduced in the late fifties as a tool for gener-
alizing duality theory, derived categories have arisen in a several striking new con-
texts, including the characterization of birational transformations in the minimal
model program, the analysis of the Bernstein-Gel’fand-Gel’fand and Fourier-Mukai
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transforms. One of the speakers of the conference (Mihnea Popa) suggested an
amazing series of parallels between Castelnuovo theory and the Schottky problem,
based on these last two contexts.

Enumerative Geometry. The high–tech tools of modern geometry have led to
a better understanding of degenerations, which has in turn led to the solution of
many classical enumerative problems. We heard talks on a solution via special-
ization of the long–standing problem of intersection theory on flag manifolds, and
on the maximal degneration of complex structures through amoebas and tropical
geometry.

We were particularly pleased by the number of extremely strong young (i.e.
untenured) participants, among them for example Gavril Farkas and Mihnea Popa.
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Abstracts

Vector bundles on curves and classical geometry

Arnaud Beauville

Let C be a smooth projective curve, of genus g ≥ 2. The moduli space SUC(r)
of semi-stable vector bundles of rank r on C, with trivial determinant, is a nor-
mal projective variety, which can be considered as a non-abelian analogue of the
Jacobian variety of C. It is actually related to the Jacobian by the following con-
struction, which goes back (at least) to [5]. Let Jg−1 be the translate of JC
parameterizing line bundles of degree g − 1 on C, and Θ ⊂ Jg−1 the canonical
theta divisor. For E ∈ SUC(r), consider the locus

ΘE := {L ∈ Jg−1 | H0(C,E ⊗ L) 6= 0} .
Then either ΘE = Jg−1, or ΘE is in a natural way a divisor in Jg−1, belonging to
the linear system |rΘ|. In this way we get a rational map

θ : SUC(r) 99K |rΘ|
which can be identified to the map ϕL : SUC(r) 99K P(H0(SUC(r),L)∗) given
by the global sections of the determinant bundle L, the positive generator of the
Picard group of SUC(r) [2].

For r = 2 the map θ is an embedding if C is not hyperelliptic [3]. We consider
in this talk the higher rank case, where very little is known. We first look at the
case g = 2. There a curious numerical coincidence occurs, namely

dimSUC(r) = dim |rΘ| = r2 − 1 .

For r = 2 θ is an isomorphism [5]; for r = 3 it is a double covering, ramified
along a sextic hypersurface which is the dual of the “Coble cubic” [6]. Our result
is:

Theorem 1. For a curve C of genus 2, the map θ : SUC(r) 99K |rΘ| is generically
finite (or, equivalently, dominant). It admits some fibers of dimension ≥ [ r

2 ] − 1.

Our method is to consider the fibre of θ over a reducible element of |rΘ| of the
form Θ+ ∆, where ∆ is general in |(r− 1)Θ|. The main point is to show that this
fibre restricted to the stable locus of SUC(r) is finite. The other elements of the
fibre are the classes of the bundles OC ⊕F , with ΘF = ∆; reasoning by induction
on r we may assume that there are finitely many such F , and this gives the first
assertion of the theorem. The second one follows from considering the restriction
of θ to a particular class of vector bundles, namely the symplectic bundles.

The method is not, in principle, restricted to genus 2 curves – but the geometry
in higher genus becomes much more intricate. In the second part of the talk we
apply it to rank 3 bundles in genus 3. Our result is:

Theorem 2. Let C be a curve of genus 3. The map θ : SUC(3) → |3Θ| is a finite
morphism.
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This means that a semi-stable vector bundle of rank 3 on C has always a theta
divisor; or alternatively, that the linear system |L| on SUC(3) is base point free.

This is not a big surprise since the result is already known for a generic curve
of genus 3 [7]. We believe, however, that the method is more interesting than
the result itself. In fact we translate the problem into an elementary question of
projective geometry: what are the continuous families of planes in P5 such that
any two planes of the family intersect? It turns out that this question has been
completely (and beautifully) solved by Morin [4]. Translating back his result into
the language of vector bundles we get a complete list of the stable rank 3 bundles
E of degree 0 such that ΘE ⊃ Θ. Theorem 2 follows as a corollary.

Details can be found in [1].
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Castelnuovo theory and the geometric Schottky problem

Mihnea Popa

(joint work with Giuseppe Pareschi)

The aim of this work is to show that Castelnuovo theory in projective space
– as explained for example in [2] Ch.4 §3 – has a precise analogue for abelian
varieties. This can be quite surprisingly related in a very concrete way to the
geometric Schottky problem, namely the problem of identifying Jacobians among
all principally polarized abelian varieties (ppav’s) via geometric conditions on the
polarization. The main result is that a ppav satisfies a precise analogue of the
Castelnuovo Lemma if and only if it is a Jacobian. We prove or conjecture other
results which show an extremely close parallel between geometry in projective
space and Schottky type projective geometry on abelian varieties.

On a ppav (A,Θ) of dimension g one can make sense of what it means for a
set of at least g + 1 points to be in general position: we simply require for any
g of them the existence of a translate of Θ containing them and avoiding all the
others (we call this theta general position). It turns out that general points on an
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Abel-Jacobi embedded curve C are in theta general position on the corresponding
Jacobian J(C), and impose the minimal number of conditions, namely g + 1, on
the linear series |2Θa|, for a ∈ J(C) general. The main result we prove is the
following:

Theorem 3. Let (A,Θ) be an irreducible principally polarized abelian variety of
dimension g, and let Γ be a set of n ≥ g+ 3 points on A in theta general position,
imposing only g + 1 conditions on the linear series |2Θa| for a ∈ A general. Then
(A,Θ) is a polarized Jacobian of a curve C, and Γ ⊂ C or −C for some Abel-Jacobi
embedding C ⊂ J(C).

Roughly speaking, the key points in the proof of the Theorem are the following.
First, a set Γ of points in theta general position imposing the minimal number
of conditions on general 2Θ-transates satisfies in fact a strong version of general
position: for every subset Y ⊂ Γ of cardinality g, there exists a unique theta
translate containing Y and avoiding all the other points of Γ. (For general points on
an Abel-Jacobi embedded curve, this is essentially the Jacobi inversion theorem.)
Second, the existence of points in Castelnuovo position implies, via the fact above,
the existence of trisecants to the Kummer variety associated to (A,Θ). The specific
result is the following:

Theorem 4. Under the assumptions of Theorem 3, for any distinct points p, q, r, s ∈
Γ we have that

Θ ∩ Θp−q ⊂ Θp−s ∪ Θr−q.

Equivalenty, for every ξ such that 2ξ = s− p− q − r, the images of the points

p+ ξ, q + ξ and r + ξ

lie on a trisecant to the Kummer variety of A.

The Trisecant Conjecture of Welters [6], as yet unproved, implies then the
Castelnuovo-Schottky Lemma. However, our hypotheses contain the extra infor-
mation needed in order to obtain the existence of one-dimensional families of trise-
cants, and apply directly the Gunning-Welters criterion, [3] and [6], for detecting
Jacobians.

In view of the Matsusaka-Ran criterion for detecting Jacobians, beyond the
Schottky type implication the main conclusion of our work can be stated as an
almost perfect similarity between one-dimensional subvarieties of minimal degree
in projective space on one hand and abelian varieties on the other hand. A conjec-
ture of Debarre [1] predicts what all subvarieties of ”minimal degree” in ppav’s (i.e.
those representing the minimal cohomology classes θd/d!) should be: specifically
the Wd’s in Jacobians and the Fano surface of lines in the intermediate Jacobian of
a smooth cubic threefold. These facts, plus the results of [4] on an abelian version
of Castelnuovo-Mumford regularity, quite surprisingly suggest that the similarity
should extend to (smooth) subvarieties of minimal degree of arbitrary dimension,
relating rational normal scrolls to Wd’s and Veronese surfaces to Fano surfaces.
In the spirit of our work, this could potentially be realized via regularity, the
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analysis of Castelnuovo type genus bounds, or higher Castelnuovo theory, all with
interesting Schottky type implications. We state this here as a general problem.

Question. Is there a geometric correspondence relating rational normal scrolls to
Wd’s and Veronese surfaces to Fano surfaces of lines on cubic threefolds? What
are the similar properties, from a Castelnuovo theory point of view, shared by the
two sets of varieties?
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Towards a canonical model for the moduli space of curves

Brendan Hassett

(joint work with David Hyeon)

We work over an algebraically closed field of characteristic zero.
Classical birational models of moduli spaces of curves of small genus tend to be

unirational. Every curve of genus two admits a natural representation as a double
cover of P1 branched over six points, so we have

M2 ∼ P(Γ(OP1(6)))//SL2 = P6//SL2.

Every non-hyperelliptic curve of genus three is a plane quartic, so

M3 ∼ P(Γ(OP2(4)))//SL3 = P14//SL3.

Mg is known to be unirational for g ≤ 14 by work of Severi, Arbarello, Sernesi,
Chang-Ran, and Verra.

On the other hand, Eisenbud, Harris, and Mumford have shown that Mg is of
general type for g ≥ 24. Standard conjectures of birational geometry then predict
the existence of a canonical model for the moduli space

Mg(0) = Proj(⊕n≥0Γ(Mg, nKMg
)).

However, as the canonical ring of Mg is not known to be finitely generated for any
g, this remains an elusive object.

Our approach is to consider a more general object, the log canonical model

Mg(α) = Proj(⊕n≥0Γ(Mg, n(K
Mg

+ αδ))),

where α ∈ Q ∩ [0, 1] is chosen so that KMg
+ αδ is effective. For instance,

(1) for 9/11 < α ≤ 1 we have Mg(α) = Mg (Cornalba-Harris);
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(2) for 7/10 < α ≤ 9/11, Mg(α) is the space of pseudo-stable curves of D.
Schubert, with nodes and cusps as singularities;

(3) for 2/3 < α < 7/10, Mg(α) parametrizes curves with nodes, cusps, and
tacnodes.

As α gets smaller more complicated singularities arise, like ramphoid cusps and
higher-order tacnodes.

One attractive aspect of this formalism is that it includes many classical pro-
jective models for curves of small genus. For example, we have

P(Γ(OP2(6)))//SL2 = M2(α), 7/10 < α < 9/11

and

P(Γ(OP2(4)))//SL3 = M3(α), 5/9 < α < 17/28.

In these cases, we are working with the canonical class of the moduli stack rather
than the moduli scheme. This is important because the locus of curves with
automorphisms has codimension ≤ 1.

For curves of arbitrary genus, these spaces are constructed using the tech-
niques of Geometric Invariant Theory. Let Chowν,g denote the Chow variety of
ν-pluricanonically imbedded curves of genus g

C →֒ PN−1 N =

{
(2ν − 1)(g − 1) if ν > 1

g if ν = 1
.

This admits a natural imbedding into projective space. Mumford has shown that
the moduli space of stable curves can be realized as the quotient Chow5,g//SL9(g−1).

Schubert obtains Mg(α), 7/10 < α < 9/11, as the quotient Chow4,g//SL7(g−1); it

is also possible to use ν = 3. We realizeMg(7/10) as the quotient Chow2,g//SL3(g−1).
Now consider the Hilbert scheme of ν-pluricanonically imbedded curves Hilbν,g

and the cycle-class map

γ : Hilbν,g → Chowν,g.

The Hilbert scheme admits a number of natural imbeddings: For each d ≫ 0, a
curve determines a point in the Grassmannian of quotients

Hilbν,g →֒ Gr((2dν − 1)(g − 1),

(
d+N − 1

N − 1

)
)

C 7→ {Γ(OPN−1(d)) → Γ(OC(d))}.

Let (Hilbν,g//SLN )d denote the invariant theory quotient arising from this lin-
earization. We show that for small ǫ > 0 and large d≫ 0,

Mg(7/10 − ǫ) ≃ (Hilb2,g//SL3(g−1))d.
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Furthermore, the desired flip is induced by the cycle-class map:

Hilb2,g
γ−→ Chow2,g

↓ ↓
(Hilb2,g//SL3(g−1))d −→ Chow2,g//SL3(g−1)

↓ ≃ ≃ ↓
Mg(7/10 − ǫ)

φ−−→ Mg(7/10)

Applying the Hilbert-Mumford criterion for stable points to the Hilbert scheme,
we find Mg(7/10 − ǫ) parametrizes curves with nodes, cusps, and tacnodes.
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Linear codes and algebraic geometry in higher dimensions

Noam D. Elkies

Let V be a variety over a field k, and choose a line bundle L→ V and a vector
space C of sections of L. Assume that C has finite dimension N and no base
points in V (k), and thus yields a map φ : V (k) → PN−1(k). Further assume that
there is no nonzero c ∈ C that vanishes on all of V (k). We consider the classical
questions:

1) Describe the small subsets S ⊂ V (k) that “fail to impose linearly dependent
conditions on C” — that is, for which dim

(
{f ∈ C | ∀p ∈ S : f(p) = 0}

)
exceeds

the expected dimension N − #(S), or equivalently, for which φ(S) is linearly
dependent.

2) When k is finite, what is the distribution, as c varies over C, of the number
of points of {p ∈ V (k) | c(p) = 0} (a hyperplane section of φ(V (k)), unless c 6= 0)?

When k is finite, these questions are related by a duality. Specifically, consider
C as a linear code: a linear subspace of kN , defined up to scaling each coordinate.
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We have #
(
{p ∈ V (k) | c(p) = 0}

)
= N − wt(c), where the weight wt(c) of any

c ∈ C is its number of nonzero coordinates. The dual of C is the linear code

C∗ = {c∗ ∈ kN | ∀c ∈ C,
∑

p∈V (k)

c(p)c∗(p) = 0}.

Thus small linear dependencies in φ(V (k)) are nonzero c∗ ∈ C∗ of low weight. The
weight distributions of C and C∗ are related by the MacWilliams identity [2]:

WC∗(X,Y ) =
1

#(C)
WC(X + (q − 1)Y, X − Y ),

where q = #(k), and WC , the weight enumerator of C, is a generating function
that encodes its weight distribution:

WC(X,Y ) :=
∑

c∈C

XN−wt(c)Y wt(c).

Already in simple examples like linear or quadratic forms on Pn(k), the con-
nection between questions (1) and (2) leads us to use polynomial identities such

as the “q-binomial expansion” (the formula for the expansion of
∏n−1

r=0 (1 + qrT )
in powers of T ; see [1, Ch.10], for instance (10.0.10) on p.484, and again Cor.
10.2.2(c) on p.490, where this is attributed to Rothe 1811). For instance, we use
these methods to give a new proof that there is no S ∈ Pn−1(k) of size < 2n that
imposes dependent conditions on quadrics, has no subsets that impose dependent
conditions on quadrics, and linearly spans Pn−1(k). Equivalently, if C is the code
of quadrics on Pn−1(k) then there is no c∗ ∈ C∗ with wt(c∗) < 2n such that the
support of c∗ spans Pn−1(k). We also count c∗ with wt(c∗) = 2n and spanning
support: there are exactly

#(GLn(k)) ·
[

(−1/2)n

n!
+

n∑

H=1

(−1/2)n−H

(2H)!(n−H)!

H−1∏

r=1

(1 + qr)

]
.

For cubics on P2(k), the weight enumerator of C was in effect determined by
Schoof [3], using the arithmetic of elliptic curves over finite fields. In this case

the XN−wY w coefficient of WC∗ is non-elementary once w > 9; for instance if q
is prime then the w = 10 coefficient is given by a formula that involves the value
τ(q) of the Ramanujan tau function.

The results we have obtained by exploiting the MacWilliams identity to relate
questions (1) and (2) include the complete determination of WC when V = P3(k)
and C = Γ(O(3)). The following table lists, for each T ∈ [−3, 6], the number of
irreducible cubics f of weight q3 −Tq for which the surface {f = 0} is not a cone.
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(It is known that those 10 values of T are the only possible ones; the cubic surface
then has q2 + (T + 1)q + 1 points rational over k.)

T 51840/#(GL4(k)) times the number of f of weight q3 − Tq

−3 80(q + 1)2(q2 + q − 3)

−2
45

q + 1
(77q5 + 34q4 + 90q3 + 152q2 + 281q − 26)

−1
72

q3 − q
(162q7 + 325q6 − 249q5 + 205q4 + 177q3 + 670q2 + 30q − 360)

0
12

q2(q2 − 1)(q3 − 1)
(1735q11 + 1329q10 + 3314q9 − 225q8 + 6846q7

− 3993q6 + 2546q5 + 4785q4 + 4999q3 + 264q2 − 12960q− 4320)

1
72

#(GL2(k))
(182q8 − 57q7 + 90q6 + 840q5

− 1262q4 + 1907q3 + 1350q2 − 2690q+ 360)

2
90

q − 1
(27q5 + 20q4 + 136q3 − 374q2 + 1229q − 990)

3 120(2q4 + 9q3 − 27q2 + 182q − 270)
4 36(q4 − 5q3 + 59q2 − 235q + 260)
5 72(q − 4)(q − 3)(q − 2)
6 (q − 5)2(q − 3)(q − 2)

Note that for each T , the number is given as a multiple of

#(GL4(k))

#W (E6)
=

(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)

51840
.

Further work in this direction may include study of other (V, L,C), and at-
tempted generalizations to complete intersections of codimension 2 and higher
(via MacWilliams identities for higher weight enumerators) and perhaps to linear
dependencies on non-reduced schemes of dimension zero.
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Valuative criteria for stable complexes

Dan Abramovich

(joint work with Alexander Polishchuk)

Motivated by work of Douglas and Aspinwal–Douglas in theoretical physics on
so called Π-stability, Tom Bridgeland introduced a notion of stability condition
in a triangulated category (see also work by Gorodentscev–Kuleshov–Rudakov).
Considering the bounded derived category D(X) of coherent sheaves on a smooth
projective variety X , Bridgeland showed that the collection of all locally finite
numerical stability conditions on D(X) forms a complex manifold. This manifold
is expected to have an important place in mirror symmetry.

Let X be a smooth projective variety. A stability condition on D(X) consists
of a pair

σ = (Z,P)

where Z : K0(X) → C is a group homomorphism and P = {P (t)}t∈R is a collection
of full subcategories of D(X), objects of which are called semistable of phase t.
This pair is required to satisfy the following conditions:

(1) P (t+ 1) = P (t)[1].
(2) If t1 > t2 and Ei ∈ P (ti) then Hom(E1, E2) = 0.
(3) For any 0 6= E ∈ D(X) there exists a Harder-Narasimhan diagram

0 = E0 → E1 → · · · → En = E,

where Ai := Cone(Ei−1 → Ei) is semistable of phase ti, with

t1 > t2 · · · > tn.

(4) for any 0 6= E ∈ P (t) we have Z([E]) = m(E)eiπ t with m(E) > 0.

The objects Ai are called the Harder-Narasimhan constituents of E.
In addition, we always make two more assumptions: first σ is numerical, namely

Z factors through the Chern character K0(X) → H∗(X,Q). Second, for a suffi-
ciently small η > 0 and any real a the category P (a − η, a + η) of objects with
Harder-Narasimhan of phases in the interval (a− η, a+ η) is a quasi-abelian cat-
egory of finite length.

We say that σ is noetherian if the similarly defined abelian category P ((0, 1])
is noetherian.

In the talk I first explain (following Bridgeland) in which way this notion of
stability generalizes slope stability for coherent sheaves on a curve. Then I report
on a result joint with A. Polishchuk, in the direction of finding a proper moduli
space for stable objects:

We consider a fixed noetherian stability condition σ on D(X). By a family
of objects of P (1) we mean an object of F ∈ D(X × S) such that the derived
restriction Fs := Li∗sF to the fiber X × {s} is in P (1) for all s ∈ S.

Theorem 5. Let S be a smooth curve and U ⊂ S a dense open subset.
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(1) Every family FU of objects in P (1) over U extends to a family F of objects
in P (1) over S.

(2) Let F1 and F2 be families of objects in P (1) over S, and let φU : (F1)U →
(F2)U be an isomorphism. Then Li∗F1 and Li∗F2 are S-equivalent.

(3) Every family FU of objects in P (1) over U extends, after a suitable finite
surjective base change g : S′ → S, to a family F of objects in P (1) over
S′ with polystable fibers in S′ − g−1U .
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Rational points of varieties defined over a function field

Jason Starr

(joint work with A. J. de Jong)

This is a report of an ongoing project with A. J. de Jong extending the Tsen-
Lang theorem regarding rational points of hypersurfaces over the function field
of a surface, [6], [4], in the spirit of the generalization of Tsen’s theorem proved
in [2]. We propose a notion, rational 1-connectedness closely related to rational
connectedness, outline a strategy for proving a rationally 1-connected variety with
trivial Brauer obstruction defined over the function field of a surface has a rational
point, state a theorem that is a special case of this strategy, and as a corollary
give a new proof of de Jong’s Period-Index Theorem, [1].

Let X be a smooth, geometrically connected, projective variety defined over the
function field K of a variety over an algebraically closed field k. There is an exact
sequence,

0 → Pic(X) → PicX/K(K)
δ−→ Br(K),

where PicX/K is the relative Picard scheme and Br(K) is the Brauer group of K.
The map δ is a Brauer obstruction to existence of a K-point of X ; if X has a
K-point, δ = 0.

Question. What hypotheses on the geometric generic fiber X⊗KK guarantee the
only obstruction to existence of a K-point is the Brauer obstruction?
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For tr.deg.(K/k) = 1, Tsen proved that a hypersurface of degree d in Pn has
a K-point if d ≤ n, [5]. Later Tsen and Lang proved for tr.deg.(K/k) = b, a
hypersurface of degree d in Pn has a K-point if db ≤ n, [6], [4].

Every smooth hypersurface in Pn of degree d ≤ n is Fano and thus rationally
connected, i.e., every pair of K-points are in the image of a morphism from P1.
Graber, Harris and I proved every rationally connected variety over the function
field of a curve in characteristic 0 has a K-point, [2].

Mazur asked for a notion of rational n-connectedness that is to rational con-
nectedness what n-connectedness is to connectedness in topology. For rational
1-connectedness a working definition is rational connectedness of both X and the
geometric generic fiber of the evaluation morphism M0,2(X,β) → X × X for β

“sufficiently positive”. Here M0,2(X,β) is any compactification of the space of
2-pointed genus 0 curves in X with curve class β, e.g. the Kontsevich compactifi-
cation. One connection with the Tsen-Lang theorem is a theorem by Harris and
myself (essentially) proving a general hypersurface of degree d in Pn is rationally
1-connected if d2 ≤ n, [3]. The main connection is the following theorem.

Theorem 6. If char(k) = 0, tr.deg.(K/k) = 2, δ = 0, PicX/K(K) = Z, X is
rationally 1-connected, there is an integral model (X , B) of (X,K) where B is a
smooth projective surface and X → B is smooth away from codimension 2 points
in B, and if the evaluation morphism M0,1(X, 1) → X is smooth with rationally
connected fibers, then X has a K-point.

Because PicX/K(K) = Z and δ = 0, there exists an ample invertible sheaf OX(1)

generating PicX/K(K), and M0,1(X, 1) is the space of pointed rational curves in
X having OX(1)-degree 1. The hypothesis that there is an integral model (X , B)
smooth away from codimension 2 and the hypothesis that the evaluation morphism
is smooth with rationally connected fibers are technically useful, but hopefully can
be removed from the final theorem.

The strategy is to reduce to [2]. Blowing up the base locus of a Lefschetz
pencil on B gives a proper, flat morphism π : B → S of relative dimension 1 with
geometrically connected fibers. There is a relative Hilbert scheme over S, Sec,
parametrizing sections of the base-change of X over the base-change of B. There
is a bijection between K-points of X and k(S)-points of Sec ⊗OS

k(S). By [2],

there exists a k(S)-point if there is a subvariety Z ⊂ Sec such that Z ⊗OS
k(S)

is rationally connected. A pair of sections σ′, σ′′ ∈ Sec ⊗OS
k(S) define a point

of (X ×B X ) ⊗OS
k(S). Because X is rationally 1-connected, there is a datum

(Σ, τ ′, τ ′′, f) of a surface Σ ruled by genus 0 curves over B ⊗OS
k(S), sections τ ′

and τ ′′ of this ruling, and a B⊗OS
k(S)-morphism f : Σ → X such that σ′ = f ◦τ ′

and σ′′ = f ◦ τ ′′. If Image(τ ′) and Image(τ ′′) are linearly equivalent on Σ, then σ′

and σ′′ are contained in the image of a morphism from P1. Unfortunately this is
rarely the case, but a version of this establishes asymptotic rational connectedness
of the irreducible components of Sec (under the additional hypotheses).

If X ⊗K K is a Grassmannian and the Brauer obstruction vanishes, the the-
orem implies X has a K-point. Let D be a division algebra with center K and
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dimK(D) = n2. Let m be the order of [D] ∈ Br(K). There is a generalized Severi-
Brauer variety over K, X , whose L-points parametrize right ideals of D ⊗K L of
dimension mn for every L/K. Because m[D] = 0, the Brauer obstruction of X
vanishes. By the theorem, X has a K-point, i.e., D has a right ideal of dimension
mn. The only right ideals of D are 0 and all of D. This gives a new proof of de
Jong’s Period-Index Theorem.

Theorem 7. (de Jong [1]) The period equals the index for every element of the
Brauer group of a function field of transcendence degree 2 over an algebraically
closed field. In other words, if D is a division algebra with centerK and dimK(D) =
n2, the order of [D] ∈ Br(K) is n.
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K3 sections and the effective cone of Mg

Gavril Farkas

(joint work with Mihnea Popa)

This is an extended abstract of my talk given at Oberwolfach in June 2004 on
joint work with Mihnea Popa partially contained in the papers [1] and [2].

We denote by Mg the Deligne-Mumford moduli space of stable curves of genus
g. A fundamental problem going back to Mumford is to determine the cone
Eff(Mg) of effective divisors on Mg.

We recall a few basic facts about Mg. The boundary Mg −Mg corresponding
to singular stable curves is a union of irreducible divisors ∆0 ∪ . . . ∪ ∆[g/2]. We

denote by δi := [∆i] ∈ Pic(Mg) the associated class in the Picard group of the
moduli stack, and by λ the class of the Hodge bundle. We define the slope function
s : Eff(Mg) → R ∪ {∞} by the formula

s(D) := inf {a
b

: a, b > 0 such that aλ− bδ −D ≡
[g/2]∑

i=0

ciδi, where ci ≥ 0}.

It is well-known that s(D) < ∞ for any D which is the closure of an effective

divisor on Mg and in this case one has that s(D) = a/min
[g/2]
i=0 bi.
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The Slope Conjecture of Harris and Morrison predicts that

sg := infD∈Eff(Mg)s(D) ≥ 6 + 12/(g + 1)

(cf. [3], Conjecture 0.1). This is known to hold for g ≤ 12, g 6= 10. The conjecture
has a number of interesting consequences, e.g. a positive answer would imply that
the Kodaira dimension of Mg is −∞ if and only if g ≤ 22.

For g such that g + 1 is composite, we can fix integers r, d ≥ 1 such that
ρ(g, r, d) = g − (r + 1)(g − d + r) = −1 and denote by Mr

g,d the locus of curves
carrying a g

r
d. It is known that Mr

g,d is an irreducible divisors and the class of its
compactification has been computed by Eisenbud and Harris:

Mr

g,d ≡ c
(
(g + 3)λ− g + 1

6
δ0 −

[g/2∑

i=1

i(g − i)δi
)
.

Thus the Slope Conjecture singles out the Brill-Noether divisors as those having
minimal slope and one can ask whether combinations of Brill-Noether divisors are
the only effective divisors on Mg of slope 6 + 12/(g + 1).

The Slope Conjecture is closely related to the locus of curves Kg ⊂ Mg lying

on a K3 surface. We show that if D ∈ Eff(Mg) is such that s(D) < 6+12/(g+1)
then Kg ⊂ D, hence the locus Kg appears as a natural obstruction for an effective
divisor to have small slope. Due to work of Mukai it is known that dim(Kg) = 19+g
for g ≥ 13. This dimension count breaks down for g = 10, when because of the
existence of a rational homogeneous variety associated to the Lie group G2 we
obtain that K = K10 is a divisor on M10. We prove the following result:

Theorem 8. The class of the compactification K of the K3 divisor on M10 is

K ≡ 7λ− δ0 − 5δ1 − 9δ2 − 14δ4 − b5δ5,

where b5 ≥ 6. It follows that s(K) = 7 < 6 + 12/11, hence K is a counterexample
to the Slope Conjecture.

To compute the class of K we reinterpret curves on K3 surfaces in a way that
makes no reference to K3 surfaces.

Theorem 9. The divisor K has three incarnations as a subvariety of M10:

(1) (By definition) The locus of curves sitting on a K3 surface.
(2) The locus of curves C carrying a stable rank 2 vector bundle E with

∧2(E) = KC and h0(E) ≥ 7.
(3) The locus of curves C of genus 10 sitting on a quadric in an embedding

C ⊂ P
4 with deg(C) = 12.

Descriptions (2) and (3) can be generalized to other genera to provide new
divisors that violate the Slope Conjecture. For instance we can show that on M13

the locus of curves sitting on a quadric in an embedding C ⊂ P5 with deg(C) = 16,
is a divisor that has slope < 6 + 12/14. Similarly, the locus of curves C of genus
16 having an embedding C ⊂ P7 given by a g

7
21 such that the ideal of C is not

generated by quadrics is a divisor on M16 and its compactification D on M16
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has slope s(D) = 407/61 < 6 + 12/17 hence it gives another counterexample
to the Slope Conjecture. Finally, the locus of curves C of genus 22 carrying a
linear system g

11
30 giving an embedding C ⊂ P11 which fails to satisfy the Green-

Lazarsfeld condition N2, is a divisor on M22 and its compactification has slope
equal to 1655/256 = 6.503... < 6 + 12/23.

We also studied divisors on Mg having slope 6 + 12/(g + 1) (for those g for

which the Slope Conjecture holds on Mg). We proved the following:

Theorem 10. The Iitaka dimension of the linear system of Brill-Noether divisors
on M11 is equal to 19.

This is in stark contrast with the hypothesis formulated in [3] (and proven to
be true for g ≤ 9) that the Brill-Noether divisors are the only effective divisors on
Mg of slope 6 + 12/(g + 1).
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Derived Equivalence of Stratified Mukai Flop

Yujiro Kawamata

Derived equivalence of different algebraic varieties provides deeper understand-
ing of geometric phenomena on the varieties. There is a conjecture ([2], [7]):

Conjecture. Let f : Z → X and g : Z → Y be birational morphisms between
smooth projective varieties such that the pull-backs of canonical divisors are equal:
f∗KX = g∗KY . Then the bounded derived categories of coherent sheaves are
equivalent: Db(Coh(X)) ∼= Db(Coh(Y )).

I considered the above conjecture in the case of stratified Mukai flops which are
defined by Markman [10]. A stratified Mukai flop can be regarded as a degenerating
family of usual Mukai flops.

I reviewed general known strategies toward the conjecture. The first one due
to Bondal and Orlov [2] uses the semi-orthogonal decomposition. The second
approach in [3] and [4] is based on the construction of the moduli space of perverse
point sheaves. The third uses a locally free tilting sheaf as in [12] and [1].

From the Grassmannian variety G(r, n), we can construct a stratified Mukai
flop X− → Y in dimension 2r(n − r) + 1. In the case for G(2, 4), Namikawa
[11] proved that the natural choice Φ′ = Rg∗Lf

∗ does not give an equivalence. I
modified the functor to Φ(a) = Rg∗(Lf

∗a⊗OY (E′
1) so that the conjecture is still

confirmed in this case. A locally free generator of the derived category is given by
Kapranov [5] in this case, but it is not tilting.
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Question. (1) It is expected that the conjecture should hold for a wider class of
varieties.

Let (X,B) and (Y,C) be pairs of projective varieties with Q-divisors which are
KLT. Assume that there are birational morphisms f : Z → X and g : Z → Y
from a smooth projective variety such that the pull-backs of log canonical divisors
are equal: f∗(KX +B) = g∗(KY + C). Then we expect an equivalence of derived
categories D(X,B) ∼= D(Y,C).

The first question is to give a correct definition the category D(X,B). For exam-
ple, if X has only quotient singularities, then we should have D(X) = Db(Coh(X )),
where X is the smooth Deligne-Mumford stack associated to X ([6], [9]).

(2) If there is an equivalence D(X) ∼= D(Y ), then a posteriori one can regard
Y as a moduli space of perverse point sheaves on X by using the kernel object of
the equivalence functor ([12], [8]). The question is to give a priori definition of
the perverse point sheaves.
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Murphy’s Law for the Hilbert scheme (and the Chow variety, and
moduli spaces of surfaces of general type, and stable maps, and nodal

and cuspidal plane curves, and . . . )

Ravi Vakil

Define an equivalence relation on singularities generated by: If (X, p) → (Y, q)
is a smooth morphism, then (X, p) ∼ (Y, q). We say that Murphy’s Law holds
for a moduli space if every singularity type of finite type over Z appears on that
moduli space.

Theorem 11. The following moduli spaces satisfy Murphy’s Law.

1a. the Hilbert scheme of nonsingular curves in projective space
1b. the moduli space of maps of smooth curves to projective space Mg(P)
1c. the Chow variety of nonsingular curves in projective space (where only

seminormal singularities are allowed)
2a. the (coarse or fine) moduli space of smooth surfaces (with ample canonical

bundle)
2b. the Hilbert scheme of nonsingular surfaces in P5, and the Hilbert scheme

of surfaces in P4

3. more generally, the moduli space of smooth n-folds (n > 1) (with ample
canonical bundle)

4a. branched covers of P2 with only simple branching (nodes and cusps), in
characteristic not 2 or 3

4b. the “Severi variety” of plane curves with a fixed numbers of nodes and
cusps, in characteristic not 2 or 3

In the lecture, more spaces were shown to satisfy Murphy’s Law; for the sake
of brevity we have kept the list short. A weaker equivalence relation may also be
used.

We sketch some philosophy and history, and then outline the proof. I am grate-
ful to the organizers and participants in the Oberwolfach workshop on Classical
Algebraic Geometry for many comments, in particular for pointing out that The-
orem 12 was first proved by Mnëv. I thank F. Catanese for sharing his expertise,
and D. Abramovich for sharing his book [5]. The results stated here will appear
in [10].

The moral of Theorem 11 is as follows: in algebraic geometry, we know that
some moduli spaces of interest are “well-behaved” (e.g. equidimensional, having
at worst finite quotient singularities, etc.), often because they are constructed as
Geometric Invariant Theory quotients of smooth spaces: e.g. the moduli space of
curves, the moduli space of vector bundles on a curve, the moduli space of branched
covers of P1 (the Hurwitz scheme, or space of admissible or twisted covers), the
Hilbert scheme of divisors on projective space. In other cases, there has been
some effort to try to bound how “bad” the singularities can get. Theorem 11 in
essence states that these spaces can be arbitrarily singular, and gives a means of
constructing an example where any given behavior happens. To make this quite
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explicit, one can construct a smooth curve in projective space whose deformation
space has any given number of components, each with a given singularity type, with
any given non-reduced behavior along various associated subschemes. Similarly,
one can give a smooth surface of general type in characteristic 17 that lifts to 177

but not to 178.
There is a folklore belief that the Hilbert scheme satisfies Murphy’s Law, which

was first explicitly stated in [4] p. 18. (The MathReview for this book MR1631825
shows the mathematical community’s discomfort with the informal nature of the
traditional statement of Murphy’s Law.) I am not sure of the origin of Murphy’s
Law, but it seems reasonable to ascribe it to Mumford (see his famous “patholo-
gies” paper [9]) and Hartshorne.

On the other hand, other moduli spaces were believed (or hoped) to be better-
behaved. For example, Severi stated that the space of plane curves with given
numbers of nodes and cusps was unobstructed (see the MathReview MR0897672
to [6]). J. Wahl gave the first counterexample in [12], and [6] gives another.
Theorem 11 4b shows that Severi was “maximally wrong”.

The proof is by drawing connections among various moduli spaces. We begin
with a remarkable result of Mnëv. Define the incidence scheme of points and lines
in P2, a locally closed subscheme of (P2)m × (P2∗)n = {p1, . . . , pm, l1, . . . , ln}.
• We are given some specified incidences: For each pair (pj , li), either pj is required
to lie on li, or pj is required not to lie on li.
• The points are required to be distinct, and the lines are required to be distinct.
• Given any two lines, there a point required to be on both of them.
• Each line contains at least three points.

Theorem 12. (Special case of Mnëv’s Universality Theorem) Every singularity
type appears on some incidence scheme.

The original statement was in [7], [8]; for a later exposition see [5] p. 13.
Outline of Theorem 11. Given any singularity type, we begin with an incidence

scheme, and a point on it with that singularity type. Then consider the surface S
that is the blow-up of P2 at the points pj , along with the marked divisor D that is
the proper transform of the union of the li. Deformations of (S,D) correspond to
deformations of the li and pj preserving the incidences, so the deformation space
of (S,D) has the same singularity type. Choose two other divisor classes on S that
are equivalent to D modulo 2, and sufficiently ample, and choose effective divisors
D′, D′′ in these classes. (This is a smooth choice; the resulting deformation
space hence has the same singularity type.) Then use Catanese’s construction
[1] to produce a (Z/2)3 cover with branch divisor given by these three divisors,
whose deformations are precisely those of (S,D,D′, D′′); this surface has ample
canonical bundle. Then [2] Proposition 4.3 ensures that this surface has no extra
automorphisms (other than (Z/2)3), ensuring that the coarse moduli space has the
same singularity type as well. (In characteristic 2, we take (Z/2)3 covers instead,
using Pardini’s work on abelian covers.)

We have thus shown 2a. By taking four or five sections of a sufficiently ample
bundle, we obtain 2b. By taking three sections, and using Wahl’s results (showing
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that deformations of a generic branched cover of P2 are the same as deformations
of the branch divisor preserving the nodes and cusps), we obtain 4. By taking
the product of the surface with high-genus curves, we obtain 3 (as deformations
of the product are products of the deformations, by van Opstall’s thesis [11]). By
embedding the surface by a complete linear system corresponding to a sufficiently
ample divisor, and slicing the surface with a sufficiently high degree hypersurface,
we obtain 1, using Fantechi and Pardini’s key result of [3].
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Bounded complements: conjecture, examples and applications

Vyacheslav Shokurov

In early 90’s complements were used in construction of 3-fold log flips [6]. In
recent investigations they appear in a more general form as an important ingredient
to establish

1. Borisovs-Alexeev’s conjecture on the boundedness of ε-log canonical Fano
varieties [1];

2. which in its turn is related to the log canonical thresholds [5], the canonical
and anticanonical thresholds; and

3. ascending chain condition (acc) of the minimal log discrepancies (mld’s).
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Usual n-complements and their generalizations were discussed and, in particu-
lar, proposed

Conjecture (on bounded complements). Let d > 0 be a positive integral number
and ε ≥ 0 be a real number. Then there exists a finite set Nd(ε) of positive integral
numbers such that, for any contraction of normal algebraic varieties X → Z and
some (complementary index) n ∈ Nd(ε), if we take the general element D of the
linear system | − nK|, where K denotes the canonical divisor, then the log pair
(X,D/n) has only ε-log canonical singularities in the mobil sense and locally over
Z under the following conditions:
a) dimX ≤ d;
b) X has only ε-log canonical singularities; and
c) −K is nef and big over Z.

Moreover, it is expected that the last two conditions can be weakened:
b′) for ε > 0, X has only ε′-log canonical singularities for some 0 ≤ ε′ < ε
depending on d, ε and Nd(ε); and
c′) there exists a positive integral number m and a divisor D ∈ | −mK| such that
(X,D/m) has only ε-log canonical singularities.

Certain generalization on log pairs and other types of singularity restrictions
are expected, too.

The following examples and applications illustrates the conjecture:
1. the surface case; 3-fold case for canonical singularities in the list of Hayakawa

and Takeuchi [4];
2. the toric case: A. Borisov’s classification [2] and closed subgroups of a real

torus according to J. Lawrence [4];
3. the acc of mld’s and of thresholds.

Sketch of the proof for 3. for the acc of mld’s. The statement is conditional, that
is, follows from the conjecture. Let ai = a(Xi, xi) be a monotonic increasing
sequence of mld’s where dimXi ≤ d and Xi is considered over itself. Thus a) and
c) are satisfied. Take ε = limi→∞ ai. We need to verify a stabilization: ai = ε
for all i ≫ 0. The case ε = 0 is obvious since all ai ≥ 0 (or = −∞). In the
case ε > 0 we can apply b′) for all i ≫ 0. In addition to the stabilization we get
the boundedness of canonical indexes of points xi ∈ Xi since the complementary
divisor D = 0. �
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Arcs and valuations

Shihoko Ishii

In [13], Nash introduces the Nash map which associates a family of arcs through
the singularities on a variety (this family is called a Nash component in this talk)
to an essential divisor over the variety. In other word, Nash map is a correspon-
dence between the set of certain families of arcs and the set of certain divisorial
valuations.

On the other hand, L. Ein, R. Lazarsfeld and M. Mustaţǎ ([4]) introduce a
map from the set of irreducible cylinders for a non-singular variety to the set of
divisorial valuations.

In this talk, we introduce a map from the set of fat arcs to the set of valua-
tions. Here, a fat arc is an arc which does not factor through any proper closed
subvarieties. This map is a generalization of Nash map and the map by Ein,
Lazarsfeld and Mustaţǎ. We can see that some fat arcs correspond to divisorial
valuations and the others to non-divisorial valuations. Here, we determine the fat
arcs which correspond to divisorial valuations. By this characterization we obtain
many examples corresponding to divisorial valuations including Nash components
and cylinders in the arc space of a non-singular variety. As a cylinder and a Nash
component are of infinite dimension, one may have an impression that an arc
corresponding to a divisorial valuation should be of infinite dimension. But our
characterization gives many finite dimensional families of arcs which correspond
to divisorial valuations. Another example is the arc determined by a conjugacy
class of a finite group G which gives the quotient variety X = Cn/G ([3]). The
restriction of our map onto a subset of these arcs coincides with the “McKay cor-
respondence” constructed in [9]. Therefore, one can think that the Nash map and
the “Mckay correspondence” are brothers.

This talk also gives a partial answer to the Nash problem which asks if the
Nash map is bijective. This problem was posed in Nash’s preprint in 1968 (This
preprint was published later as [13]). Inspired by this preprint, many people
studied the arc spaces of singularities and divisors over the singular varieties (see,
Bouvier [1], Gonzalez-Sprinberg [5], Hickel [6], Lejeune-Jalabert [10], [11], [12],
Nobile [14], Reguera-Lopez [15]) Then, affirmative answer for the Nash problem
is obtained for a minimal 2-dimensional singularity by Reguera-Lopez [15]. For
non-minimal 2-dimensional singularities, we do not know the answer of the Nash
problem even for a rational double point (Recently the author was informed that a
French mathematician proved the affirmative answer for a rational double point).
Last year, the Nash problem was answered affirmatively for a normal toric variety
of arbitrary dimension, but negatively in general in [8]. Though there is a counter
example for the Nash problem, it is still an interesting problem to clarify in which
category the Nash problem is affirmatively answered. For example, this problem
is still open for 2 and 3 dimensional singularities as the counter examples in [8]
are normal singularity of dimension greater than or equal to 4. For non-normal
singularities, nothing is known about the Nash problem. In this talk, we give the
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affirmative answer to the Nash problem for a pretoric variety. As a corollary, we
obtain that for a non-normal toric variety the Nash problem is affirmative.

References

[1] C. Bouvier, Diviseurs essentiels, composantes essentielles des variétés toriques singulières,
Duke Math. J. 91, (1998) 609–620.

[2] C. Bouvier and G. Gonzalez-Sprinberg, Système générateur minimal, diviseurs essentiels
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Mondrian tableaux and the cohomology of flag varieties

Izzet Coskun

The k-step flag variety F (a1, . . . , ak;n) parametrizes k-tuples of vector spaces
V1 ⊂ · · · ⊂ Vk ⊂ V of a fixed n-dimensional vector space V , where Vi has dimen-
sion ai. These varieties are fundamental to geometry, representation theory and
the theory of symmetric functions. Consequently, it is important to ‘know’ their
cohomology rings. We now explain what we mean by ‘knowing the cohomology
ring’ in the special case of Grassmannians.

Schubert cycles generate the cohomology of the Grassmannian G(a, n). They
are indexed by partitions λ = (n − a ≥ λ1 ≥ · · · ≥ λa ≥ 0). The Schubert cycle
σλ is the class of a variety defined by the following rank conditions with respect
to a fixed complete flag F•

Σλ(F•) = {W ∈ G(a, n)| dim(W ∩ Fn−a+i−λi
) ≥ i}.
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Given two Schubert cycles σλ and σµ their product σλ · σµ =
∑

ν c
ν
λ,µσν is ex-

pressed as a sum of Schubert cycles. The structure coefficients cνλ,µ are known

as Littlewood-Richardson (LR for short) coefficients. We would like to have an
effective rule (usually refered to as an LR rule) for computing these coefficients.

I would like to reiterate that the crucial requirement is that the rule be effective.
For example, using the Giambelli formula one can express every Schubert cycle
in terms of Pieri cycles (those for which λi = 0 for i > 1). Then the Pieri rule
gives a way of multiplying Pieri cycles. This strategy does not qualify because the
Giambelli formula is a determinantal formula and expresses the Schubert cycles
as sums and differences of products of Pieri classes.

In the case of Grassmannians there are many LR rules in terms of Young
tableaux [3], puzzles [4,5], and checkers [6]. For the two-step flag variety A. Knut-
son conjectured a rule in terms of puzzles (see [1]). However, for arbitrary flag
varieties, except for multiplying very special classes (e.g. Monk’s formula [3]),
there was not even a conjectural rule. The purpose of this talk is to describe (and
sketch the proof of) such a rule.

Our rule will be in terms of combinatorial objects called Mondrian tableaux.
The Mondrian tableau associated to the Schubert cycle σλ in G(a, n) is a collection
of a nested squares of side lengths n− a+ i− λi. In a Mondrian tableau a box of
size s denotes a vector space of dimension s. If a box b1 is contained in another
box b2, then the vector space represented by b1 is a subspace of the vector space
represented by b2. A complete flag in V can be represented by a nested sequence
of n boxes. The Mondrian tableau records those flag elements which have an
additional dimension of intersection with the a-plane.

To multiply two Schubert cycles in G(a, n) we place their corresponding Mon-
drian tableaux at the opposite corners of an n×n square. After some preliminary
manipulations, we move the boxes at the lower left hand corner anti-diagonally
up by one. These moves correspond to making the flags with respect to which the
Schubert cycles are defined less transverse. At each step the intersection breaks
into two pieces (except when the dimension of the next box at the left hand corner
is one bigger than the one we are moving or the corresponding statement for the
flag in the upper right hand corner holds). We continue moving the boxes and
tracing each possibility until all the boxes are nested again. Once the boxes are
nested the tableau again corresponds to a Schubert cycle. The figure shows the
sample calculation σ2

1 = σ2 + σ1,1 in G(2, 4). The main result is as follows.

Theorem 13. The LR coefficient cνλ,µ of G(a, n) is equal to the number of times
the Mondrian tableau associated to σν occurs in the game starting with the Mon-
drian tableaux σλ and σµ in an n× n square.

The rule for arbitrary flag varieties is similar. A Schubert cycle in F (a1, . . . , ak;n)
is represented by a Mondrian tableau which has ak boxes in k colors C1, . . . , Ck.
Among the boxes exactly ai − ai−1 of them have color Ci. The flag F• induces a
complete flag on the vector space Vk. At the j-th element of this complete flag
there exists a smallest index i for which the dimension of intersection of this flag
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*

Mondrian Tableau

Geometric picture

Figure 1. The product σ2
1 in G(2, 4): Mondrian tableaux and

the geometry corresponding to them.

element with Vi is one more than that of the previous flag element. We draw the
corresponding box in the color Ci.

To multiply two Schubert cycles in the flag variety we place the corresponding
Mondrian tableaux in opposite corners of an n × n square. We play a game
similar to the one in the case of Grassmannians. Now there are more possibilities
depending on which linear space among the Vi can meet the intersection when we
specialize the flags. The rules list all the possibilities. The main theorem is the
following.

Theorem 14. The product of two Schubert cycles in F (a1, . . . , ak;n) equals the
sum of all the Schubert cycles that result in the game of Mondrian tableaux starting
from the given Schubert cycles in an n× n square.

LR rules have many applications in geometry and representation theory. Due
to lack of space here we mention only two immediate applications. A Schubert
problem of expected dimension zero is called enumerative over a field K if all of
the solutions can be realized over K for an appropriate choice of flags. A slight
modification of the main theorem in [7] yields the following corollary.

Corollary 1. All Schubert problems for all flag varieties are enumerative over the
real numbers.

The three-pointed Gromov-Witten invariants of the Grassmannian are the struc-
ture constants of the small quantum cohomology ring. Consequently, these coef-
ficients are often refered to as the quantum LR coefficients. A theorem of Buch,
Kresch and Tamvakis (in [1]) relates these coefficients to ordinary LR coefficients
of two step flag varieties. Using this dictionary we obtain the following corollary.

Corollary 2. The Mondrian tableaux rules provide a quantum LR rule.
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We conclude with a series of open problems. The techniques described here
should yield at least some partial answers to these problems.

Problem. Provide an LR rule for other types of Grassmannians/ flag varieties
(i.e. of types B,C,D,E,F and G).

For example, for the orthogonal Grassmannian the same method carried out on
a quadric should lead to a rule. The new feature in this case is that there can
be multiplicities of 2. This is currently work in progress. It would be interesting
to see whether one can also provide rules for the exceptional groups by carrying
out the degenerations on their associated cubic forms. Finally we can ask for a
quantum LR rule for flag varieties.

Problem. Provide a quantum LR rule for flag varieties.

Combining the results discussed here with those of [2], one should be able to make
progress on this problem.

Acknowledgements: A Liftoff grant from the Clay Mathematics Institute made
my participation in the Classical Algebraic Geometry meeting possible. I gratefully
acknowledge their generous support.
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Hilbert’s Theorem on non-negative ternary quartic forms

Claus Scheiderer

(joint work with V. Powers, B. Reznick and F. Sottile)

Let f = f(x, y, z) be a ternary form of degree four with real coefficients. Assume
that f is positive semidefinite (psd), i.e., has non-negative values on R3. In 1888,
Hilbert [2] proved that f can be written as a sum of three squares of quadratic forms
with real coefficients. His proof used arguments of classical algebraic geometry and
is not always easy to understand. There exist modern accounts of, and variations
on, Hilbert’s proof, e.g. [3] or [4].
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We are pursuing a new approach to Hilbert’s theorem, which yields additional
and new information. Call two quadratic representations

f = p2
0 + p2

1 + p2
2 = q20 + q21 + q22 (∗)

equivalent if they can be obtained from each other by an orthogonal linear change.
We are counting the number of inequivalent such representations. In particular,
showing that this number is always at least one will re-prove Hilbert’s theorem.

We are following an approach of C. T. C. Wall [5], which in turn is based on
ideas of A. B. Coble [1]. Their work considers ternary quartic forms f over C.
Wall shows that, apart from one exceptional case, such f can always be written
as a sum of three squares of (complex) quadratic forms. These representations are
linked to non-trivial 2-torsion points on the Jacobian of the plane quartic curve
f = 0, at least in the case when this curve is non-singular. Since the quartic
has genus 3, there are 63 such points on the Jacobian, and accordingly, there are
exactly 63 inequivalent quadratic representations of f (over C).

For the situation of Hilbert’s theorem, we are working over the reals. Assume
that the real quartic curve f = 0 is non-singular. Since f is psd, the Jacobian has
exactly 15 non-trivial real 2-torsion points. Using methods from Galois cohomol-
ogy, we show that exactly 8 of these 15 points correspond to real sums of squares
representations (∗) of f , while the remaining 7 correspond to signed representa-
tions (f = p2

0 + p2
1 − p2

2 or f = p2
0 − p2

1 − p2
2). Therefore, in the non-singular case,

there are exactly 8 inequivalent ways to write f as a sum of three squares.
The analysis of the case where the quartic f = 0 is singular (irreducible) pro-

ceeds roughly along similar lines. Quadratic representations of f may have non-
empty base loci contained in the singular locus of the curve. Case distinctions are
necessary with respect to the possible base loci of such representations, depending
on the singularities of the curve.
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Special linear systems in P2

Stephanie Yang

The purpose of this talk is to introduce a combinatorial technique to determine
when general points in P2 fail to impose independent linear conditions on plane
curves of a given degree. A well-known conjecture, formulated independently by
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B. Segre, A. Gimigliano, B. Harbourne, and A. Hirschowitz (though most com-
monly known as the Harbourne-Hirschowitz conjecture) gives geometric meaning
to when this is the case.

Let m1, . . . ,mr be a sequence of positive integers which correspond to general
points p1, . . . , pr ∈ P2. Denote by L = Ld(m1, . . . ,mk) the linear system of degree
d curves with multiplicity mi at pi. The expected dimension of L is:

e(L) = max

{(
d+ 2

2

)
−

k∑

i=1

(
mi + 1

2

)
− 1,−1

}
.(1)

This is a sharp lower bound for the actual dimension of L; when equality holds,
we say that L is non-special, and otherwise, we say that L is special.

Let π : V → P2 be the blow-up of the projective plane at the points p1, . . . , pr.
A curve C ⊆ P2 is called a (−1)-curve if it is rational and its proper transform

C̃ ⊆ V has self-intersection equal to −1. With this in our vocabulary, it is easy to
state the Harbourne-Hirschowitz conjecture:

Conjecture (Harbourne-Hirschowitz). L is special if and only if it contains a
multiple (-1)-curve in its base locus.

While one direction (the “if” part) of this equivalence is elementary, the other
direction remains open except for a few special cases.

The Harbourne-Hirschowitz conjecture has a variety (no pun intended) of algebro-
geometric consequences. First, a proof of the conjecture would settle the long-
standing Nagata conjecture, posed in 1959 by Nagata after constructing a coun-
terexample to Hilbert’s 14th problem. (In short, Nagata conjectured if n ≥ 10,
then any degree d curve with n points of multiplicity m must satisfy d > m

√
n).

The Harbourne-Hirschowitz conjecture also implies that a curve with negative
self-intersection in the blow-up of P2 at (any number of) general points must have
self-intersection -1, thus giving a complete description of the Mori cone of such
surfaces.

Checkers on a triangle

We now describe the combinatorial game. Given Ld(m1, . . . ,mk), form a (d+1)×
(d + 1) triangle of boxes. Our goal is to place checkers on the board using two
types of moves:

Type A: For each multiplicity mi, we place
(
mi+1

2

)
checkers in one of the three

corners of the box, forming an mi ×mi triangle. If no corner of the box
has enough empty squares available, then our only options are to quit the
game, or perform moves of the other type in order to create empty squares.
Two examples of valid moves are:

•

•

•

•

•

•

or

•

•

•

•

•

•

•

•

•

n
ew

ch
eckers

o
ld

c
h
e
c
k
e
r
s
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Type B: We may perform one of six “slides” which move all of the checkers
towards one corner along rows, columns, or diagonals parallel to one side.
Two examples of valid moves of this type are:

•

•

•

•

•

•

•

•

•

(slide down) -

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(slide across) -
•

•

•

•

•

•

•

•

•

•

In [8], we prove the following fact: if all of the checkers can be placed on the board
using moves only of the two types listed above, then Ld(m1, . . . ,mi) is non-special.

Examples

As a first example, consider linear system L5(3, 2, 2, 2) of quintics with one
triple point and three double points. When we perform the triangle algorithm as
follows:

Step 1: Place six checkers (for the triple point) on one corner (bottom right) of
the triangle

Steps 2–4: Place three checkers (for a double point) on the top corner of the
triangle, and perform two slides: first slide down in columns, and then
slide to the right along the rows.

The successive steps look like:

• • •
• •
•

Step 1

• • • • •
• • •
•

Step 2

• • • • •
• • • •
• • •

Step 3

• • • • •
• • • •
• • •
• •
•

Step 4

and thus L5(3, 2, 2, 2) is non-special (and empty).
Now consider the special linear system L = L2(2, 2) of conics through two

double points. After placing first three checkers in any corner of the triangle, we
cannot place another triangle of three checkers onto the board, even after any
sequence of slides. This of course is due to the fact that L2(2, 2) is special.

•
•
•
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Application

In [8], we modify a well-known degeneration of P2 first introduced by Ciliberto
and Miranda in [1]. Let ∆ be a one-parameter family, and denote by X the blow-
up of the three-fold P2 × ∆ at a point. The fibers of X over ∆ can be viewed
as a degeneration of P2 to a reducible surface with two rational components. On
X we can create a family of linear systems of plane curves with multiple points
on each fiber, and use this degeneration to “break” the family of linear systems
into systems defined on each of the two rational components of the special fiber
of X . This gives us a recursive bound for the dimension of such plane curves. A
consequence of this degeneration is the following fact:

Theorem 1. For any positive integer M , there exists a bound D = D(M) such
that:

{
The Harbourne-Hirschowitz conjecture is true for all linear systems
Ld(m1, . . . ,mk) with d < D(M) and mi ≤M .

}

=⇒
{

The Harbourne-Hirschowitz conjecture is true for all linear systems
Ld(m1, . . . ,mk) with mi ≤M .

}

The base points above are allowed to have mixed multiplicity. (Most recent
results have applied only to collections of base points with all or all but one points
assigned equal multiplicity.) Also note that the list of possible linear systems on
the left is finite while those on the right are infinite. The exact formula for D(M)
is given in [8], and selected values are given below:

M 5 6 7 8 9 10 11 12 · · · M >> 0
D(M) 21 25 29 34 42 51 61 71 · · · O(M2)

In particular, D(7) = 29 and the number of possible linear systems 28 or less,
with multiple points of order 7 or less, is approximately 108. One hundred million
cases sounds daunting to all but the computer-minded. We wrote a program
(in C++) to enumerate this long list of cases and play the combinatorial game
(of checkers on a triangle) on each linear system. Remarkably, the game worked
to prove the Harbourne-Hirschowitz conjecture in all but a few dozen of linear
systems, which are then handled with ad hoc methods in the last section of this
paper, to prove:

Theorem 2. The Harbourne-Hirschowitz conjecture is true for all linear systems
of plane curves with base points having multiplicity up to 7.
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Pfaffians of extrasymmetric antisymmetric matrices, and moduli
spaces

Fabrizio Catanese

(joint work with Ingrid Bauer and Roberto Pignatelli)

The motivation for our work stems from the questions posed by F. Enriques in
Chapter VIII of his book ”Le superficie algebriche” ([4]) about surfaces of general
type with pg = 4.

For these, K2 ≥ 4, and the cases K2 = 4, 5 were completely classified by
Enriques. Enriques also discussed at length the case K2 = 6, which was later
completely classified by Horikawa in [7].

The existence question posed by Enriques for K2 ≥ 7 was later solved by virtue
of the contributions of several authors, and we now know that such surfaces exist,
even with a birational canonical map, for 7 ≤ K2 ≤ 32, cf. e.g. [3].

The classification project progresses more slowly: the case K2 = 7 was finally
completely classified in the monograph by the first coauthor ([1]).

The challenging open problem here is to understand the structure of the moduli
space, i.e., to determine the incidence correspondence of the several locally closed
strata which are described in the classification.

Horikawa in [5] showed that the moduli space for K2 = 5 is connected, with two
irreducible components meeting along a divisor, and he showed ([7]) that there are
at most three connected components for K2 = 6.

We were able to prove:

Theorem 3. Consider the moduli space of surfaces with pg = 4,K2 = 6. Then it
has at most two connected components.

In particular, there is a deformation of surfaces of type (IIIb) to surfaces of type
(II).

Question. It the above moduli space (for pg = 4,K2 = 6) disconnected?

A possible reason for this could be that the surfaces of both components degen-
erate to surfaces with a genus two pencil, but in one case the braid monodromy is
transitive, in the other case it is not.
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Sketch of the proof of Theorem 3. We use the following fact: the canonical model
X of surfaces of Type (II) are hypersurfaces of degree 9 in the weighted projective
space P(1, 1, 2, 3). As such, these surfaces are always singular (this explains the
result of Horikawa that the moduli space is non reduced on this open set), and the
canonical divisor is 2-divisible as a Weil divisor on X .

Similarly occurs for type (IIIb), so for both type of surfaces we have a semi-
canonical ring B, and we would like to find a flat family of deformations of the
semicanonical ring.

The ring B is a Gorenstein ring, of codimension 1 in case (II), of codimension
4 in case (IIIb), where X is embedded in P(1, 1, 2, 3, 4, 5, 6).

In order to describe the semicanonical ring and its deformations in case (IIIb),
we use, as in [2], the format of extrasymmetric antisymmetric 6 × 6 matrices.

This format applies because surfaces of type (IIIb) have a pencil of hyperel-
liptic curves of genus 3, and one can lift this graded ring of dimension 1 to the
semicanonical ring of the surface.

The deformation trick is similar to the one used in [2] for the canonical ring:
filling entries of homogeneous degree 0 in the matrix with parameters. When
these parameters are non zero, three of the given Pfaffians allow to eliminate the
3 variables of respective weights 4, 5, 6. We obatin then a semicanonical ring of
type (II). �

We want now to briefly discuss the cited method of extrasymmetric antisym-
metric 6 × 6 matrices.

The main point here is the lack of a structure theorem for Gorenstein subva-
rieties of codimension 4 (for codimension 3 we have the celebrated theorem of
Buchsbaum and Eisenbud!).

Several explicit formats were proposed by Dicks, Reid and Papadakis.
The geometric roots for the above one lie in the fact that the Segre product

P2 × P2 is embedded in P8 as the variety of 3 × 3 matrices A of rank 1, hence
defined there by 9 quadratic equations, admitting 16 relations.

If however one writes A = B + C, with C symmetric , B antisymmetric, then
one can form the antisymmetric 6 × 6-matrix D:

B C

−C B

The matrix D has an extrasymmetry from which follows indeed that the 15 4× 4
Pfaffians of D are not linearly independent, but exactly reduce to the 9 above
quadratic equations.

Using a flat family of deformations of the above subvariety, and interpreting
the entries of the matrix as indeterminates to be specialized, one obtains an easy
construction of Gorenstein subvarieties of codimension 4, which seems to be rather
ubiquitous.

We refer to [11] for a thorough discussion of the problem of understanding
Gorenstein rings in codimension 4. Our result shows that this moduli space could
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be rather complicated, since we obtain a deformation from codimension 4 to codi-
mension 1, but we observe that one cannot pass through the lower codimensions.
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Finite and infinite generation of Nagata invariant ring

Shigeru Mukai

An m-dimensional linear representation of an (algebraic) group G induces an
action on the polynomial ring C[z1, . . . , zm] of m variables. This is called a linear
action on the polynomial ring. In 1890, Hilbert showed that the invariant ring
was finitely generated for classical representations of the general and special linear
groups. The following is known as his (original) fourteenth problem ([1]):

Question. Is the invariant ring C[z1, . . . , zm]G of a linear action of an algebraic
group finitely generated?

The answer is affirmative for the (1-dimensional) additive algebraic group Ga

([3]). In 1958, Nagata considered the standard unipotent linear action

(1) (t1, . . . , tn) ∈ Cn ↓ C[x1, . . . , xn, y1, . . . , yn] =: S
{
xi 7→ xi

yi 7→ yi + tixi
, 1 ≤ i ≤ n,

of Cn on the polynomial ring S of 2n variables and showed that the invariant ring
SG with respect to a general linear subspace G ⊂ Cn of codimension 3 was not
finitely generated for n = 16. I studied this example systematically and obtained
the following:
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Theorem 4. The invariant ring SG of (1) with respect to a general linear subspace
G ⊂ Cn of codimension r is finitely generated if and only if

1

2
+

1

r
+

1

n− r
> 1.

This inequality is equivalent to the finiteness of the Weyl group W (T2,n−r,r) of
the Dynkin diagram T2,n−r,r with three legs of length 2, n − r and r. There are
four infinite series [I]–[IV] and five exceptonal cases [V]–[IX] where this holds:

[I] [II] [III] [IV] [V] [VI] [VII] [VIII] [IV]
r 1 2 3 3 4 3 5

n− r 1 2 3 4 3 5 3
diagram An An Dn Dn E6 E7 E7 E8 E8

The ‘if’ part of the theorem is proved case by case. In the cases [I] and [III], the
invariant ring is very explicit and the proof is immediate. The case [II] is classical
and the invariant ring SG is the homogeneous coordinate ring of a Grassmannian
variety. In the case [IV], that is, dimG = 2, the invariant ring is the total co-
ordinate ring, or the Cox ring, of the moduli space of parabolic 2-bundles on an
n-pointed projective line. Note that the following part of the 14th problem seems
still open:

Question. Is the invariant ring C[z1, . . . , zm]G of a linear action of the 2-dimen-
sional additive group G = Ga × Ga finitely generated?

See [2] for the ‘only if’ part.
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Geometry of tropical curves

Grigory Mikhalkin

The talk gives a description of tropical curves, their inner structure, and outlines
some of their applications in complex and real algebraic geometry.

Tropical curves arise as 1-dimensional varieties over the so-called tropical semi-
field Rtrop, the semifield of real numbers equipped with two operations: taking the
maximum (treated as the semifield addition) and addition (treated as the semi-
field multiplication).1 The counterpart of the complex torus (C∗)n = (C \ 0)n

1It is convenient to include −∞ (the additive zero) to Rtrop (among other things such an
inclusion would make projective tropical curves compact), however for the sake of simplicity we
exclude −∞ from Rtrop in this talk.
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is Rn
trop ≈ Rn (since exclusion of −∞ from Rtrop resulted in absence of tropical

additive zero).
Consider a tropical polynomial

f(y) = “
∑

j

ajy
j” = max

j
(jy + aj).

Here y ∈ Rn, aj ∈ Rtrop, j ∈ A, where A ⊂ Zn is finite, jy is the scalar product in
Rn. The operations in quotation marks refer to the tropical semifield operations.
Note that f is a convex piecewise-linear function f : Rn → R, it is continuous and
smooth everywhere except for an (n − 1)-dimensional locus. This locus in Rn is
called the tropical hypersurface defined by f .

Tropical curves appear as 1-dimensional objects (graphs) by tropical hyper-
surfaces. Such curves are piecewise-linear graphs in Rn. They inherit a certain
structure from Rn ≈ Rn

trop. Let us take a somewhat different point of view and
start by defining abstract tropical curves as graphs equipped with certain struc-
ture (in a fashion similar to the definition of Riemann surfaces as abstract smooth
surfaces equipped with a conformal structure).

Let Γ be a finitely-valent graph (i.e. a topological space homeomorphic to a
locally finite 1-dimensional CW-complex, we do not assume that Γ is compact).
Every point a ∈ Γ is la-valent, la ∈ N, (a point inside an edge is 2-valent). There
exists a small open neighborhood Ua ∋ a, Ua ⊂ Γ such that Ua \ {a} consists of la
components each homeomorphic to an open interval. Let φa : Ua → Rla−1 be an
embedding such that every component of φa(U \ {a}) is a straight open interval
stretching from φa(a) to a point pj ∈ Rla−1, j = 1, . . . , la. Suppose that this
interval has a rational slope, i.e. pj − φ(a) is a positive multiple of a primitive
(non divisible in Zla−1) vector vj ∈ Zla−1. The map φa is called a Z-affine chart
if any la − 1 out of vectors v1, . . . , vla form a basis of the lattice Zla−1 and

la∑

j=1

vj = 0.

Note that according to this definition a 1-valent vertex cannot have a Z-affine
chart. A map Φ : Rm → Rn is called a Z-affine linear map if it is an affine-linear
map whose derivative is linear over Z. In other words Φ is defined as a composition
of a Z-linear map and a translation by an arbitrary real vector.

A Z-affine structure on Γ is a collection of Z-affine charts for every point a ∈ Γ
such that for any two charts

φa : Ua → Rla−1 and φb : Ub → Rlb−1

there exists a Z-affine linear map Φab : Rla−1 → Rlb−1 such that

Φab ◦ φa|Ua∩Ub
= φb|Ua∩Ub

.

A Z-affine structure is called proper if for any chart φU : U → Rn and any compact
K ⊂ Rn the closure of φ−1

U (K) ⊂ Γ is compact.
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Definition. A tropical curve is a locally compact graph equipped with a proper
Z-affine structure.

A tropical curve of genus g with k punctures is a tropical curve such that its
underlying graph is connected, has k ends at infinity and has dim(H1(Γ)) = g.

A primitive tangent vector va to a point a of tropical curve is a primitive Zla−1-
vector tangent to φa(Ua). It is easy to see that Φab maps va to a primitive Zlb−1-
vector tangent to φb(Ub) (since Φba exists). Thus a tropical curve Γ determines a
natural metric on Γ once we set the length of a primitive tangent vector to be equal
to 1. Since the Z-affine structure is proper, the length of any unbounded edge of
Γ is infinite and the metric is complete. Vice versa, it is possible to reconstruct
a tropical curve from a locally compact graph without 1-valent vertices equipped
with a complete inner metric.

Thus we have a natural 1-1 correspondence between tropical curves and com-
plete metric graphs without 1-valent vertices. The metric description of a tropical
structure is specific for dimension 1, in higher dimension we have to stick to the
Z-affine structure approach. We do not discuss the definition of such structure
in higher dimension here, but let us remark that Rn has a tautological Z-affine
structure.

We say that the ends of Γ are marked if they are numbered by numbers 1
through k.

Definition. A map

h : Γ → Rn,

where Γ is a tropical curve with k marked ends, is called tropical if for every point
a ∈ Γ there exists a Z-affine linear map

ψa : Rla−1 → Rn

such that h|Ua
= ψa ◦ φa.

The degree β of h is the k-tuple (v1, . . . , vk), where each vk ∈ Zn is the image
under h of the primitive tangent vector to the corresponding end in the outbound

direction. (Note that
k∑

j=1

vj = 0.)

One can form the moduli space Mtrop
g,k of all tropical curves of genus g with k

marked punctures. It turns out that in the case g = 0, k ≥ 3 this moduli space
itself has a proper Z-affine structure of dimension k−3, i.e. is a tropical manifold,
which is proper (complete) but non-compact (unless k = 3). If g > 0 then it

admits a completion Mtrop

g,k ⊃ Mtrop
g,k that has a structure of a tropical orbifold

of dimension 3g − 3 + k (unless g = 1 and k = 0). Similarly, one can define the

moduli space Mtrop,β
g,k (Rn) of tropical maps of degree β from genus g curves with

k punctures to Rn and its completion Mtrop,β

g,k (Rn).
As in the classical case we have forgetting maps

ftj : Mtrop

g,k → Mtrop

g,k−1,
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j = 1, . . . , k, which associate to a tropical curve Γ another tropical curve obtained
by forgetting the jth end (i.e. obtained by removing the corresponding unbounded
edge). Also we have evaluation maps

evj : Mtrop,β

g,k (Rn) → Rn,

defined for j such that vj = 0 by associating to a tropical map h : Γ → Rn the
point in Rn that is the image of the jth end of Γ.

It turns out that the intersection theory in Mtrop,β

g,k (Rn) coincides with that of

its classical counterpart Mβ

g,k((C∗)n) for g = 0 or for arbitrary g in the case of
n = 2. This can be used for computation of the Gromov-Witten invariants of toric
varieties as well as for computation of their real counterparts and this makes one
of the main application areas of tropical curves.

Consider a tropical map h : Γ → R, where Γ is a tropical curve of positive
genus. Its degree is a k-tuple of integer numbers. Let Γ̄ be the compact tropical
curve obtained from Γ by forgetting all its punctures. The degree of h yields a
divisor on Γ̄ (supported on at most k points). This divisor has degree zero and
is called the divisor of h. As in Classical Geometry we form the tropical Picard
group Pic(Γ̄) by taking the group of all finitely supported divisors and setting all
divisors of meromorphic functions (i.e. of tropical maps h : Γ → R) equivalent to
zero.

Let ω1, . . . , ωg ∈ H1(Γ̄; Z) be a basis. (Here we use cellular cocycle representa-
tives for the classes ωj .) Each of ωj can be integrated along a path γ : [0, l] → Γ̄.
The easiest is to parameterize γ by its arclength so that γ′(t) is a primitive tangent
vector for any t ∈ [0, l]. The integral

∫
γ

ωj is the sum of the (oriented) lengths of

γ on every edge of Γ̄ multiplied by the value of ωj on that edge. With the help of
such integration the basis ω1, . . . , ωg defines the embedding H1(Γ̄; Z) → Rg. We
form the Jacobian variety

Jac(Γ̄) = Rg/H1(Γ̄; Z).

It is a torus (S1)g equipped with a natural Z-affine structure which does not
depend on the choice of the basis ω1, . . . , ωg.

Suppose that D is a divisor on Γ̄ of degree zero. Then there is a collection of
paths in Γ̄ that hasD as its boundary. The tropical Mittag-Leffler problem is to tell
whether D comes from a meromorphic function. As in the classical case the answer
is given by the tropical Abel-Jacobi theorem: D is the divisor of a meromorphic
function if and only if integration against γ is a H1(Γ̄; Z)-point in Rg, i.e. if it is
zero in Jac(Γ̄). Furthermore, the tropical Abel-Jacobi theorem states that such
integration yields a bijection

A : Pic0(Γ̄) → Jac(Γ̄),

where Pic0(Γ̄) ⊂ Pic(Γ̄) is a subgroup corresponding to the zero-degree divisors.
Finally I’d like to mention an application of tropical curve to construction of real

algebraic curves with a controlled topology. (This was the original motivation for
the patchworking construction for real algebraic curves in the plane introduced by
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Viro in 1979 and patchworking is one of the main ingredients of tropical geometry.)
A tropical curve h : Γ → Rn, where Γ is a tropical curve of genus g with k
punctures, is called regular if it varies in a (k+(n−3)(1−g))-dimensional family (it
can be shown that it always varies in at least (k+(n−3)(1−g))-dimensional family).
Here we allow to vary both the map h and the Z-affine structure on the curve Γ. It
turns out that a regular tropical curve can be approximated by amoebas Logt(C),
where C ⊂ (C∗)n is a holomorphic curve of the corresponding genus and degree,
Logt(z1, . . . , zn) = (logt |z1|, . . . , log |zn|) and t > 1 is a sufficiently large number.
With the help of this observation (which is also used in tropical computation of
the Gromov-Witten invariants of toric varieties discussed above) one can construct
algebraic curves of a given degree in real toric varieties, in particular those that
contain components with a given knot type in real toric 3-folds.

Reporter: Stavros Papadakis
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